1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
6 #define V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
7
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/common/globals.h"
11
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15 v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16 __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23 enum ArchVariants { kMips64r2, kMips64r6 };
24
25 #ifdef _MIPS_ARCH_MIPS64R2
26 static const ArchVariants kArchVariant = kMips64r2;
27 #elif _MIPS_ARCH_MIPS64R6
28 static const ArchVariants kArchVariant = kMips64r6;
29 #else
30 static const ArchVariants kArchVariant = kMips64r2;
31 #endif
32
33 enum Endianness { kLittle, kBig };
34
35 #if defined(V8_TARGET_LITTLE_ENDIAN)
36 static const Endianness kArchEndian = kLittle;
37 #elif defined(V8_TARGET_BIG_ENDIAN)
38 static const Endianness kArchEndian = kBig;
39 #else
40 #error Unknown endianness
41 #endif
42
43 // TODO(plind): consider renaming these ...
44 #if defined(__mips_hard_float) && __mips_hard_float != 0
45 // Use floating-point coprocessor instructions. This flag is raised when
46 // -mhard-float is passed to the compiler.
47 const bool IsMipsSoftFloatABI = false;
48 #elif defined(__mips_soft_float) && __mips_soft_float != 0
49 // This flag is raised when -msoft-float is passed to the compiler.
50 // Although FPU is a base requirement for v8, soft-float ABI is used
51 // on soft-float systems with FPU kernel emulation.
52 const bool IsMipsSoftFloatABI = true;
53 #else
54 const bool IsMipsSoftFloatABI = true;
55 #endif
56
57 #if defined(V8_TARGET_LITTLE_ENDIAN)
58 const uint32_t kMipsLwrOffset = 0;
59 const uint32_t kMipsLwlOffset = 3;
60 const uint32_t kMipsSwrOffset = 0;
61 const uint32_t kMipsSwlOffset = 3;
62 const uint32_t kMipsLdrOffset = 0;
63 const uint32_t kMipsLdlOffset = 7;
64 const uint32_t kMipsSdrOffset = 0;
65 const uint32_t kMipsSdlOffset = 7;
66 #elif defined(V8_TARGET_BIG_ENDIAN)
67 const uint32_t kMipsLwrOffset = 3;
68 const uint32_t kMipsLwlOffset = 0;
69 const uint32_t kMipsSwrOffset = 3;
70 const uint32_t kMipsSwlOffset = 0;
71 const uint32_t kMipsLdrOffset = 7;
72 const uint32_t kMipsLdlOffset = 0;
73 const uint32_t kMipsSdrOffset = 7;
74 const uint32_t kMipsSdlOffset = 0;
75 #else
76 #error Unknown endianness
77 #endif
78
79 #if defined(V8_TARGET_LITTLE_ENDIAN)
80 const uint32_t kLeastSignificantByteInInt32Offset = 0;
81 const uint32_t kLessSignificantWordInDoublewordOffset = 0;
82 #elif defined(V8_TARGET_BIG_ENDIAN)
83 const uint32_t kLeastSignificantByteInInt32Offset = 3;
84 const uint32_t kLessSignificantWordInDoublewordOffset = 4;
85 #else
86 #error Unknown endianness
87 #endif
88
89 #ifndef __STDC_FORMAT_MACROS
90 #define __STDC_FORMAT_MACROS
91 #endif
92 #include <inttypes.h>
93
94 // Defines constants and accessor classes to assemble, disassemble and
95 // simulate MIPS32 instructions.
96 //
97 // See: MIPS32 Architecture For Programmers
98 // Volume II: The MIPS32 Instruction Set
99 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
100
101 namespace v8 {
102 namespace internal {
103
104 // TODO(sigurds): Change this value once we use relative jumps.
105 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
106
107 // -----------------------------------------------------------------------------
108 // Registers and FPURegisters.
109
110 // Number of general purpose registers.
