• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2012 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
6  #error This header must be included via macro-assembler.h
7  #endif
8  
9  #ifndef V8_CODEGEN_MIPS_MACRO_ASSEMBLER_MIPS_H_
10  #define V8_CODEGEN_MIPS_MACRO_ASSEMBLER_MIPS_H_
11  
12  #include "src/codegen/assembler.h"
13  #include "src/codegen/mips/assembler-mips.h"
14  #include "src/common/globals.h"
15  #include "src/objects/contexts.h"
16  
17  namespace v8 {
18  namespace internal {
19  
20  // Forward declarations
21  enum class AbortReason : uint8_t;
22  
23  // Reserved Register Usage Summary.
24  //
25  // Registers t8, t9, and at are reserved for use by the MacroAssembler.
26  //
27  // The programmer should know that the MacroAssembler may clobber these three,
28  // but won't touch other registers except in special cases.
29  //
30  // Per the MIPS ABI, register t9 must be used for indirect function call
31  // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
32  // trying to update gp register for position-independent-code. Whenever
33  // MIPS generated code calls C code, it must be via t9 register.
34  
35  // Flags used for LeaveExitFrame function.
36  enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };
37  
38  // Flags used for the li macro-assembler function.
39  enum LiFlags {
40    // If the constant value can be represented in just 16 bits, then
41    // optimize the li to use a single instruction, rather than lui/ori pair.
42    OPTIMIZE_SIZE = 0,
43    // Always use 2 instructions (lui/ori pair), even if the constant could
44    // be loaded with just one, so that this value is patchable later.
45    CONSTANT_SIZE = 1
46  };
47  
48  enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
49  enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
50  enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
51  
52  Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
53                                     Register reg3 = no_reg,
54                                     Register reg4 = no_reg,
55                                     Register reg5 = no_reg,
56                                     Register reg6 = no_reg);
57  
58  // -----------------------------------------------------------------------------
59  // Static helper functions.
60  // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)61  inline MemOperand FieldMemOperand(Register object, int offset) {
62    return MemOperand(object, offset - kHeapObjectTag);
63  }
64  
65  // Generate a MemOperand for storing arguments 5..N on the stack
66  // when calling CallCFunction().
CFunctionArgumentOperand(int index)67  inline MemOperand CFunctionArgumentOperand(int index) {
68    DCHECK_GT(index, kCArgSlotCount);
69    // Argument 5 takes the slot just past the four Arg-slots.
70    int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
71    return MemOperand(sp, offset);
72  }
73  
74  class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
75   public:
76    using TurboAssemblerBase::TurboAssemblerBase;
77  
78    // Activation support.
79    void EnterFrame(StackFrame::Type type);
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)80    void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
81      // Out-of-line constant pool not implemented on mips.
82      UNREACHABLE();
83    }
84    void LeaveFrame(StackFrame::Type type);
85  
86    // Generates function and stub prologue code.
87    void StubPrologue(StackFrame::Type type);
88    void Prologue();
89  
InitializeRootRegister()90    void InitializeRootRegister() {
91      ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
92      li(kRootRegister, Operand(isolate_root));
93    }
94  
95    // Jump unconditionally to given label.
96    // We NEED a nop in the branch delay slot, as it used by v8, for example in
97    // CodeGenerator::ProcessDeferred().
98    // Currently the branch delay slot is filled by the MacroAssembler.
99    // Use rather b(Label) for code generation.
jmp(Label * L)100    void jmp(Label* L) { Branch(L); }
101  
102    // -------------------------------------------------------------------------
103    // Debugging.
104  
105    void Trap() override;
106    void DebugBreak() override;
107  
108    // Calls Abort(msg) if the condition cc is not satisfied.
109    // Use --debug_code to enable.
110    void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
111  
112    // Like Assert(), but always enabled.
113    void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
114  
115    // Print a message to stdout and abort execution.
116    void Abort(AbortReason msg);
117  
118    // Arguments macros.
119  #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
120  #define COND_ARGS cond, r1, r2
121  
122    // Cases when relocation is not needed.
123  #define DECLARE_NORELOC_PROTOTYPE(Name, target_type)                          \
124    void Name(target_type target, BranchDelaySlot bd = PROTECT);                \
125    inline void Name(BranchDelaySlot bd, target_type target) {                  \
126      Name(target, bd);                                                         \
127    }                                                                           \
128    void Name(target_type target, COND_TYPED_ARGS,                              \
129              BranchDelaySlot bd = PROTECT);                                    \
130    inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \
131      Name(target, COND_ARGS, bd);                                              \
132    }
133  
134  #define DECLARE_BRANCH_PROTOTYPES(Name)   \
135    DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
136    DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
137  
138    DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)139    DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
140    DECLARE_BRANCH_PROTOTYPES(BranchShort)
141  
142  #undef DECLARE_BRANCH_PROTOTYPES
143  #undef COND_TYPED_ARGS
144  #undef COND_ARGS
145  
146    // Floating point branches
147    void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
148      CompareF(S, cc, cmp1, cmp2);
149    }
150  
CompareIsNanF32(FPURegister cmp1,FPURegister cmp2)151    void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
152      CompareIsNanF(S, cmp1, cmp2);
153    }
154  
CompareF64(FPUCondition cc,FPURegister cmp1,FPURegister cmp2)155    void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
156      CompareF(D, cc, cmp1, cmp2);
157    }
158  
CompareIsNanF64(FPURegister cmp1,FPURegister cmp2)159    void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
160      CompareIsNanF(D, cmp1, cmp2);
161    }
162  
163    void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
164    void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
165  
166    void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
167    void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
168  
169    // MSA Branches
170    void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
171                   MSARegister wt, BranchDelaySlot bd = PROTECT);
172  
173    void Branch(Label* L, Condition cond, Register rs, RootIndex index,
174                BranchDelaySlot bdslot = PROTECT);
175  
176    // Load int32 in the rd register.
