• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2012 The Chromium OS Authors.
4  *
5  * TSC calibration codes are adapted from Linux kernel
6  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
7  */
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <malloc.h>
12 #include <time.h>
13 #include <timer.h>
14 #include <asm/cpu.h>
15 #include <asm/io.h>
16 #include <asm/i8254.h>
17 #include <asm/ibmpc.h>
18 #include <asm/msr.h>
19 #include <asm/u-boot-x86.h>
20 
21 #define MAX_NUM_FREQS	9
22 
23 #define INTEL_FAM6_SKYLAKE_MOBILE	0x4E
24 #define INTEL_FAM6_ATOM_GOLDMONT	0x5C /* Apollo Lake */
25 #define INTEL_FAM6_SKYLAKE_DESKTOP	0x5E
26 #define INTEL_FAM6_ATOM_GOLDMONT_X	0x5F /* Denverton */
27 #define INTEL_FAM6_KABYLAKE_MOBILE	0x8E
28 #define INTEL_FAM6_KABYLAKE_DESKTOP	0x9E
29 
30 DECLARE_GLOBAL_DATA_PTR;
31 
32 /*
33  * native_calibrate_tsc
34  * Determine TSC frequency via CPUID, else return 0.
35  */
native_calibrate_tsc(void)36 static unsigned long native_calibrate_tsc(void)
37 {
38 	struct cpuid_result tsc_info;
39 	unsigned int crystal_freq;
40 
41 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
42 		return 0;
43 
44 	if (cpuid_eax(0) < 0x15)
45 		return 0;
46 
47 	tsc_info = cpuid(0x15);
48 
49 	if (tsc_info.ebx == 0 || tsc_info.eax == 0)
50 		return 0;
51 
52 	crystal_freq = tsc_info.ecx / 1000;
53 
54 	if (!crystal_freq) {
55 		switch (gd->arch.x86_model) {
56 		case INTEL_FAM6_SKYLAKE_MOBILE:
57 		case INTEL_FAM6_SKYLAKE_DESKTOP:
58 		case INTEL_FAM6_KABYLAKE_MOBILE:
59 		case INTEL_FAM6_KABYLAKE_DESKTOP:
60 			crystal_freq = 24000;	/* 24.0 MHz */
61 			break;
62 		case INTEL_FAM6_ATOM_GOLDMONT_X:
63 			crystal_freq = 25000;	/* 25.0 MHz */
64 			break;
65 		case INTEL_FAM6_ATOM_GOLDMONT:
66 			crystal_freq = 19200;	/* 19.2 MHz */
67 			break;
68 		default:
69 			return 0;
70 		}
71 	}
72 
73 	return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
74 }
75 
cpu_mhz_from_cpuid(void)76 static unsigned long cpu_mhz_from_cpuid(void)
77 {
78 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
79 		return 0;
80 
81 	if (cpuid_eax(0) < 0x16)
82 		return 0;
83 
84 	return cpuid_eax(0x16);
85 }
86 
87 /*
88  * According to Intel 64 and IA-32 System Programming Guide,
89  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
90  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
91  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
92  * so we need manually differentiate SoC families. This is what the
93  * field msr_plat does.
94  */
95 struct freq_desc {
96 	u8 x86_family;	/* CPU family */
97 	u8 x86_model;	/* model */
98 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
99 	u8 msr_plat;
100 	u32 freqs[MAX_NUM_FREQS];
101 };
102 
103 static struct freq_desc freq_desc_tables[] = {
104 	/* PNW */
105 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
106 	/* CLV+ */
107 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
108 	/* TNG - Intel Atom processor Z3400 series */
109 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
110 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
111 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
112 	/* ANN - Intel Atom processor Z3500 series */
113 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
114 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
115 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
116 			80000, 93300, 90000, 88900, 87500 } },
117 	/* Ivybridge */
118 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
119 };
120 
match_cpu(u8 family,u8 model)121 static int match_cpu(u8 family, u8 model)
122 {
123 	int i;
124 
125 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
126 		if ((family == freq_desc_tables[i].x86_family) &&
127 		    (model == freq_desc_tables[i].x86_model))
128 			return i;
129 	}
130 
131 	return -1;
132 }
133 
134 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
135 #define id_to_freq(cpu_index, freq_id) \
136 	(freq_desc_tables[cpu_index].freqs[freq_id])
137 
138 /*
139  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
140  * reliable and the frequency is known (provided by HW).
141  *
142  * On these platforms PIT/HPET is generally not available so calibration won't
143  * work at all and there is no other clocksource to act as a watchdog for the
144  * TSC, so we have no other choice than to trust it.