111 const int kNumRegisters = 32;
112 const int kInvalidRegister = -1;
113
114 // Number of registers with HI, LO, and pc.
115 const int kNumSimuRegisters = 35;
116
117 // In the simulator, the PC register is simulated as the 34th register.
118 const int kPCRegister = 34;
119
120 // Number coprocessor registers.
121 const int kNumFPURegisters = 32;
122 const int kInvalidFPURegister = -1;
123
124 // Number of MSA registers
125 const int kNumMSARegisters = 32;
126 const int kInvalidMSARegister = -1;
127
128 const int kInvalidMSAControlRegister = -1;
129 const int kMSAIRRegister = 0;
130 const int kMSACSRRegister = 1;
131 const int kMSARegSize = 128;
132 const int kMSALanesByte = kMSARegSize / 8;
133 const int kMSALanesHalf = kMSARegSize / 16;
134 const int kMSALanesWord = kMSARegSize / 32;
135 const int kMSALanesDword = kMSARegSize / 64;
136
137 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
138 const int kFCSRRegister = 31;
139 const int kInvalidFPUControlRegister = -1;
140 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
141 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
142 const uint64_t kFPU64InvalidResult =
143 static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
144 const int64_t kFPU64InvalidResultNegative =
145 static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
146
147 // FCSR constants.
148 const uint32_t kFCSRInexactFlagBit = 2;
149 const uint32_t kFCSRUnderflowFlagBit = 3;
150 const uint32_t kFCSROverflowFlagBit = 4;
151 const uint32_t kFCSRDivideByZeroFlagBit = 5;
152 const uint32_t kFCSRInvalidOpFlagBit = 6;
153 const uint32_t kFCSRNaN2008FlagBit = 18;
154
155 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
156 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
157 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
158 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
159 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
160 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
161
162 const uint32_t kFCSRFlagMask =
163 kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
164 kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
165
166 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
167
168 // 'pref' instruction hints
169 const int32_t kPrefHintLoad = 0;
170 const int32_t kPrefHintStore = 1;
171 const int32_t kPrefHintLoadStreamed = 4;
172 const int32_t kPrefHintStoreStreamed = 5;
173 const int32_t kPrefHintLoadRetained = 6;
174 const int32_t kPrefHintStoreRetained = 7;
175 const int32_t kPrefHintWritebackInvalidate = 25;
176 const int32_t kPrefHintPrepareForStore = 30;
177
178 // Actual value of root register is offset from the root array's start
179 // to take advantage of negative displacement values.
180 // TODO(sigurds): Choose best value.
181 constexpr int kRootRegisterBias = 256;
182
183 // Helper functions for converting between register numbers and names.
184 class Registers {
185 public:
186 // Return the name of the register.
187 static const char* Name(int reg);
188
189 // Lookup the register number for the name provided.
190 static int Number(const char* name);
191
192 struct RegisterAlias {
193 int reg;
194 const char* name;
195 };
196
197 static const int64_t kMaxValue = 0x7fffffffffffffffl;
198 static const int64_t kMinValue = 0x8000000000000000l;
199
200 private:
201 static const char* names_[kNumSimuRegisters];
202 static const RegisterAlias aliases_[];
203 };
204
205 // Helper functions for converting between register numbers and names.
206 class FPURegisters {
207 public:
208 // Return the name of the register.
209 static const char* Name(int reg);
210
211 // Lookup the register number for the name provided.
212 static int Number(const char* name);
213
214 struct RegisterAlias {
215 int creg;
216 const char* name;
217 };
218
219 private:
220 static const char* names_[kNumFPURegisters];
221 static const RegisterAlias aliases_[];
222 };
223
224 // Helper functions for converting between register numbers and names.
225 class MSARegisters {
226 public:
227 // Return the name of the register.
228 static const char* Name(int reg);
229
230 // Lookup the register number for the name provided.