177    void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
178    inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
179      li(rd, Operand(j), mode);
180    }
181    void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
182    void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
183    void li(Register dst, const StringConstantBase* string,
184            LiFlags mode = OPTIMIZE_SIZE);
185  
186    void LoadFromConstantsTable(Register destination,
187                                int constant_index) override;
188    void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
189    void LoadRootRelative(Register destination, int32_t offset) override;
190  
191  // Jump, Call, and Ret pseudo instructions implementing inter-working.
192  #define COND_ARGS                                  \
193    Condition cond = al, Register rs = zero_reg,     \
194              const Operand &rt = Operand(zero_reg), \
195              BranchDelaySlot bd = PROTECT
196  
197    void Jump(Register target, int16_t offset = 0, COND_ARGS);
198    void Jump(Register target, Register base, int16_t offset = 0, COND_ARGS);
199    void Jump(Register target, const Operand& offset, COND_ARGS);
200    void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
201    void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
202    // Deffer from li, this method save target to the memory, and then load
203    // it to register use lw, it can be used in wasm jump table for concurrent
204    // patching.
205    void PatchAndJump(Address target);
206    void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
207    void Jump(const ExternalReference& reference) override;
208    void Call(Register target, int16_t offset = 0, COND_ARGS);
209    void Call(Register target, Register base, int16_t offset = 0, COND_ARGS);
210    void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
211    void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
212              COND_ARGS);
213    void Call(Label* target);
214    void LoadAddress(Register dst, Label* target);
215  
216    // Load the builtin given by the Smi in |builtin_index| into the same
217    // register.
218    void LoadEntryFromBuiltinIndex(Register builtin_index);
219    void CallBuiltinByIndex(Register builtin_index) override;
220  
LoadCodeObjectEntry(Register destination,Register code_object)221    void LoadCodeObjectEntry(Register destination,
222                             Register code_object) override {
223      // TODO(mips): Implement.
224      UNIMPLEMENTED();
225    }
CallCodeObject(Register code_object)226    void CallCodeObject(Register code_object) override {
227      // TODO(mips): Implement.
228      UNIMPLEMENTED();
229    }
JumpCodeObject(Register code_object)230    void JumpCodeObject(Register code_object) override {
231      // TODO(mips): Implement.
232      UNIMPLEMENTED();
233    }
234  
235    // Generates an instruction sequence s.t. the return address points to the
236    // instruction following the call.
237    // The return address on the stack is used by frame iteration.
238    void StoreReturnAddressAndCall(Register target);
239  
240    void CallForDeoptimization(Builtins::Name target, int deopt_id, Label* exit,
241                               DeoptimizeKind kind,
242                               Label* jump_deoptimization_entry_label);
243  
244    void Ret(COND_ARGS);
245    inline void Ret(BranchDelaySlot bd, Condition cond = al,
246                    Register rs = zero_reg,
247                    const Operand& rt = Operand(zero_reg)) {
248      Ret(cond, rs, rt, bd);
249    }
250  
251    // Emit code to discard a non-negative number of pointer-sized elements
252    // from the stack, clobbering only the sp register.
253    void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
254              const Operand& op = Operand(no_reg));
255  
256    // Trivial case of DropAndRet that utilizes the delay slot.
257    void DropAndRet(int drop);
258  
259    void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);
260  
261    void Lw(Register rd, const MemOperand& rs);
262    void Sw(Register rd, const MemOperand& rs);
263  
push(Register src)264    void push(Register src) {
265      Addu(sp, sp, Operand(-kPointerSize));
266      sw(src, MemOperand(sp, 0));
267    }
268  
Push(Register src)269    void Push(Register src) { push(src); }
270    void Push(Handle<HeapObject> handle);
271    void Push(Smi smi);
272  
273    // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)274    void Push(Register src1, Register src2) {
275      Subu(sp, sp, Operand(2 * kPointerSize));
276      sw(src1, MemOperand(sp, 1 * kPointerSize));
277      sw(src2, MemOperand(sp, 0 * kPointerSize));
278    }
279  
280    // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)281    void Push(Register src1, Register src2, Register src3) {
282      Subu(sp, sp, Operand(3 * kPointerSize));
283      sw(src1, MemOperand(sp, 2 * kPointerSize));
284      sw(src2, MemOperand(sp, 1 * kPointerSize));
285      sw(src3, MemOperand(sp, 0 * kPointerSize));
286    }
287  
288    // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)289    void Push(Register src1, Register src2, Register src3, Register src4) {
290      Subu(sp, sp, Operand(4 * kPointerSize));
291      sw(src1, MemOperand(sp, 3 * kPointerSize));
292      sw(src2, MemOperand(sp, 2 * kPointerSize));
293      sw(src3, MemOperand(sp, 1 * kPointerSize));
294      sw(src4, MemOperand(sp, 0 * kPointerSize));
295    }
296  
297    // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)298    void Push(Register src1, Register src2, Register src3, Register src4,
299              Register src5) {
300      Subu(sp, sp, Operand(5 * kPointerSize));
301      sw(src1, MemOperand(sp, 4 * kPointerSize));
302      sw(src2, MemOperand(sp, 3 * kPointerSize));
303      sw(src3, MemOperand(sp, 2 * kPointerSize));
304      sw(src4, MemOperand(sp, 1 * kPointerSize));
305      sw(src5, MemOperand(sp, 0 * kPointerSize));
306    }
307  
Push(Register src,Condition cond,Register tst1,Register tst2)308    void Push(Register src, Condition cond, Register tst1, Register tst2) {
309      // Since we don't have conditional execution we use a Branch.
