1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2 * Copyright (C) 1995-2004 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /* @(#) $Id$ */
7
8 #define ZLIB_INTERNAL
9 #include "zlib.h"
10
11 #define BASE 65521UL /* largest prime smaller than 65536 */
12 #define NMAX 5552
13 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
14
15 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
16 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
17 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
18 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
19 #define DO16(buf) DO8(buf,0); DO8(buf,8);
20
21 /* use NO_DIVIDE if your processor does not do division in hardware */
22 #ifdef NO_DIVIDE
23 # define MOD(a) \
24 do { \
25 if (a >= (BASE << 16)) a -= (BASE << 16); \
26 if (a >= (BASE << 15)) a -= (BASE << 15); \
27 if (a >= (BASE << 14)) a -= (BASE << 14); \
28 if (a >= (BASE << 13)) a -= (BASE << 13); \
29 if (a >= (BASE << 12)) a -= (BASE << 12); \
30 if (a >= (BASE << 11)) a -= (BASE << 11); \
31 if (a >= (BASE << 10)) a -= (BASE << 10); \
32 if (a >= (BASE << 9)) a -= (BASE << 9); \
33 if (a >= (BASE << 8)) a -= (BASE << 8); \
34 if (a >= (BASE << 7)) a -= (BASE << 7); \
35 if (a >= (BASE << 6)) a -= (BASE << 6); \
36 if (a >= (BASE << 5)) a -= (BASE << 5); \
37 if (a >= (BASE << 4)) a -= (BASE << 4); \
38 if (a >= (BASE << 3)) a -= (BASE << 3); \
39 if (a >= (BASE << 2)) a -= (BASE << 2); \
40 if (a >= (BASE << 1)) a -= (BASE << 1); \
41 if (a >= BASE) a -= BASE; \
42 } while (0)
43 # define MOD4(a) \
44 do { \
45 if (a >= (BASE << 4)) a -= (BASE << 4); \
46 if (a >= (BASE << 3)) a -= (BASE << 3); \
47 if (a >= (BASE << 2)) a -= (BASE << 2); \
48 if (a >= (BASE << 1)) a -= (BASE << 1); \
49 if (a >= BASE) a -= BASE; \
50 } while (0)
51 #else
52 # define MOD(a) a %= BASE
53 # define MOD4(a) a %= BASE
54 #endif
55
56 /* ========================================================================= */
adler32(uLong adler,const Bytef * buf,uInt len)57 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
58 {
59 unsigned long sum2;
60 unsigned n;
61
62 /* split Adler-32 into component sums */
63 sum2 = (adler >> 16) & 0xffff;
64 adler &= 0xffff;
65
66 /* in case user likes doing a byte at a time, keep it fast */
67 if (len == 1) {
68 adler += buf[0];
69 if (adler >= BASE)
70 adler -= BASE;
71 sum2 += adler;
72 if (sum2 >= BASE)
73 sum2 -= BASE;
74 return adler | (sum2 << 16);
75 }
76
77 /* initial Adler-32 value (deferred check for len == 1 speed) */
78 if (buf == Z_NULL)
79 return 1L;
80
81 /* in case short lengths are provided, keep it somewhat fast */
82 if (len < 16) {
83 while (len--) {
84 adler += *buf++;
85 sum2 += adler;
86 }
87 if (adler >= BASE)
88 adler -= BASE;
89 MOD4(sum2); /* only added so many BASE's */
90 return adler | (sum2 << 16);
91 }
92
93 /* do length NMAX blocks -- requires just one modulo operation */
94 while (len >= NMAX) {
95 len -= NMAX;
96 n = NMAX / 16; /* NMAX is divisible by 16 */
97 do {
98 DO16(buf); /* 16 sums unrolled */
99 buf += 16;
100 } while (--n);
101 MOD(adler);
102 MOD(sum2);
103 }
104
105 /* do remaining bytes (less than NMAX, still just one modulo) */
106 if (len) { /* avoid modulos if none remaining */
107 while (len >= 16) {
108 len -= 16;
109 DO16(buf);
110 buf += 16;
111 }
112 while (len--) {
113 adler += *buf++;
114 sum2 += adler;
115 }
116 MOD(adler);
117 MOD(sum2);
118 }
119
120 /* return recombined sums */
121 return adler | (sum2 << 16);
122 }
123