231 static int Number(const char* name);
232
233 struct RegisterAlias {
234 int creg;
235 const char* name;
236 };
237
238 private:
239 static const char* names_[kNumMSARegisters];
240 static const RegisterAlias aliases_[];
241 };
242
243 // -----------------------------------------------------------------------------
244 // Instructions encoding constants.
245
246 // On MIPS all instructions are 32 bits.
247 using Instr = int32_t;
248
249 // Special Software Interrupt codes when used in the presence of the MIPS
250 // simulator.
251 enum SoftwareInterruptCodes {
252 // Transition to C code.
253 call_rt_redirected = 0xfffff
254 };
255
256 // On MIPS Simulator breakpoints can have different codes:
257 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
258 // the simulator will run through them and print the registers.
259 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
260 // instructions (see Assembler::stop()).
261 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
262 // debugger.
263 const uint32_t kMaxWatchpointCode = 31;
264 const uint32_t kMaxStopCode = 127;
265 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
266
267 // ----- Fields offset and length.
268 const int kOpcodeShift = 26;
269 const int kOpcodeBits = 6;
270 const int kRsShift = 21;
271 const int kRsBits = 5;
272 const int kRtShift = 16;
273 const int kRtBits = 5;
274 const int kRdShift = 11;
275 const int kRdBits = 5;
276 const int kSaShift = 6;
277 const int kSaBits = 5;
278 const int kLsaSaBits = 2;
279 const int kFunctionShift = 0;
280 const int kFunctionBits = 6;
281 const int kLuiShift = 16;
282 const int kBp2Shift = 6;
283 const int kBp2Bits = 2;
284 const int kBp3Shift = 6;
285 const int kBp3Bits = 3;
286 const int kBaseShift = 21;
287 const int kBaseBits = 5;
288 const int kBit6Shift = 6;
289 const int kBit6Bits = 1;
290
291 const int kImm9Shift = 7;
292 const int kImm9Bits = 9;
293 const int kImm16Shift = 0;
294 const int kImm16Bits = 16;
295 const int kImm18Shift = 0;
296 const int kImm18Bits = 18;
297 const int kImm19Shift = 0;
298 const int kImm19Bits = 19;
299 const int kImm21Shift = 0;
300 const int kImm21Bits = 21;
301 const int kImm26Shift = 0;
302 const int kImm26Bits = 26;
303 const int kImm28Shift = 0;
304 const int kImm28Bits = 28;
305 const int kImm32Shift = 0;
306 const int kImm32Bits = 32;
307 const int kMsaImm8Shift = 16;
308 const int kMsaImm8Bits = 8;
309 const int kMsaImm5Shift = 16;
310 const int kMsaImm5Bits = 5;
311 const int kMsaImm10Shift = 11;
312 const int kMsaImm10Bits = 10;
313 const int kMsaImmMI10Shift = 16;
314 const int kMsaImmMI10Bits = 10;
315
316 // In branches and jumps immediate fields point to words, not bytes,
317 // and are therefore shifted by 2.
318 const int kImmFieldShift = 2;
319
320 const int kFrBits = 5;
321 const int kFrShift = 21;
322 const int kFsShift = 11;
323 const int kFsBits = 5;
324 const int kFtShift = 16;
325 const int kFtBits = 5;
326 const int kFdShift = 6;
327 const int kFdBits = 5;
328 const int kFCccShift = 8;
329 const int kFCccBits = 3;
330 const int kFBccShift = 18;
331 const int kFBccBits = 3;
332 const int kFBtrueShift = 16;
333 const int kFBtrueBits = 1;
334 const int kWtBits = 5;
335 const int kWtShift = 16;
336 const int kWsBits = 5;
337 const int kWsShift = 11;
338 const int kWdBits = 5;
339 const int kWdShift = 6;
340
341 // ----- Miscellaneous useful masks.
342 // Instruction bit masks.