310      Branch(3, cond, tst1, Operand(tst2));
311      Subu(sp, sp, Operand(kPointerSize));
312      sw(src, MemOperand(sp, 0));
313    }
314  
315    enum PushArrayOrder { kNormal, kReverse };
316    void PushArray(Register array, Register size, Register scratch,
317                   Register scratch2, PushArrayOrder order = kNormal);
318  
319    void SaveRegisters(RegList registers);
320    void RestoreRegisters(RegList registers);
321  
322    void CallRecordWriteStub(Register object, Register address,
323                             RememberedSetAction remembered_set_action,
324                             SaveFPRegsMode fp_mode);
325    void CallRecordWriteStub(Register object, Register address,
326                             RememberedSetAction remembered_set_action,
327                             SaveFPRegsMode fp_mode, Address wasm_target);
328    void CallEphemeronKeyBarrier(Register object, Register address,
329                                 SaveFPRegsMode fp_mode);
330  
331    // Push multiple registers on the stack.
332    // Registers are saved in numerical order, with higher numbered registers
333    // saved in higher memory addresses.
334    void MultiPush(RegList regs);
335    void MultiPushFPU(RegList regs);
336  
337    // Calculate how much stack space (in bytes) are required to store caller
338    // registers excluding those specified in the arguments.
339    int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
340                                        Register exclusion1 = no_reg,
341                                        Register exclusion2 = no_reg,
342                                        Register exclusion3 = no_reg) const;
343  
344    // Push caller saved registers on the stack, and return the number of bytes
345    // stack pointer is adjusted.
346    int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
347                        Register exclusion2 = no_reg,
348                        Register exclusion3 = no_reg);
349    // Restore caller saved registers from the stack, and return the number of
350    // bytes stack pointer is adjusted.
351    int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
352                       Register exclusion2 = no_reg,
353                       Register exclusion3 = no_reg);
354  
pop(Register dst)355    void pop(Register dst) {
356      lw(dst, MemOperand(sp, 0));
357      Addu(sp, sp, Operand(kPointerSize));
358    }
359  
Pop(Register dst)360    void Pop(Register dst) { pop(dst); }
361  
362    // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)363    void Pop(Register src1, Register src2) {
364      DCHECK(src1 != src2);
365      lw(src2, MemOperand(sp, 0 * kPointerSize));
366      lw(src1, MemOperand(sp, 1 * kPointerSize));
367      Addu(sp, sp, 2 * kPointerSize);
368    }
369  
370    // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)371    void Pop(Register src1, Register src2, Register src3) {
372      lw(src3, MemOperand(sp, 0 * kPointerSize));
373      lw(src2, MemOperand(sp, 1 * kPointerSize));
374      lw(src1, MemOperand(sp, 2 * kPointerSize));
375      Addu(sp, sp, 3 * kPointerSize);
376    }
377  
378    void Pop(uint32_t count = 1) { Addu(sp, sp, Operand(count * kPointerSize)); }
379  
380    // Pops multiple values from the stack and load them in the
381    // registers specified in regs. Pop order is the opposite as in MultiPush.
382    void MultiPop(RegList regs);
383    void MultiPopFPU(RegList regs);
384  
385    // Load Scaled Address instructions. Parameter sa (shift argument) must be
386    // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
387    // may be clobbered.
388    void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
389             Register scratch = at);
390  
391  #define DEFINE_INSTRUCTION(instr)                          \
392    void instr(Register rd, Register rs, const Operand& rt); \
393    void instr(Register rd, Register rs, Register rt) {      \
394      instr(rd, rs, Operand(rt));                            \
395    }                                                        \
396    void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
397  
398  #define DEFINE_INSTRUCTION2(instr)                                 \
399    void instr(Register rs, const Operand& rt);                      \
400    void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
401    void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
402  
403  #define DEFINE_INSTRUCTION3(instr)                                            \
404    void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
405    void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) {      \
406      instr(rd_hi, rd_lo, rs, Operand(rt));                                     \
407    }                                                                           \
408    void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) {        \
409      instr(rd_hi, rd_lo, rs, Operand(j));                                      \
410    }
411  
412    DEFINE_INSTRUCTION(Addu)
DEFINE_INSTRUCTION(Subu)413    DEFINE_INSTRUCTION(Subu)
414    DEFINE_INSTRUCTION(Mul)
415    DEFINE_INSTRUCTION(Div)
416    DEFINE_INSTRUCTION(Divu)
417    DEFINE_INSTRUCTION(Mod)
418    DEFINE_INSTRUCTION(Modu)
419    DEFINE_INSTRUCTION(Mulh)
420    DEFINE_INSTRUCTION2(Mult)
421    DEFINE_INSTRUCTION(Mulhu)
422    DEFINE_INSTRUCTION2(Multu)
423    DEFINE_INSTRUCTION2(Div)
424    DEFINE_INSTRUCTION2(Divu)
425  
426    DEFINE_INSTRUCTION3(Div)
427    DEFINE_INSTRUCTION3(Mul)
428    DEFINE_INSTRUCTION3(Mulu)
429  
430    DEFINE_INSTRUCTION(And)
431    DEFINE_INSTRUCTION(Or)
432    DEFINE_INSTRUCTION(Xor)
433    DEFINE_INSTRUCTION(Nor)
434    DEFINE_INSTRUCTION2(Neg)
435  
436    DEFINE_INSTRUCTION(Slt)
437    DEFINE_INSTRUCTION(Sltu)
438    DEFINE_INSTRUCTION(Sle)
439    DEFINE_INSTRUCTION(Sleu)
440    DEFINE_INSTRUCTION(Sgt)
441    DEFINE_INSTRUCTION(Sgtu)
442    DEFINE_INSTRUCTION(Sge)
443    DEFINE_INSTRUCTION(Sgeu)
444  
445    // MIPS32 R2 instruction macro.
