• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
4  *
5  * Driver for STMicroelectronics Serial peripheral interface (SPI)
6  */
7 #include <common.h>
8 #include <clk.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <reset.h>
12 #include <spi.h>
13 
14 #include <asm/io.h>
15 #include <asm/gpio.h>
16 #include <linux/bitfield.h>
17 #include <linux/iopoll.h>
18 
19 /* STM32 SPI registers */
20 #define STM32_SPI_CR1		0x00
21 #define STM32_SPI_CR2		0x04
22 #define STM32_SPI_CFG1		0x08
23 #define STM32_SPI_CFG2		0x0C
24 #define STM32_SPI_SR		0x14
25 #define STM32_SPI_IFCR		0x18
26 #define STM32_SPI_TXDR		0x20
27 #define STM32_SPI_RXDR		0x30
28 #define STM32_SPI_I2SCFGR	0x50
29 
30 /* STM32_SPI_CR1 bit fields */
31 #define SPI_CR1_SPE		BIT(0)
32 #define SPI_CR1_MASRX		BIT(8)
33 #define SPI_CR1_CSTART		BIT(9)
34 #define SPI_CR1_CSUSP		BIT(10)
35 #define SPI_CR1_HDDIR		BIT(11)
36 #define SPI_CR1_SSI		BIT(12)
37 
38 /* STM32_SPI_CR2 bit fields */
39 #define SPI_CR2_TSIZE		GENMASK(15, 0)
40 
41 /* STM32_SPI_CFG1 bit fields */
42 #define SPI_CFG1_DSIZE		GENMASK(4, 0)
43 #define SPI_CFG1_DSIZE_MIN	3
44 #define SPI_CFG1_FTHLV_SHIFT	5
45 #define SPI_CFG1_FTHLV		GENMASK(8, 5)
46 #define SPI_CFG1_MBR_SHIFT	28
47 #define SPI_CFG1_MBR		GENMASK(30, 28)
48 #define SPI_CFG1_MBR_MIN	0
49 #define SPI_CFG1_MBR_MAX	FIELD_GET(SPI_CFG1_MBR, SPI_CFG1_MBR)
50 
51 /* STM32_SPI_CFG2 bit fields */
52 #define SPI_CFG2_COMM_SHIFT	17
53 #define SPI_CFG2_COMM		GENMASK(18, 17)
54 #define SPI_CFG2_MASTER		BIT(22)
55 #define SPI_CFG2_LSBFRST	BIT(23)
56 #define SPI_CFG2_CPHA		BIT(24)
57 #define SPI_CFG2_CPOL		BIT(25)
58 #define SPI_CFG2_SSM		BIT(26)
59 #define SPI_CFG2_AFCNTR		BIT(31)
60 
61 /* STM32_SPI_SR bit fields */
62 #define SPI_SR_RXP		BIT(0)
63 #define SPI_SR_TXP		BIT(1)
64 #define SPI_SR_EOT		BIT(3)
65 #define SPI_SR_TXTF		BIT(4)
66 #define SPI_SR_OVR		BIT(6)
67 #define SPI_SR_SUSP		BIT(11)
68 #define SPI_SR_RXPLVL_SHIFT	13
69 #define SPI_SR_RXPLVL		GENMASK(14, 13)
70 #define SPI_SR_RXWNE		BIT(15)
71 
72 /* STM32_SPI_IFCR bit fields */
73 #define SPI_IFCR_ALL		GENMASK(11, 3)
74 
75 /* STM32_SPI_I2SCFGR bit fields */
76 #define SPI_I2SCFGR_I2SMOD	BIT(0)
77 
78 #define MAX_CS_COUNT	4
79 
80 /* SPI Master Baud Rate min/max divisor */
81 #define STM32_MBR_DIV_MIN	(2 << SPI_CFG1_MBR_MIN)
82 #define STM32_MBR_DIV_MAX	(2 << SPI_CFG1_MBR_MAX)
83 
84 #define STM32_SPI_TIMEOUT_US	100000
85 
86 /* SPI Communication mode */
87 #define SPI_FULL_DUPLEX		0
88 #define SPI_SIMPLEX_TX		1
89 #define SPI_SIMPLEX_RX		2
90 #define SPI_HALF_DUPLEX		3
91 
92 struct stm32_spi_priv {
93 	void __iomem *base;
94 	struct clk clk;
95 	struct reset_ctl rst_ctl;
96 	struct gpio_desc cs_gpios[MAX_CS_COUNT];
97 	ulong bus_clk_rate;
98 	unsigned int fifo_size;
99 	unsigned int cur_bpw;
100 	unsigned int cur_hz;
101 	unsigned int cur_xferlen; /* current transfer length in bytes */
102 	unsigned int tx_len;	  /* number of data to be written in bytes */
103 	unsigned int rx_len;	  /* number of data to be read in bytes */
104 	const void *tx_buf;	  /* data to be written, or NULL */
105 	void *rx_buf;		  /* data to be read, or NULL */
106 	u32 cur_mode;
107 	bool cs_high;
108 };
109 
stm32_spi_write_txfifo(struct stm32_spi_priv * priv)110 static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
111 {
112 	while ((priv->tx_len > 0) &&
113 	       (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
114 		u32 offs = priv->cur_xferlen - priv->tx_len;
115 
116 		if (priv->tx_len >= sizeof(u32) &&
117 		    IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
118 			const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);