343 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
344 const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
345 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
346 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
347 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
348 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
349 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
350 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
351 const int kImm5Mask = ((1 << 5) - 1);
352 const int kImm8Mask = ((1 << 8) - 1);
353 const int kImm10Mask = ((1 << 10) - 1);
354 const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
355 const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
356 const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
357 const int kMsaMI10Mask = (15U << 2);
358 const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
359 const int kMsaELMMask = (15U << 22);
360 const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
361 const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
362 const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
363 const int kMsaVECMask = (23U << 21);
364 const int kMsa2RMask = (7U << 18);
365 const int kMsa2RFMask = (15U << 17);
366 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
367 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
368 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
369 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
370 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
371 // Misc masks.
372 const int kHiMaskOf32 = 0xffff << 16; // Only to be used with 32-bit values
373 const int kLoMaskOf32 = 0xffff;
374 const int kSignMaskOf32 = 0x80000000; // Only to be used with 32-bit values
375 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
376 const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48;
377 const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32;
378 const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16;
379 const int32_t kJalRawMark = 0x00000000;
380 const int32_t kJRawMark = 0xf0000000;
381 const int32_t kJumpRawMask = 0xf0000000;
382
383 // ----- MIPS Opcodes and Function Fields.
384 // We use this presentation to stay close to the table representation in
385 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
386 enum Opcode : uint32_t {
387 SPECIAL = 0U << kOpcodeShift,
388 REGIMM = 1U << kOpcodeShift,
389
390 J = ((0U << 3) + 2) << kOpcodeShift,
391 JAL = ((0U << 3) + 3) << kOpcodeShift,
392 BEQ = ((0U << 3) + 4) << kOpcodeShift,
393 BNE = ((0U << 3) + 5) << kOpcodeShift,
394 BLEZ = ((0U << 3) + 6) << kOpcodeShift,
395 BGTZ = ((0U << 3) + 7) << kOpcodeShift,
396
397 ADDI = ((1U << 3) + 0) << kOpcodeShift,
398 ADDIU = ((1U << 3) + 1) << kOpcodeShift,
399 SLTI = ((1U << 3) + 2) << kOpcodeShift,
400 SLTIU = ((1U << 3) + 3) << kOpcodeShift,
401 ANDI = ((1U << 3) + 4) << kOpcodeShift,
402 ORI = ((1U << 3) + 5) << kOpcodeShift,
403 XORI = ((1U << 3) + 6) << kOpcodeShift,