446    DEFINE_INSTRUCTION(Ror)
447  
448  #undef DEFINE_INSTRUCTION
449  #undef DEFINE_INSTRUCTION2
450  #undef DEFINE_INSTRUCTION3
451  
452    void SmiUntag(Register reg) { sra(reg, reg, kSmiTagSize); }
453  
SmiUntag(Register dst,Register src)454    void SmiUntag(Register dst, Register src) { sra(dst, src, kSmiTagSize); }
455  
456    // Removes current frame and its arguments from the stack preserving
457    // the arguments and a return address pushed to the stack for the next call.
458    // Both |callee_args_count| and |caller_args_count| do not include
459    // receiver. |callee_args_count| is not modified. |caller_args_count|
460    // is trashed.
461    void PrepareForTailCall(Register callee_args_count,
462                            Register caller_args_count, Register scratch0,
463                            Register scratch1);
464  
465    int CalculateStackPassedWords(int num_reg_arguments,
466                                  int num_double_arguments);
467  
468    // Before calling a C-function from generated code, align arguments on stack
469    // and add space for the four mips argument slots.
470    // After aligning the frame, non-register arguments must be stored on the
471    // stack, after the argument-slots using helper: CFunctionArgumentOperand().
472    // The argument count assumes all arguments are word sized.
473    // Some compilers/platforms require the stack to be aligned when calling
474    // C++ code.
475    // Needs a scratch register to do some arithmetic. This register will be
476    // trashed.
477    void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
478                              Register scratch);
479    void PrepareCallCFunction(int num_reg_arguments, Register scratch);
480  
481    // Arguments 1-4 are placed in registers a0 through a3 respectively.
482    // Arguments 5..n are stored to stack using following:
483    //  sw(t0, CFunctionArgumentOperand(5));
484  
485    // Calls a C function and cleans up the space for arguments allocated
486    // by PrepareCallCFunction. The called function is not allowed to trigger a
487    // garbage collection, since that might move the code and invalidate the
488    // return address (unless this is somehow accounted for by the called
489    // function).
490    void CallCFunction(ExternalReference function, int num_arguments);
491    void CallCFunction(Register function, int num_arguments);
492    void CallCFunction(ExternalReference function, int num_reg_arguments,
493                       int num_double_arguments);
494    void CallCFunction(Register function, int num_reg_arguments,
495                       int num_double_arguments);
496    void MovFromFloatResult(DoubleRegister dst);
497    void MovFromFloatParameter(DoubleRegister dst);
498  
499    // There are two ways of passing double arguments on MIPS, depending on
500    // whether soft or hard floating point ABI is used. These functions
501    // abstract parameter passing for the three different ways we call
502    // C functions from generated code.
503    void MovToFloatParameter(DoubleRegister src);
504    void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
505    void MovToFloatResult(DoubleRegister src);
506  
507    // See comments at the beginning of Builtins::Generate_CEntry.
PrepareCEntryArgs(int num_args)508    inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
PrepareCEntryFunction(const ExternalReference & ref)509    inline void PrepareCEntryFunction(const ExternalReference& ref) {
510      li(a1, ref);
511    }
512  
513    void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
514                       Label* condition_met);
515  #undef COND_ARGS
516  
517    // Performs a truncating conversion of a floating point number as used by
518    // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
519    // Exits with 'result' holding the answer.
520    void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
521                           DoubleRegister double_input, StubCallMode stub_mode);
522  
523    // Conditional move.
524    void Movz(Register rd, Register rs, Register rt);
525    void Movn(Register rd, Register rs, Register rt);
526    void Movt(Register rd, Register rs, uint16_t cc = 0);
527    void Movf(Register rd, Register rs, uint16_t cc = 0);
528  
529    void LoadZeroIfFPUCondition(Register dest);
530    void LoadZeroIfNotFPUCondition(Register dest);
531  
532    void LoadZeroIfConditionNotZero(Register dest, Register condition);
533    void LoadZeroIfConditionZero(Register dest, Register condition);
534    void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
535                             Condition cond);
536  
537    void Clz(Register rd, Register rs);
538    void Ctz(Register rd, Register rs);
539    void Popcnt(Register rd, Register rs);
540  
541    // Int64Lowering instructions
542    void AddPair(Register dst_low, Register dst_high, Register left_low,
543                 Register left_high, Register right_low, Register right_high,
544                 Register scratch1, Register scratch2);
545  
546    void AddPair(Register dst_low, Register dst_high, Register left_low,
547                 Register left_high, int32_t imm, Register scratch1,
548                 Register scratch2);
549  
550    void SubPair(Register dst_low, Register dst_high, Register left_low,
551                 Register left_high, Register right_low, Register right_high,
552                 Register scratch1, Register scratch2);
553  
554    void AndPair(Register dst_low, Register dst_high, Register left_low,
555                 Register left_high, Register right_low, Register right_high);
556  
557    void OrPair(Register dst_low, Register dst_high, Register left_low,
558                Register left_high, Register right_low, Register right_high);
559  
560    void XorPair(Register dst_low, Register dst_high, Register left_low,
561                 Register left_high, Register right_low, Register right_high);
562  
563    void MulPair(Register dst_low, Register dst_high, Register left_low,
564                 Register left_high, Register right_low, Register right_high,
565                 Register scratch1, Register scratch2);
566  
567    void ShlPair(Register dst_low, Register dst_high, Register src_low,
568                 Register src_high, Register shift, Register scratch1,
569                 Register scratch2);
570  
571    void ShlPair(Register dst_low, Register dst_high, Register src_low,
572                 Register src_high, uint32_t shift, Register scratch);
573  
574    void ShrPair(Register dst_low, Register dst_high, Register src_low,
575                 Register src_high, Register shift, Register scratch1,
576                 Register scratch2);
577  
578    void ShrPair(Register dst_low, Register dst_high, Register src_low,
579                 Register src_high, uint32_t shift, Register scratch);
580  
581    void SarPair(Register dst_low, Register dst_high, Register src_low,
582                 Register src_high, Register shift, Register scratch1,
583                 Register scratch2);
584  
585    void SarPair(Register dst_low, Register dst_high, Register src_low,
586                 Register src_high, uint32_t shift, Register scratch);
587  
588    // MIPS32 R2 instruction macro.