119 
120 			writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
121 			priv->tx_len -= sizeof(u32);
122 		} else if (priv->tx_len >= sizeof(u16) &&
123 			   IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
124 			const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);
125 
126 			writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
127 			priv->tx_len -= sizeof(u16);
128 		} else {
129 			const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);
130 
131 			writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
132 			priv->tx_len -= sizeof(u8);
133 		}
134 	}
135 
136 	debug("%s: %d bytes left\n", __func__, priv->tx_len);
137 }
138 
stm32_spi_read_rxfifo(struct stm32_spi_priv * priv)139 static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
140 {
141 	u32 sr = readl(priv->base + STM32_SPI_SR);
142 	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
143 
144 	while ((priv->rx_len > 0) &&
145 	       ((sr & SPI_SR_RXP) ||
146 	       ((sr & SPI_SR_EOT) && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
147 		u32 offs = priv->cur_xferlen - priv->rx_len;
148 
149 		if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u32)) &&
150 		    (priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
151 			u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);
152 
153 			*rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
154 			priv->rx_len -= sizeof(u32);
155 		} else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
156 			   (priv->rx_len >= sizeof(u16) ||
157 			    (!(sr & SPI_SR_RXWNE) &&
158 			    (rxplvl >= 2 || priv->cur_bpw > 8)))) {
159 			u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);
160 
161 			*rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
162 			priv->rx_len -= sizeof(u16);
163 		} else {
164 			u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);
165 
166 			*rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
167 			priv->rx_len -= sizeof(u8);
168 		}
169 
170 		sr = readl(priv->base + STM32_SPI_SR);
171 		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
172 	}
173 
174 	debug("%s: %d bytes left\n", __func__, priv->rx_len);
175 }
176 
stm32_spi_enable(struct stm32_spi_priv * priv)177 static int stm32_spi_enable(struct stm32_spi_priv *priv)
178 {
179 	debug("%s\n", __func__);
180 
181 	/* Enable the SPI hardware */
182 	setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
183 
184 	return 0;
185 }
186 
stm32_spi_disable(struct stm32_spi_priv * priv)187 static int stm32_spi_disable(struct stm32_spi_priv *priv)
188 {
189 	debug("%s\n", __func__);
190 
191 	/* Disable the SPI hardware */
192 	clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
193 
194 	return 0;
195 }
196 
stm32_spi_claim_bus(struct udevice * slave)197 static int stm32_spi_claim_bus(struct udevice *slave)
198 {
199 	struct udevice *bus = dev_get_parent(slave);
200 	struct stm32_spi_priv *priv = dev_get_priv(bus);
201 
202 	debug("%s\n", __func__);
203 
204 	/* Enable the SPI hardware */
205 	return stm32_spi_enable(priv);
206 }
207 
stm32_spi_release_bus(struct udevice * slave)208 static int stm32_spi_release_bus(struct udevice *slave)
209 {
210 	struct udevice *bus = dev_get_parent(slave);
211 	struct stm32_spi_priv *priv = dev_get_priv(bus);
212 
213 	debug("%s\n", __func__);
214 
215 	/* Disable the SPI hardware */
216 	return stm32_spi_disable(priv);
217 }
218 
stm32_spi_stopxfer(struct udevice * dev)219 static void stm32_spi_stopxfer(struct udevice *dev)
220 {
221 	struct stm32_spi_priv *priv = dev_get_priv(dev);
222 	u32 cr1, sr;
223 	int ret;