404 LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
405 DAUI = ((3U << 3) + 5) << kOpcodeShift,
406
407 BEQC = ((2U << 3) + 0) << kOpcodeShift,
408 COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
409 BEQL = ((2U << 3) + 4) << kOpcodeShift,
410 BNEL = ((2U << 3) + 5) << kOpcodeShift,
411 BLEZL = ((2U << 3) + 6) << kOpcodeShift,
412 BGTZL = ((2U << 3) + 7) << kOpcodeShift,
413
414 DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
415 DADDIU = ((3U << 3) + 1) << kOpcodeShift,
416 LDL = ((3U << 3) + 2) << kOpcodeShift,
417 LDR = ((3U << 3) + 3) << kOpcodeShift,
418 SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
419 MSA = ((3U << 3) + 6) << kOpcodeShift,
420 SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
421
422 LB = ((4U << 3) + 0) << kOpcodeShift,
423 LH = ((4U << 3) + 1) << kOpcodeShift,
424 LWL = ((4U << 3) + 2) << kOpcodeShift,
425 LW = ((4U << 3) + 3) << kOpcodeShift,
426 LBU = ((4U << 3) + 4) << kOpcodeShift,
427 LHU = ((4U << 3) + 5) << kOpcodeShift,
428 LWR = ((4U << 3) + 6) << kOpcodeShift,
429 LWU = ((4U << 3) + 7) << kOpcodeShift,
430
431 SB = ((5U << 3) + 0) << kOpcodeShift,
432 SH = ((5U << 3) + 1) << kOpcodeShift,
433 SWL = ((5U << 3) + 2) << kOpcodeShift,
434 SW = ((5U << 3) + 3) << kOpcodeShift,
435 SDL = ((5U << 3) + 4) << kOpcodeShift,
436 SDR = ((5U << 3) + 5) << kOpcodeShift,
437 SWR = ((5U << 3) + 6) << kOpcodeShift,
438
439 LL = ((6U << 3) + 0) << kOpcodeShift,
440 LWC1 = ((6U << 3) + 1) << kOpcodeShift,
441 BC = ((6U << 3) + 2) << kOpcodeShift,
442 LLD = ((6U << 3) + 4) << kOpcodeShift,
443 LDC1 = ((6U << 3) + 5) << kOpcodeShift,
444 POP66 = ((6U << 3) + 6) << kOpcodeShift,
445 LD = ((6U << 3) + 7) << kOpcodeShift,
446
447 PREF = ((6U << 3) + 3) << kOpcodeShift,
448
449 SC = ((7U << 3) + 0) << kOpcodeShift,
450 SWC1 = ((7U << 3) + 1) << kOpcodeShift,
451 BALC = ((7U << 3) + 2) << kOpcodeShift,
452 PCREL = ((7U << 3) + 3) << kOpcodeShift,
453 SCD = ((7U << 3) + 4) << kOpcodeShift,
454 SDC1 = ((7U << 3) + 5) << kOpcodeShift,
455 POP76 = ((7U << 3) + 6) << kOpcodeShift,
456 SD = ((7U << 3) + 7) << kOpcodeShift,
457
458 COP1X = ((1U << 4) + 3) << kOpcodeShift,
459
460 // New r6 instruction.
461 POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
462 POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
463 POP10 = ADDI, // beqzalc, bovc, beqc
464 POP26 = BLEZL, // bgezc, blezc, bgec/blec
465 POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
466 POP30 = DADDI, // bnezalc, bnvc, bnec
467 };
468
469 enum SecondaryField : uint32_t {
470 // SPECIAL Encoding of Function Field.
471 SLL = ((0U << 3) + 0),
472 MOVCI = ((0U << 3) + 1),
473 SRL = ((0U << 3) + 2),
474 SRA = ((0U << 3) + 3),
475 SLLV = ((0U << 3) + 4),
476 LSA = ((0U << 3) + 5),
477 SRLV = ((0U << 3) + 6),
478 SRAV = ((0U << 3) + 7),
479
480 JR = ((1U << 3) + 0),
481 JALR = ((1U << 3) + 1),
482 MOVZ = ((1U << 3) + 2),
483 MOVN = ((1U << 3) + 3),
484 BREAK = ((1U << 3) + 5),
485 SYNC = ((1U << 3) + 7),