589    void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
590    void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
591    void ExtractBits(Register dest, Register source, Register pos, int size,
592                     bool sign_extend = false);
593    void InsertBits(Register dest, Register source, Register pos, int size);
594  
595    void Seb(Register rd, Register rt);
596    void Seh(Register rd, Register rt);
597    void Neg_s(FPURegister fd, FPURegister fs);
598    void Neg_d(FPURegister fd, FPURegister fs);
599  
600    // MIPS32 R6 instruction macros.
601    void Bovc(Register rt, Register rs, Label* L);
602    void Bnvc(Register rt, Register rs, Label* L);
603  
604    // Convert single to unsigned word.
605    void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
606    void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
607  
608    void Trunc_w_d(FPURegister fd, FPURegister fs);
609    void Round_w_d(FPURegister fd, FPURegister fs);
610    void Floor_w_d(FPURegister fd, FPURegister fs);
611    void Ceil_w_d(FPURegister fd, FPURegister fs);
612  
613    // Round double functions
614    void Trunc_d_d(FPURegister fd, FPURegister fs);
615    void Round_d_d(FPURegister fd, FPURegister fs);
616    void Floor_d_d(FPURegister fd, FPURegister fs);
617    void Ceil_d_d(FPURegister fd, FPURegister fs);
618  
619    // Round float functions
620    void Trunc_s_s(FPURegister fd, FPURegister fs);
621    void Round_s_s(FPURegister fd, FPURegister fs);
622    void Floor_s_s(FPURegister fd, FPURegister fs);
623    void Ceil_s_s(FPURegister fd, FPURegister fs);
624  
625    // FP32 mode: Move the general purpose register into
626    // the high part of the double-register pair.
627    // FP64 mode: Move the general-purpose register into
628    // the higher 32 bits of the 64-bit coprocessor register,
629    // while leaving the low bits unchanged.
630    void Mthc1(Register rt, FPURegister fs);
631  
632    // FP32 mode: move the high part of the double-register pair into
633    // general purpose register.
634    // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
635    // general-purpose register.
636    void Mfhc1(Register rt, FPURegister fs);
637  
638    void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
639                FPURegister scratch);
640    void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
641                FPURegister scratch);
642    void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
643                FPURegister scratch);
644    void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
645                FPURegister scratch);
646  
647    // Change endianness
648    void ByteSwapSigned(Register dest, Register src, int operand_size);
649    void ByteSwapUnsigned(Register dest, Register src, int operand_size);
650  
651    void Ulh(Register rd, const MemOperand& rs);
652    void Ulhu(Register rd, const MemOperand& rs);
653    void Ush(Register rd, const MemOperand& rs, Register scratch);
654  
655    void Ulw(Register rd, const MemOperand& rs);
656    void Usw(Register rd, const MemOperand& rs);
657  
658    void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
659    void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
660  
661    void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
662    void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
663  
664    void Ldc1(FPURegister fd, const MemOperand& src);
665    void Sdc1(FPURegister fs, const MemOperand& dst);
666  
667    void Ll(Register rd, const MemOperand& rs);
668    void Sc(Register rd, const MemOperand& rs);
669  
670    // Perform a floating-point min or max operation with the
671    // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
672    // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
673    // handled in out-of-line code. The specific behaviour depends on supported
674    // instructions.
675    //
676    // These functions assume (and assert) that src1!=src2. It is permitted
677    // for the result to alias either input register.
678    void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
679                    Label* out_of_line);
680    void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
681                    Label* out_of_line);
682    void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
683                    Label* out_of_line);
684    void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2,
685                    Label* out_of_line);
686  
687    // Generate out-of-line cases for the macros above.
688    void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
689    void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
690    void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1,
691                             DoubleRegister src2);
692    void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1,
693                             DoubleRegister src2);
694  
IsDoubleZeroRegSet()695    bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
696  
mov(Register rd,Register rt)697    void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
698  
Move(Register dst,Handle<HeapObject> handle)699    inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
Move(Register dst,Smi smi)700    inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }
701  
Move(Register dst,Register src)702    inline void Move(Register dst, Register src) {
703      if (dst != src) {
704        mov(dst, src);
705      }
706    }
707  
Move_d(FPURegister dst,FPURegister src)708    inline void Move_d(FPURegister dst, FPURegister src) {
709      if (dst != src) {
710        mov_d(dst, src);
711      }
712    }
713  
Move_s(FPURegister dst,FPURegister src)714    inline void Move_s(FPURegister dst, FPURegister src) {
715      if (dst != src) {
716        mov_s(dst, src);
717      }
718    }
719  
Move(FPURegister dst,FPURegister src)720    inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
721  
Move(Register dst_low,Register dst_high,FPURegister src)722    inline void Move(Register dst_low, Register dst_high, FPURegister src) {
723      mfc1(dst_low, src);
724      Mfhc1(dst_high, src);
725    }
726  
FmoveHigh(Register dst_high,FPURegister src)727    inline void FmoveHigh(Register dst_high, FPURegister src) {
728      Mfhc1(dst_high, src);
729    }
730  
FmoveHigh(FPURegister dst,Register src_high)731    inline void FmoveHigh(FPURegister dst, Register src_high) {
732      Mthc1(src_high, dst);
733    }
734  
FmoveLow(Register dst_low,FPURegister src)735    inline void FmoveLow(Register dst_low, FPURegister src) {
736      mfc1(dst_low, src);
737    }
738  
739    void FmoveLow(FPURegister dst, Register src_low);
740  
Move(FPURegister dst,Register src_low,Register src_high)741    inline void Move(FPURegister dst, Register src_low, Register src_high) {
742      mtc1(src_low, dst);
743      Mthc1(src_high, dst);
744    }
745  
Move(FPURegister dst,float imm)746    void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
Move(FPURegister dst,double imm)747    void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
748    void Move(FPURegister dst, uint32_t src);
749    void Move(FPURegister dst, uint64_t src);
750  
751    // -------------------------------------------------------------------------
752    // Overflow operations.