224 
225 	debug("%s\n", __func__);
226 
227 	cr1 = readl(priv->base + STM32_SPI_CR1);
228 
229 	if (!(cr1 & SPI_CR1_SPE))
230 		return;
231 
232 	/* Wait on EOT or suspend the flow */
233 	ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
234 				 !(sr & SPI_SR_EOT), 100000);
235 	if (ret < 0) {
236 		if (cr1 & SPI_CR1_CSTART) {
237 			writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
238 			if (readl_poll_timeout(priv->base + STM32_SPI_SR,
239 					       sr, !(sr & SPI_SR_SUSP),
240 					       100000) < 0)
241 				dev_err(dev, "Suspend request timeout\n");
242 		}
243 	}
244 
245 	/* clear status flags */
246 	setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
247 }
248 
stm32_spi_set_cs(struct udevice * dev,unsigned int cs,bool enable)249 static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
250 {
251 	struct stm32_spi_priv *priv = dev_get_priv(dev);
252 
253 	debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
254 
255 	if (cs >= MAX_CS_COUNT)
256 		return -ENODEV;
257 
258 	if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
259 		return -EINVAL;
260 
261 	if (priv->cs_high)
262 		enable = !enable;
263 
264 	return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
265 }
266 
stm32_spi_set_mode(struct udevice * bus,uint mode)267 static int stm32_spi_set_mode(struct udevice *bus, uint mode)
268 {
269 	struct stm32_spi_priv *priv = dev_get_priv(bus);
270 	u32 cfg2_clrb = 0, cfg2_setb = 0;
271 
272 	debug("%s: mode=%d\n", __func__, mode);
273 
274 	if (mode & SPI_CPOL)
275 		cfg2_setb |= SPI_CFG2_CPOL;
276 	else
277 		cfg2_clrb |= SPI_CFG2_CPOL;
278 
279 	if (mode & SPI_CPHA)
280 		cfg2_setb |= SPI_CFG2_CPHA;
281 	else
282 		cfg2_clrb |= SPI_CFG2_CPHA;
283 
284 	if (mode & SPI_LSB_FIRST)
285 		cfg2_setb |= SPI_CFG2_LSBFRST;
286 	else
287 		cfg2_clrb |= SPI_CFG2_LSBFRST;
288 
289 	if (cfg2_clrb || cfg2_setb)
290 		clrsetbits_le32(priv->base + STM32_SPI_CFG2,
291 				cfg2_clrb, cfg2_setb);
292 
293 	if (mode & SPI_CS_HIGH)
294 		priv->cs_high = true;
295 	else
296 		priv->cs_high = false;
297 	return 0;
298 }
299 
stm32_spi_set_fthlv(struct udevice * dev,u32 xfer_len)300 static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
301 {
302 	struct stm32_spi_priv *priv = dev_get_priv(dev);
303 	u32 fthlv, half_fifo;
304 
305 	/* data packet should not exceed 1/2 of fifo space */
306 	half_fifo = (priv->fifo_size / 2);
307 
308 	/* data_packet should not exceed transfer length */
309 	fthlv = (half_fifo > xfer_len) ? xfer_len : half_fifo;
310 
311 	/* align packet size with data registers access */
312 	fthlv -= (fthlv % 4);
313 
314 	if (!fthlv)
315 		fthlv = 1;
316 	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
317 			(fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
318 
319 	return 0;
320 }
321 
stm32_spi_set_speed(struct udevice * bus,uint hz)322 static int stm32_spi_set_speed(struct udevice *bus, uint hz)
323 {
324 	struct stm32_spi_priv *priv = dev_get_priv(bus);
325 	u32 mbrdiv;
326 	long div;
327 
328 	debug("%s: hz=%d\n", __func__, hz);
329 
330 	if (priv->cur_hz == hz)
331 		return 0;
332 
333 	div = DIV_ROUND_UP(priv->bus_clk_rate, hz);
334 
335 	if (div < STM32_MBR_DIV_MIN ||
336 	    div > STM32_MBR_DIV_MAX)
337 		return -EINVAL;
338 
339 	/* Determine the first power of 2 greater than or equal to div */
340 	if (div & (div - 1))
341 		mbrdiv = fls(div);
342 	else
343 		mbrdiv = fls(div) - 1;
344 
345 	if (!mbrdiv)
346 		return -EINVAL;
347 
348 	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
349 			(mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);
350 
351 	priv->cur_hz = hz;