486
487 MFHI = ((2U << 3) + 0),
488 CLZ_R6 = ((2U << 3) + 0),
489 CLO_R6 = ((2U << 3) + 1),
490 MFLO = ((2U << 3) + 2),
491 DCLZ_R6 = ((2U << 3) + 2),
492 DCLO_R6 = ((2U << 3) + 3),
493 DSLLV = ((2U << 3) + 4),
494 DLSA = ((2U << 3) + 5),
495 DSRLV = ((2U << 3) + 6),
496 DSRAV = ((2U << 3) + 7),
497
498 MULT = ((3U << 3) + 0),
499 MULTU = ((3U << 3) + 1),
500 DIV = ((3U << 3) + 2),
501 DIVU = ((3U << 3) + 3),
502 DMULT = ((3U << 3) + 4),
503 DMULTU = ((3U << 3) + 5),
504 DDIV = ((3U << 3) + 6),
505 DDIVU = ((3U << 3) + 7),
506
507 ADD = ((4U << 3) + 0),
508 ADDU = ((4U << 3) + 1),
509 SUB = ((4U << 3) + 2),
510 SUBU = ((4U << 3) + 3),
511 AND = ((4U << 3) + 4),
512 OR = ((4U << 3) + 5),
513 XOR = ((4U << 3) + 6),
514 NOR = ((4U << 3) + 7),
515
516 SLT = ((5U << 3) + 2),
517 SLTU = ((5U << 3) + 3),
518 DADD = ((5U << 3) + 4),
519 DADDU = ((5U << 3) + 5),
520 DSUB = ((5U << 3) + 6),
521 DSUBU = ((5U << 3) + 7),
522
523 TGE = ((6U << 3) + 0),
524 TGEU = ((6U << 3) + 1),
525 TLT = ((6U << 3) + 2),
526 TLTU = ((6U << 3) + 3),
527 TEQ = ((6U << 3) + 4),
528 SELEQZ_S = ((6U << 3) + 5),
529 TNE = ((6U << 3) + 6),
530 SELNEZ_S = ((6U << 3) + 7),
531
532 DSLL = ((7U << 3) + 0),
533 DSRL = ((7U << 3) + 2),
534 DSRA = ((7U << 3) + 3),
535 DSLL32 = ((7U << 3) + 4),
536 DSRL32 = ((7U << 3) + 6),
537 DSRA32 = ((7U << 3) + 7),
538
539 // Multiply integers in r6.
540 MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
541 MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
542 D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
543 D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
544 RINT = ((3U << 3) + 2),
545
546 MUL_OP = ((0U << 3) + 2),
547 MUH_OP = ((0U << 3) + 3),
548 DIV_OP = ((0U << 3) + 2),
549 MOD_OP = ((0U << 3) + 3),
550
551 DIV_MOD = ((3U << 3) + 2),
552 DIV_MOD_U = ((3U << 3) + 3),
553 D_DIV_MOD = ((3U << 3) + 6),
554 D_DIV_MOD_U = ((3U << 3) + 7),
555
556 // drotr in special4?
557
558 // SPECIAL2 Encoding of Function Field.
559 MUL = ((0U << 3) + 2),
560 CLZ = ((4U << 3) + 0),
561 CLO = ((4U << 3) + 1),
562 DCLZ = ((4U << 3) + 4),
563 DCLO = ((4U << 3) + 5),
564
565 // SPECIAL3 Encoding of Function Field.
566 EXT = ((0U << 3) + 0),
567 DEXTM = ((0U << 3) + 1),
568 DEXTU = ((0U << 3) + 2),
569 DEXT = ((0U << 3) + 3),
570 INS = ((0U << 3) + 4),
571 DINSM = ((0U << 3) + 5),
572 DINSU = ((0U << 3) + 6),
573 DINS = ((0U << 3) + 7),
574
575 BSHFL = ((4U << 3) + 0),
576 DBSHFL = ((4U << 3) + 4),
577 SC_R6 = ((4U << 3) + 6),
578 SCD_R6 = ((4U << 3) + 7),
579 LL_R6 = ((6U << 3) + 6),
580 LLD_R6 = ((6U << 3) + 7),
581
582 // SPECIAL3 Encoding of sa Field.
583 BITSWAP = ((0U << 3) + 0),
584 ALIGN = ((0U << 3) + 2),
585 WSBH = ((0U << 3) + 2),
586 SEB = ((2U << 3) + 0),
587 SEH = ((3U << 3) + 0),
588
589 DBITSWAP = ((0U << 3) + 0),
590 DALIGN = ((0U << 3) + 1),
591 DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
592 DSBH = ((0U << 3) + 2),
593 DSHD = ((0U << 3) + 5),
594
595 // REGIMM encoding of rt Field.