753  
754    // AddOverflow sets overflow register to a negative value if
755    // overflow occured, otherwise it is zero or positive
756    void AddOverflow(Register dst, Register left, const Operand& right,
757                     Register overflow);
758    // SubOverflow sets overflow register to a negative value if
759    // overflow occured, otherwise it is zero or positive
760    void SubOverflow(Register dst, Register left, const Operand& right,
761                     Register overflow);
762    // MulOverflow sets overflow register to zero if no overflow occured
763    void MulOverflow(Register dst, Register left, const Operand& right,
764                     Register overflow);
765  
766  // Number of instructions needed for calculation of switch table entry address
767  #ifdef _MIPS_ARCH_MIPS32R6
768    static constexpr int kSwitchTablePrologueSize = 5;
769  #else
770    static constexpr int kSwitchTablePrologueSize = 10;
771  #endif
772    // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
773    // functor/function with 'Label *func(size_t index)' declaration.
774    template <typename Func>
775    void GenerateSwitchTable(Register index, size_t case_count,
776                             Func GetLabelFunction);
777  
778    // Load an object from the root table.
779    void LoadRoot(Register destination, RootIndex index) override;
780    void LoadRoot(Register destination, RootIndex index, Condition cond,
781                  Register src1, const Operand& src2);
782  
783    // If the value is a NaN, canonicalize the value else, do nothing.
784    void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
785  
786    // ---------------------------------------------------------------------------
787    // FPU macros. These do not handle special cases like NaN or +- inf.
788  
789    // Convert unsigned word to double.
790    void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
791  
792    // Convert double to unsigned word.
793    void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
794    void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
795  
796    // Jump the register contains a smi.
797    void JumpIfSmi(Register value, Label* smi_label, Register scratch = at,
798                   BranchDelaySlot bd = PROTECT);
799  
JumpIfEqual(Register a,int32_t b,Label * dest)800    void JumpIfEqual(Register a, int32_t b, Label* dest) {
801      li(kScratchReg, Operand(b));
802      Branch(dest, eq, a, Operand(kScratchReg));
803    }
804  
JumpIfLessThan(Register a,int32_t b,Label * dest)805    void JumpIfLessThan(Register a, int32_t b, Label* dest) {
806      li(kScratchReg, Operand(b));
807      Branch(dest, lt, a, Operand(kScratchReg));
808    }
809  
810    // Push a standard frame, consisting of ra, fp, context and JS function.
811    void PushStandardFrame(Register function_reg);
812  
813    // Get the actual activation frame alignment for target environment.
814    static int ActivationFrameAlignment();
815  
816    // Compute the start of the generated instruction stream from the current PC.
817    // This is an alternative to embedding the {CodeObject} handle as a reference.
818    void ComputeCodeStartAddress(Register dst);
819  
820    void ResetSpeculationPoisonRegister();
821  
822    // Control-flow integrity:
823  
824    // Define a function entrypoint. This doesn't emit any code for this
825    // architecture, as control-flow integrity is not supported for it.
CodeEntry()826    void CodeEntry() {}
827    // Define an exception handler.
ExceptionHandler()828    void ExceptionHandler() {}
829    // Define an exception handler and bind a label.
BindExceptionHandler(Label * label)830    void BindExceptionHandler(Label* label) { bind(label); }
831  
832   protected:
833    void BranchLong(Label* L, BranchDelaySlot bdslot);
834  
835    inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
836  
837    inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
838  
839   private:
840    bool has_double_zero_reg_set_ = false;
841  
842    // Performs a truncating conversion of a floating point number as used by
843    // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
844    // succeeds, otherwise falls through if result is saturated. On return
845    // 'result' either holds answer, or is clobbered on fall through.
846    void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
847                                    Label* done);
848  
849    void CallCFunctionHelper(Register function_base, int16_t function_offset,
850                             int num_reg_arguments, int num_double_arguments);
851  
852    void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
853                  FPURegister cmp2);
854  
855    void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
856                       FPURegister cmp2);
857  
858    void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
859                        MSARegister wt, BranchDelaySlot bd = PROTECT);
860  
861    // TODO(mips) Reorder parameters so out parameters come last.
862    bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
863    bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
864                         Register* scratch, const Operand& rt);
865  
866    void BranchShortHelperR6(int32_t offset, Label* L);
867    void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
868    bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
869                             Register rs, const Operand& rt);
870    bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
871                           const Operand& rt, BranchDelaySlot bdslot);
872    bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
873                          const Operand& rt, BranchDelaySlot bdslot);
874  
875    void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
876    void BranchAndLinkShortHelper(int16_t offset, Label* L,
877                                  BranchDelaySlot bdslot);
878    void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
879    void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
880    bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
881                                    Register rs, const Operand& rt);
882    bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
883                                  Register rs, const Operand& rt,
884                                  BranchDelaySlot bdslot);
885    bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
886                                 Register rs, const Operand& rt,
887                                 BranchDelaySlot bdslot);
888    void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
889  
890    template <typename RoundFunc>
891    void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
892                     RoundFunc round);
893  
894    template <typename RoundFunc>
895    void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
896                    RoundFunc round);
897  
898    // Push a fixed frame, consisting of ra, fp.