145  *
146  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
147  */
cpu_mhz_from_msr(void)148 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
149 {
150 	u32 lo, hi, ratio, freq_id, freq;
151 	unsigned long res;
152 	int cpu_index;
153 
154 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
155 		return 0;
156 
157 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
158 	if (cpu_index < 0)
159 		return 0;
160 
161 	if (freq_desc_tables[cpu_index].msr_plat) {
162 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
163 		ratio = (lo >> 8) & 0xff;
164 	} else {
165 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
166 		ratio = (hi >> 8) & 0x1f;
167 	}
168 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
169 
170 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
171 		/* TODO: Figure out how best to deal with this */
172 		freq = 100000;
173 		debug("Using frequency: %u KHz\n", freq);
174 	} else {
175 		/* Get FSB FREQ ID */
176 		rdmsr(MSR_FSB_FREQ, lo, hi);
177 		freq_id = lo & 0x7;
178 		freq = id_to_freq(cpu_index, freq_id);
179 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
180 		      freq_id, freq);
181 	}
182 
183 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
184 	res = freq * ratio / 1000;
185 	debug("TSC runs at %lu MHz\n", res);
186 
187 	return res;
188 }
189 
190 /*
191  * This reads the current MSB of the PIT counter, and
192  * checks if we are running on sufficiently fast and
193  * non-virtualized hardware.
194  *
195  * Our expectations are:
196  *
197  *  - the PIT is running at roughly 1.19MHz
198  *
199  *  - each IO is going to take about 1us on real hardware,
200  *    but we allow it to be much faster (by a factor of 10) or
201  *    _slightly_ slower (ie we allow up to a 2us read+counter
202  *    update - anything else implies a unacceptably slow CPU
203  *    or PIT for the fast calibration to work.
204  *
205  *  - with 256 PIT ticks to read the value, we have 214us to
206  *    see the same MSB (and overhead like doing a single TSC
207  *    read per MSB value etc).
208  *
209  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
210  *    them each to take about a microsecond on real hardware.
211  *    So we expect a count value of around 100. But we'll be
212  *    generous, and accept anything over 50.
213  *
214  *  - if the PIT is stuck, and we see *many* more reads, we
215  *    return early (and the next caller of pit_expect_msb()
216  *    then consider it a failure when they don't see the
217  *    next expected value).
218  *
219  * These expectations mean that we know that we have seen the
220  * transition from one expected value to another with a fairly
221  * high accuracy, and we didn't miss any events. We can thus
222  * use the TSC value at the transitions to calculate a pretty
223  * good value for the TSC frequencty.
224  */
pit_verify_msb(unsigned char val)225 static inline int pit_verify_msb(unsigned char val)
226 {
227 	/* Ignore LSB */
228 	inb(0x42);
229 	return inb(0x42) == val;
230 }
231 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)232 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
233 				 unsigned long *deltap)
234 {
235 	int count;
236 	u64 tsc = 0, prev_tsc = 0;
237 
238 	for (count = 0; count < 50000; count++) {
239 		if (!pit_verify_msb(val))
240 			break;
241 		prev_tsc = tsc;
242 		tsc = rdtsc();
243 	}
244 	*deltap = rdtsc() - prev_tsc;
245 	*tscp = tsc;
246 
247 	/*
248 	 * We require _some_ success, but the quality control
249 	 * will be based on the error terms on the TSC values.
250 	 */
251 	return count > 5;
252 }
253 
254 /*
255  * How many MSB values do we want to see? We aim for
256  * a maximum error rate of 500ppm (in practice the
257  * real error is much smaller), but refuse to spend
258  * more than 50ms on it.
259  */
260 #define MAX_QUICK_PIT_MS 50
261 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
262 
quick_pit_calibrate(void)263 static unsigned long __maybe_unused quick_pit_calibrate(void)
264 {
265 	int i;
266 	u64 tsc, delta;
267 	unsigned long d1, d2;
268 
269 	/* Set the Gate high, disable speaker */
270 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
271 
272 	/*
273 	 * Counter 2, mode 0 (one-shot), binary count
274 	 *
275 	 * NOTE! Mode 2 decrements by two (and then the
276 	 * output is flipped each time, giving the same
277 	 * final output frequency as a decrement-by-one),
278 	 * so mode 0 is much better when looking at the
279 	 * individual counts.
280 	 */
281 	outb(0xb0, 0x43);
282 
283 	/* Start at 0xffff */
284 	outb(0xff, 0x42);
285 	outb(0xff, 0x42);
286 
287 	/*
288 	 * The PIT starts counting at the next edge, so we
289 	 * need to delay for a microsecond. The easiest way
290 	 * to do that is to just read back the 16-bit counter
291 	 * once from the PIT.
292 	 */
293 	pit_verify_msb(0);
294 
295 	if (pit_expect_msb(0xff, &tsc, &d1)) {
296 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
297 			if (!pit_expect_msb(0xff-i, &delta, &d2))
298 				break;
299 
300 			/*
301 			 * Iterate until the error is less than 500 ppm
302 			 */
303 			delta -= tsc;
304 			if (d1+d2 >= delta >> 11)
305 				continue;
306 
307 			/*
308 			 * Check the PIT one more time to verify that
309 			 * all TSC reads were stable wrt the PIT.
310 			 *
311 			 * This also guarantees serialization of the
312 			 * last cycle read ('d2') in pit_expect_msb.
313 			 */
314 			if (!pit_verify_msb(0xfe - i))
315 				break;
316 			goto success;
317 		}
318 	}
319 	debug("Fast TSC calibration failed\n");
320 	return 0;
321 
322 success:
323 	/*
324 	 * Ok, if we get here, then we've seen the
325 	 * MSB of the PIT decrement 'i' times, and the
326 	 * error has shrunk to less than 500 ppm.