596 BLTZ = ((0U << 3) + 0) << 16,
597 BGEZ = ((0U << 3) + 1) << 16,
598 BLTZAL = ((2U << 3) + 0) << 16,
599 BGEZAL = ((2U << 3) + 1) << 16,
600 BGEZALL = ((2U << 3) + 3) << 16,
601 DAHI = ((0U << 3) + 6) << 16,
602 DATI = ((3U << 3) + 6) << 16,
603
604 // COP1 Encoding of rs Field.
605 MFC1 = ((0U << 3) + 0) << 21,
606 DMFC1 = ((0U << 3) + 1) << 21,
607 CFC1 = ((0U << 3) + 2) << 21,
608 MFHC1 = ((0U << 3) + 3) << 21,
609 MTC1 = ((0U << 3) + 4) << 21,
610 DMTC1 = ((0U << 3) + 5) << 21,
611 CTC1 = ((0U << 3) + 6) << 21,
612 MTHC1 = ((0U << 3) + 7) << 21,
613 BC1 = ((1U << 3) + 0) << 21,
614 S = ((2U << 3) + 0) << 21,
615 D = ((2U << 3) + 1) << 21,
616 W = ((2U << 3) + 4) << 21,
617 L = ((2U << 3) + 5) << 21,
618 PS = ((2U << 3) + 6) << 21,
619 // COP1 Encoding of Function Field When rs=S.
620
621 ADD_S = ((0U << 3) + 0),
622 SUB_S = ((0U << 3) + 1),
623 MUL_S = ((0U << 3) + 2),
624 DIV_S = ((0U << 3) + 3),
625 ABS_S = ((0U << 3) + 5),
626 SQRT_S = ((0U << 3) + 4),
627 MOV_S = ((0U << 3) + 6),
628 NEG_S = ((0U << 3) + 7),
629 ROUND_L_S = ((1U << 3) + 0),
630 TRUNC_L_S = ((1U << 3) + 1),
631 CEIL_L_S = ((1U << 3) + 2),
632 FLOOR_L_S = ((1U << 3) + 3),
633 ROUND_W_S = ((1U << 3) + 4),
634 TRUNC_W_S = ((1U << 3) + 5),
635 CEIL_W_S = ((1U << 3) + 6),
636 FLOOR_W_S = ((1U << 3) + 7),
637 RECIP_S = ((2U << 3) + 5),
638 RSQRT_S = ((2U << 3) + 6),
639 MADDF_S = ((3U << 3) + 0),
640 MSUBF_S = ((3U << 3) + 1),
641 CLASS_S = ((3U << 3) + 3),
642 CVT_D_S = ((4U << 3) + 1),
643 CVT_W_S = ((4U << 3) + 4),
644 CVT_L_S = ((4U << 3) + 5),
645 CVT_PS_S = ((4U << 3) + 6),
646 // COP1 Encoding of Function Field When rs=D.
647 ADD_D = ((0U << 3) + 0),
648 SUB_D = ((0U << 3) + 1),
649 MUL_D = ((0U << 3) + 2),
650 DIV_D = ((0U << 3) + 3),
651 SQRT_D = ((0U << 3) + 4),
652 ABS_D = ((0U << 3) + 5),
653 MOV_D = ((0U << 3) + 6),
654 NEG_D = ((0U << 3) + 7),
655 ROUND_L_D = ((1U << 3) + 0),
656 TRUNC_L_D = ((1U << 3) + 1),
657 CEIL_L_D = ((1U << 3) + 2),
658 FLOOR_L_D = ((1U << 3) + 3),
659 ROUND_W_D = ((1U << 3) + 4),
660 TRUNC_W_D = ((1U << 3) + 5),
661 CEIL_W_D = ((1U << 3) + 6),
662 FLOOR_W_D = ((1U << 3) + 7),
663 RECIP_D = ((2U << 3) + 5),
664 RSQRT_D = ((2U << 3) + 6),
665 MADDF_D = ((3U << 3) + 0),
666 MSUBF_D = ((3U << 3) + 1),
667 CLASS_D = ((3U << 3) + 3),
668 MIN = ((3U << 3) + 4),
669 MINA = ((3U << 3) + 5),
670 MAX = ((3U << 3) + 6),
671 MAXA = ((3U << 3) + 7),
672 CVT_S_D = ((4U << 3) + 0),
673 CVT_W_D = ((4U << 3) + 4),
674 CVT_L_D = ((4U << 3) + 5),
675 C_F_D = ((6U << 3) + 0),
676 C_UN_D = ((6U << 3) + 1),
677 C_EQ_D = ((6U << 3) + 2),
678 C_UEQ_D = ((6U << 3) + 3),
679 C_OLT_D = ((6U << 3) + 4),
680 C_ULT_D = ((6U << 3) + 5),
681 C_OLE_D = ((6U << 3) + 6),
682 C_ULE_D = ((6U << 3) + 7),
683
684 // COP1 Encoding of Function Field When rs=W or L.