899    void PushCommonFrame(Register marker_reg = no_reg);
900  
901    void CallRecordWriteStub(Register object, Register address,
902                             RememberedSetAction remembered_set_action,
903                             SaveFPRegsMode fp_mode, Handle<Code> code_target,
904                             Address wasm_target);
905  };
906  
907  // MacroAssembler implements a collection of frequently used macros.
908  class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
909   public:
910    using TurboAssembler::TurboAssembler;
911  
912    // It assumes that the arguments are located below the stack pointer.
913    // argc is the number of arguments not including the receiver.
914    // TODO(victorgomes): Remove this function once we stick with the reversed
915    // arguments order.
LoadReceiver(Register dest,Register argc)916    void LoadReceiver(Register dest, Register argc) {
917      Lw(dest, MemOperand(sp, 0));
918    }
919  
StoreReceiver(Register rec,Register argc,Register scratch)920    void StoreReceiver(Register rec, Register argc, Register scratch) {
921      Sw(rec, MemOperand(sp, 0));
922    }
923  
924    // Swap two registers.  If the scratch register is omitted then a slightly
925    // less efficient form using xor instead of mov is emitted.
926    void Swap(Register reg1, Register reg2, Register scratch = no_reg);
927  
PushRoot(RootIndex index)928    void PushRoot(RootIndex index) {
929      UseScratchRegisterScope temps(this);
930      Register scratch = temps.Acquire();
931      LoadRoot(scratch, index);
932      Push(scratch);
933    }
934  
935    // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,RootIndex index,Label * if_equal)936    void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
937      UseScratchRegisterScope temps(this);
938      Register scratch = temps.Acquire();
939      LoadRoot(scratch, index);
940      Branch(if_equal, eq, with, Operand(scratch));
941    }
942  
943    // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,RootIndex index,Label * if_not_equal)944    void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
945      UseScratchRegisterScope temps(this);
946      Register scratch = temps.Acquire();
947      LoadRoot(scratch, index);
948      Branch(if_not_equal, ne, with, Operand(scratch));
949    }
950  
951    // Checks if value is in range [lower_limit, higher_limit] using a single
952    // comparison.
953    void JumpIfIsInRange(Register value, unsigned lower_limit,
954                         unsigned higher_limit, Label* on_in_range);
955  
956    // ---------------------------------------------------------------------------
957    // GC Support
958  
959    // Notify the garbage collector that we wrote a pointer into an object.
960    // |object| is the object being stored into, |value| is the object being
961    // stored.  value and scratch registers are clobbered by the operation.
962    // The offset is the offset from the start of the object, not the offset from
963    // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
964    void RecordWriteField(
965        Register object, int offset, Register value, Register scratch,
966        RAStatus ra_status, SaveFPRegsMode save_fp,
967        RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
968        SmiCheck smi_check = INLINE_SMI_CHECK);
969  
970    // For a given |object| notify the garbage collector that the slot |address|
971    // has been written.  |value| is the object being stored. The value and
972    // address registers are clobbered by the operation.
973    void RecordWrite(
974        Register object, Register address, Register value, RAStatus ra_status,
975        SaveFPRegsMode save_fp,
976        RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
977        SmiCheck smi_check = INLINE_SMI_CHECK);
978  
979    void Pref(int32_t hint, const MemOperand& rs);
980  
981    // Truncates a double using a specific rounding mode, and writes the value
982    // to the result register.
983    // The except_flag will contain any exceptions caused by the instruction.
984    // If check_inexact is kDontCheckForInexactConversion, then the inexact
985    // exception is masked.
986    void EmitFPUTruncate(
987        FPURoundingMode rounding_mode, Register result,
988        DoubleRegister double_input, Register scratch,
989        DoubleRegister double_scratch, Register except_flag,
990        CheckForInexactConversion check_inexact = kDontCheckForInexactConversion);
991  
992    // Enter exit frame.
993    // argc - argument count to be dropped by LeaveExitFrame.
994    // save_doubles - saves FPU registers on stack, currently disabled.
995    // stack_space - extra stack space.
996    void EnterExitFrame(bool save_doubles, int stack_space = 0,
997                        StackFrame::Type frame_type = StackFrame::EXIT);
998  
999    // Leave the current exit frame.
1000    void LeaveExitFrame(bool save_doubles, Register arg_count,
1001                        bool do_return = NO_EMIT_RETURN,
1002                        bool argument_count_is_length = false);
1003  
1004    void LoadMap(Register destination, Register object);
1005  
1006    // Make sure the stack is aligned. Only emits code in debug mode.
1007    void AssertStackIsAligned();
1008  
1009    // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1010    void LoadGlobalProxy(Register dst) {
1011      LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1012    }
1013  
1014    void LoadNativeContextSlot(int index, Register dst);
1015  
1016    // -------------------------------------------------------------------------
1017    // JavaScript invokes.
1018  
1019    // Invoke the JavaScript function code by either calling or jumping.
1020    void InvokeFunctionCode(Register function, Register new_target,
1021                            Register expected_parameter_count,
1022                            Register actual_parameter_count, InvokeFlag flag);
1023  
1024    // On function call, call into the debugger if necessary.
1025    void CheckDebugHook(Register fun, Register new_target,
1026                        Register expected_parameter_count,
1027                        Register actual_parameter_count);
1028  
1029    // Invoke the JavaScript function in the given register. Changes the
1030    // current context to the context in the function before invoking.
1031    void InvokeFunctionWithNewTarget(Register function, Register new_target,
1032                                     Register actual_parameter_count,
1033                                     InvokeFlag flag);
1034  
1035    void InvokeFunction(Register function, Register expected_parameter_count,
1036                        Register actual_parameter_count, InvokeFlag flag);
1037  
1038    // Frame restart support.