327 	 *
328 	 * As a result, we can depend on there not being
329 	 * any odd delays anywhere, and the TSC reads are
330 	 * reliable (within the error).
331 	 *
332 	 * kHz = ticks / time-in-seconds / 1000;
333 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
334 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
335 	 */
336 	delta *= PIT_TICK_RATE;
337 	delta /= (i*256*1000);
338 	debug("Fast TSC calibration using PIT\n");
339 	return delta / 1000;
340 }
341 
342 /* Get the speed of the TSC timer in MHz */
get_tbclk_mhz(void)343 unsigned notrace long get_tbclk_mhz(void)
344 {
345 	return get_tbclk() / 1000000;
346 }
347 
get_ms_timer(void)348 static ulong get_ms_timer(void)
349 {
350 	return (get_ticks() * 1000) / get_tbclk();
351 }
352 
get_timer(ulong base)353 ulong get_timer(ulong base)
354 {
355 	return get_ms_timer() - base;
356 }
357 
timer_get_us(void)358 ulong notrace timer_get_us(void)
359 {
360 	return get_ticks() / get_tbclk_mhz();
361 }
362 
timer_get_boot_us(void)363 ulong timer_get_boot_us(void)
364 {
365 	return timer_get_us();
366 }
367 
__udelay(unsigned long usec)368 void __udelay(unsigned long usec)
369 {
370 	u64 now = get_ticks();
371 	u64 stop;
372 
373 	stop = now + usec * get_tbclk_mhz();
374 
375 	while ((int64_t)(stop - get_ticks()) > 0)
376 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
377 		/*
378 		 * Add a 'pause' instruction on qemu target,
379 		 * to give other VCPUs a chance to run.
380 		 */
381 		asm volatile("pause");
382 #else
383 		;
384 #endif
385 }
386 
tsc_timer_get_count(struct udevice * dev,u64 * count)387 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
388 {
389 	u64 now_tick = rdtsc();
390 
391 	*count = now_tick - gd->arch.tsc_base;
392 
393 	return 0;
394 }
395 
tsc_timer_ensure_setup(bool early)396 static void tsc_timer_ensure_setup(bool early)
397 {
398 	if (gd->arch.tsc_inited)
399 		return;
400 	gd->arch.tsc_base = rdtsc();
401 
402 	if (!gd->arch.clock_rate) {
403 		unsigned long fast_calibrate;
404 
405 		fast_calibrate = native_calibrate_tsc();
406 		if (fast_calibrate)
407 			goto done;
408 
409 		fast_calibrate = cpu_mhz_from_cpuid();
410 		if (fast_calibrate)
411 			goto done;
412 
413 		fast_calibrate = cpu_mhz_from_msr();
414 		if (fast_calibrate)
415 			goto done;
416 
417 		fast_calibrate = quick_pit_calibrate();
418 		if (fast_calibrate)
419 			goto done;
420 
421 		if (early)
422 			fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
423 		else
424 			return;
425 
426 done:
427 		gd->arch.clock_rate = fast_calibrate * 1000000;
428 	}
429 	gd->arch.tsc_inited = true;
430 }
431 
tsc_timer_probe(struct udevice * dev)432 static int tsc_timer_probe(struct udevice *dev)
433 {
434 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
435 
436 	/* Try hardware calibration first */
437 	tsc_timer_ensure_setup(false);
438 	if (!gd->arch.clock_rate) {
439 		/*
440 		 * Use the clock frequency specified in the
441 		 * device tree as last resort
442 		 */
443 		if (!uc_priv->clock_rate)
444 			panic("TSC frequency is ZERO");
445 	} else {
446 		uc_priv->clock_rate = gd->arch.clock_rate;
447 	}
448 
449 	return 0;
450 }
451 
timer_early_get_rate(void)452 unsigned long notrace timer_early_get_rate(void)
453 {
454 	/*
455 	 * When TSC timer is used as the early timer, be warned that the timer
456 	 * clock rate can only be calibrated via some hardware ways. Specifying
457 	 * it in the device tree won't work for the early timer.
458 	 */
459 	tsc_timer_ensure_setup(true);
460 
461 	return gd->arch.clock_rate;
462 }
463 
timer_early_get_count(void)464 u64 notrace timer_early_get_count(void)
465 {
466 	tsc_timer_ensure_setup(true);
467 
468 	return rdtsc() - gd->arch.tsc_base;
469 }
470 
471 static const struct timer_ops tsc_timer_ops = {
472 	.get_count = tsc_timer_get_count,
473 };
474 
475 static const struct udevice_id tsc_timer_ids[] = {
476 	{ .compatible = "x86,tsc-timer", },
477 	{ }
478 };
479 
480 U_BOOT_DRIVER(tsc_timer) = {
481 	.name	= "tsc_timer",
482 	.id	= UCLASS_TIMER,
483 	.of_match = tsc_timer_ids,
484 	.probe = tsc_timer_probe,
485 	.ops	= &tsc_timer_ops,
486 };
487