352 
353 	return 0;
354 }
355 
stm32_spi_xfer(struct udevice * slave,unsigned int bitlen,const void * dout,void * din,unsigned long flags)356 static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
357 			  const void *dout, void *din, unsigned long flags)
358 {
359 	struct udevice *bus = dev_get_parent(slave);
360 	struct dm_spi_slave_platdata *slave_plat;
361 	struct stm32_spi_priv *priv = dev_get_priv(bus);
362 	u32 sr;
363 	u32 ifcr = 0;
364 	u32 xferlen;
365 	u32 mode;
366 	int xfer_status = 0;
367 
368 	xferlen = bitlen / 8;
369 
370 	if (xferlen <= SPI_CR2_TSIZE)
371 		writel(xferlen, priv->base + STM32_SPI_CR2);
372 	else
373 		return -EMSGSIZE;
374 
375 	priv->tx_buf = dout;
376 	priv->rx_buf = din;
377 	priv->tx_len = priv->tx_buf ? bitlen / 8 : 0;
378 	priv->rx_len = priv->rx_buf ? bitlen / 8 : 0;
379 
380 	mode = SPI_FULL_DUPLEX;
381 	if (!priv->tx_buf)
382 		mode = SPI_SIMPLEX_RX;
383 	else if (!priv->rx_buf)
384 		mode = SPI_SIMPLEX_TX;
385 
386 	if (priv->cur_xferlen != xferlen || priv->cur_mode != mode) {
387 		priv->cur_mode = mode;
388 		priv->cur_xferlen = xferlen;
389 
390 		/* Disable the SPI hardware to unlock CFG1/CFG2 registers */
391 		stm32_spi_disable(priv);
392 
393 		clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
394 				mode << SPI_CFG2_COMM_SHIFT);
395 
396 		stm32_spi_set_fthlv(bus, xferlen);
397 
398 		/* Enable the SPI hardware */
399 		stm32_spi_enable(priv);
400 	}
401 
402 	debug("%s: priv->tx_len=%d priv->rx_len=%d\n", __func__,
403 	      priv->tx_len, priv->rx_len);
404 
405 	slave_plat = dev_get_parent_platdata(slave);
406 	if (flags & SPI_XFER_BEGIN)
407 		stm32_spi_set_cs(bus, slave_plat->cs, false);
408 
409 	/* Be sure to have data in fifo before starting data transfer */
410 	if (priv->tx_buf)
411 		stm32_spi_write_txfifo(priv);
412 
413 	setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);
414 
415 	while (1) {
416 		sr = readl(priv->base + STM32_SPI_SR);
417 
418 		if (sr & SPI_SR_OVR) {
419 			dev_err(bus, "Overrun: RX data lost\n");
420 			xfer_status = -EIO;
421 			break;
422 		}
423 
424 		if (sr & SPI_SR_SUSP) {
425 			dev_warn(bus, "System too slow is limiting data throughput\n");
426 
427 			if (priv->rx_buf && priv->rx_len > 0)
428 				stm32_spi_read_rxfifo(priv);
429 
430 			ifcr |= SPI_SR_SUSP;
431 		}
432 
433 		if (sr & SPI_SR_TXTF)
434 			ifcr |= SPI_SR_TXTF;
435 
436 		if (sr & SPI_SR_TXP)
437 			if (priv->tx_buf && priv->tx_len > 0)
438 				stm32_spi_write_txfifo(priv);
439 
440 		if (sr & SPI_SR_RXP)
441 			if (priv->rx_buf && priv->rx_len > 0)
442 				stm32_spi_read_rxfifo(priv);
443 
444 		if (sr & SPI_SR_EOT) {
445 			if (priv->rx_buf && priv->rx_len > 0)
446 				stm32_spi_read_rxfifo(priv);
447 			break;
448 		}
449 
450 		writel(ifcr, priv->base + STM32_SPI_IFCR);
451 	}
452 
453 	/* clear status flags */
454 	setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
455 	stm32_spi_stopxfer(bus);
456 
457 	if (flags & SPI_XFER_END)
458 		stm32_spi_set_cs(bus, slave_plat->cs, true);
459 
460 	return xfer_status;
461 }
462 
stm32_spi_get_fifo_size(struct udevice * dev)463 static int stm32_spi_get_fifo_size(struct udevice *dev)
464 {
465 	struct stm32_spi_priv *priv = dev_get_priv(dev);
466 	u32 count = 0;
467 
468 	stm32_spi_enable(priv);
469 
470 	while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
471 		writeb(++count, priv->base + STM32_SPI_TXDR);
472 
473 	stm32_spi_disable(priv);
474 
475 	debug("%s %d x 8-bit fifo size\n", __func__, count);
476 
477 	return count;
478 }
479 
stm32_spi_probe(struct udevice * dev)480 static int stm32_spi_probe(struct udevice *dev)