1039    void MaybeDropFrames();
1040  
1041    // Exception handling.
1042  
1043    // Push a new stack handler and link into stack handler chain.
1044    void PushStackHandler();
1045  
1046    // Unlink the stack handler on top of the stack from the stack handler chain.
1047    // Must preserve the result register.
1048    void PopStackHandler();
1049  
1050    // -------------------------------------------------------------------------
1051    // Support functions.
1052  
1053    void GetObjectType(Register function, Register map, Register type_reg);
1054  
1055    // -------------------------------------------------------------------------
1056    // Runtime calls.
1057  
1058    // Call a runtime routine.
1059    void CallRuntime(const Runtime::Function* f, int num_arguments,
1060                     SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1061  
1062    // Convenience function: Same as above, but takes the fid instead.
1063    void CallRuntime(Runtime::FunctionId fid,
1064                     SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1065      const Runtime::Function* function = Runtime::FunctionForId(fid);
1066      CallRuntime(function, function->nargs, save_doubles);
1067    }
1068  
1069    // Convenience function: Same as above, but takes the fid instead.
1070    void CallRuntime(Runtime::FunctionId id, int num_arguments,
1071                     SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1072      CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1073    }
1074  
1075    // Convenience function: tail call a runtime routine (jump).
1076    void TailCallRuntime(Runtime::FunctionId fid);
1077  
1078    // Jump to the builtin routine.
1079    void JumpToExternalReference(const ExternalReference& builtin,
1080                                 BranchDelaySlot bd = PROTECT,
1081                                 bool builtin_exit_frame = false);
1082  
1083    // Generates a trampoline to jump to the off-heap instruction stream.
1084    void JumpToInstructionStream(Address entry);
1085  
1086    // ---------------------------------------------------------------------------
1087    // In-place weak references.
1088    void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
1089  
1090    // -------------------------------------------------------------------------
1091    // StatsCounter support.
1092  
1093    void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1094                          Register scratch2);
1095    void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1096                          Register scratch2);
1097  
1098    // -------------------------------------------------------------------------
1099    // Stack limit utilities
1100  
1101    enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
1102    void LoadStackLimit(Register destination, StackLimitKind kind);
1103    void StackOverflowCheck(Register num_args, Register scratch1,
1104                            Register scratch2, Label* stack_overflow);
1105  
1106    // ---------------------------------------------------------------------------
1107    // Smi utilities.
1108  
SmiTag(Register reg)1109    void SmiTag(Register reg) { Addu(reg, reg, reg); }
1110  
SmiTag(Register dst,Register src)1111    void SmiTag(Register dst, Register src) { Addu(dst, src, src); }
1112  
1113    // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1114    inline void SmiTst(Register value, Register scratch) {
1115      And(scratch, value, Operand(kSmiTagMask));
1116    }
1117  
1118    // Jump if the register contains a non-smi.
1119    void JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch = at,
1120                      BranchDelaySlot bd = PROTECT);
1121  
1122    // Abort execution if argument is a smi, enabled via --debug-code.
1123    void AssertNotSmi(Register object);
1124    void AssertSmi(Register object);
1125  
1126    // Abort execution if argument is not a Constructor, enabled via --debug-code.
1127    void AssertConstructor(Register object);
1128  
1129    // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1130    void AssertFunction(Register object);
1131  
1132    // Abort execution if argument is not a JSBoundFunction,
1133    // enabled via --debug-code.
1134    void AssertBoundFunction(Register object);
1135  
1136    // Abort execution if argument is not a JSGeneratorObject (or subclass),
1137    // enabled via --debug-code.
1138    void AssertGeneratorObject(Register object);
1139  
1140    // Abort execution if argument is not undefined or an AllocationSite, enabled
1141    // via --debug-code.
1142    void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1143  
1144    template <typename Field>
DecodeField(Register dst,Register src)1145    void DecodeField(Register dst, Register src) {
1146      Ext(dst, src, Field::kShift, Field::kSize);
1147    }
1148  
1149    template <typename Field>
DecodeField(Register reg)1150    void DecodeField(Register reg) {
1151      DecodeField<Field>(reg, reg);
1152    }
1153  
1154   private:
1155    // Helper functions for generating invokes.
1156    void InvokePrologue(Register expected_parameter_count,
1157                        Register actual_parameter_count, Label* done,
1158                        InvokeFlag flag);
1159  
1160    // Compute memory operands for safepoint stack slots.
1161    static int SafepointRegisterStackIndex(int reg_code);
1162  
1163    // Needs access to SafepointRegisterStackIndex for compiled frame
1164    // traversal.
1165    friend class CommonFrame;
1166  
1167    DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
1168  };
1169  
1170  template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1171  void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
1172                                           Func GetLabelFunction) {
1173    Label here;
1174    BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize);
1175    UseScratchRegisterScope temps(this);
1176    Register scratch = temps.Acquire();
1177    if (kArchVariant >= kMips32r6) {
1178      addiupc(scratch, 5);
1179      Lsa(scratch, scratch, index, kPointerSizeLog2);
1180      lw(scratch, MemOperand(scratch));
1181    } else {
1182      push(ra);
1183      bal(&here);
1184      sll(scratch, index, kPointerSizeLog2);  // Branch delay slot.
1185      bind(&here);
1186      addu(scratch, scratch, ra);
1187      pop(ra);
1188      lw(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
1189    }
1190    jr(scratch);
1191    nop();  // Branch delay slot nop.
1192    for (size_t index = 0; index < case_count; ++index) {
1193      dd(GetLabelFunction(index));
1194    }
1195  }
1196  
1197  #define ACCESS_MASM(masm) masm->
1198  
1199  }  // namespace internal
1200  }  // namespace v8
1201  
1202  #endif  // V8_CODEGEN_MIPS_MACRO_ASSEMBLER_MIPS_H_
1203