481 {
482 	struct stm32_spi_priv *priv = dev_get_priv(dev);
483 	unsigned long clk_rate;
484 	int ret;
485 	unsigned int i;
486 
487 	priv->base = dev_remap_addr(dev);
488 	if (!priv->base)
489 		return -EINVAL;
490 
491 	/* enable clock */
492 	ret = clk_get_by_index(dev, 0, &priv->clk);
493 	if (ret < 0)
494 		return ret;
495 
496 	ret = clk_enable(&priv->clk);
497 	if (ret < 0)
498 		return ret;
499 
500 	clk_rate = clk_get_rate(&priv->clk);
501 	if (!clk_rate) {
502 		ret = -EINVAL;
503 		goto clk_err;
504 	}
505 
506 	priv->bus_clk_rate = clk_rate;
507 
508 	/* perform reset */
509 	ret = reset_get_by_index(dev, 0, &priv->rst_ctl);
510 	if (ret < 0)
511 		goto clk_err;
512 
513 	reset_assert(&priv->rst_ctl);
514 	udelay(2);
515 	reset_deassert(&priv->rst_ctl);
516 
517 	ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
518 					ARRAY_SIZE(priv->cs_gpios), 0);
519 	if (ret < 0) {
520 		pr_err("Can't get %s cs gpios: %d", dev->name, ret);
521 		goto reset_err;
522 	}
523 
524 	priv->fifo_size = stm32_spi_get_fifo_size(dev);
525 
526 	priv->cur_mode = SPI_FULL_DUPLEX;
527 	priv->cur_xferlen = 0;
528 	priv->cur_bpw = SPI_DEFAULT_WORDLEN;
529 	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
530 			priv->cur_bpw - 1);
531 
532 	for (i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) {
533 		if (!dm_gpio_is_valid(&priv->cs_gpios[i]))
534 			continue;
535 
536 		dm_gpio_set_dir_flags(&priv->cs_gpios[i],
537 				      GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
538 	}
539 
540 	/* Ensure I2SMOD bit is kept cleared */
541 	clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
542 
543 	/*
544 	 * - SS input value high
545 	 * - transmitter half duplex direction
546 	 * - automatic communication suspend when RX-Fifo is full
547 	 */
548 	setbits_le32(priv->base + STM32_SPI_CR1,
549 		     SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);
550 
551 	/*
552 	 * - Set the master mode (default Motorola mode)
553 	 * - Consider 1 master/n slaves configuration and
554 	 *   SS input value is determined by the SSI bit
555 	 * - keep control of all associated GPIOs
556 	 */
557 	setbits_le32(priv->base + STM32_SPI_CFG2,
558 		     SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);
559 
560 	return 0;
561 
562 reset_err:
563 	reset_free(&priv->rst_ctl);
564 
565 clk_err:
566 	clk_disable(&priv->clk);
567 	clk_free(&priv->clk);
568 
569 	return ret;
570 };
571 
stm32_spi_remove(struct udevice * dev)572 static int stm32_spi_remove(struct udevice *dev)
573 {
574 	struct stm32_spi_priv *priv = dev_get_priv(dev);
575 	int ret;
576 
577 	stm32_spi_stopxfer(dev);
578 	stm32_spi_disable(priv);
579 
580 	ret = reset_assert(&priv->rst_ctl);
581 	if (ret < 0)
582 		return ret;
583 
584 	reset_free(&priv->rst_ctl);
585 
586 	ret = clk_disable(&priv->clk);
587 	if (ret < 0)
588 		return ret;
589 
590 	clk_free(&priv->clk);
591 
592 	return ret;
593 };
594 
595 static const struct dm_spi_ops stm32_spi_ops = {
596 	.claim_bus	= stm32_spi_claim_bus,
597 	.release_bus	= stm32_spi_release_bus,
598 	.set_mode	= stm32_spi_set_mode,
599 	.set_speed	= stm32_spi_set_speed,
600 	.xfer		= stm32_spi_xfer,
601 };
602 
603 static const struct udevice_id stm32_spi_ids[] = {
604 	{ .compatible = "st,stm32h7-spi", },
605 	{ }
606 };
607 
608 U_BOOT_DRIVER(stm32_spi) = {
609 	.name			= "stm32_spi",
610 	.id			= UCLASS_SPI,
611 	.of_match		= stm32_spi_ids,
612 	.ops			= &stm32_spi_ops,
613 	.priv_auto_alloc_size	= sizeof(struct stm32_spi_priv),
614 	.probe			= stm32_spi_probe,
615 	.remove			= stm32_spi_remove,
616 };
617