685 CVT_S_W = ((4U << 3) + 0),
686 CVT_D_W = ((4U << 3) + 1),
687 CVT_S_L = ((4U << 3) + 0),
688 CVT_D_L = ((4U << 3) + 1),
689 BC1EQZ = ((2U << 2) + 1) << 21,
690 BC1NEZ = ((3U << 2) + 1) << 21,
691 // COP1 CMP positive predicates Bit 5..4 = 00.
692 CMP_AF = ((0U << 3) + 0),
693 CMP_UN = ((0U << 3) + 1),
694 CMP_EQ = ((0U << 3) + 2),
695 CMP_UEQ = ((0U << 3) + 3),
696 CMP_LT = ((0U << 3) + 4),
697 CMP_ULT = ((0U << 3) + 5),
698 CMP_LE = ((0U << 3) + 6),
699 CMP_ULE = ((0U << 3) + 7),
700 CMP_SAF = ((1U << 3) + 0),
701 CMP_SUN = ((1U << 3) + 1),
702 CMP_SEQ = ((1U << 3) + 2),
703 CMP_SUEQ = ((1U << 3) + 3),
704 CMP_SSLT = ((1U << 3) + 4),
705 CMP_SSULT = ((1U << 3) + 5),
706 CMP_SLE = ((1U << 3) + 6),
707 CMP_SULE = ((1U << 3) + 7),
708 // COP1 CMP negative predicates Bit 5..4 = 01.
709 CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
710 CMP_OR = ((2U << 3) + 1),
711 CMP_UNE = ((2U << 3) + 2),
712 CMP_NE = ((2U << 3) + 3),
713 CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
714 CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
715 CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
716 CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
717 CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
718 CMP_SOR = ((3U << 3) + 1),
719 CMP_SUNE = ((3U << 3) + 2),
720 CMP_SNE = ((3U << 3) + 3),
721 CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
722 CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
723 CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
724 CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
725
726 SEL = ((2U << 3) + 0),
727 MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
728 MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
729 MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
730 SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
731 SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
732
733 // COP1 Encoding of Function Field When rs=PS.
734
735 // COP1X Encoding of Function Field.
736 MADD_S = ((4U << 3) + 0),
737 MADD_D = ((4U << 3) + 1),
738 MSUB_S = ((5U << 3) + 0),
739 MSUB_D = ((5U << 3) + 1),
740
741 // PCREL Encoding of rt Field.
742 ADDIUPC = ((0U << 2) + 0),
743 LWPC = ((0U << 2) + 1),
744 LWUPC = ((0U << 2) + 2),
745 LDPC = ((0U << 3) + 6),
746 // reserved ((1U << 3) + 6),
747 AUIPC = ((3U << 3) + 6),
748 ALUIPC = ((3U << 3) + 7),
749
750 // POP66 Encoding of rs Field.
751 JIC = ((0U << 5) + 0),
752
753 // POP76 Encoding of rs Field.
754 JIALC = ((0U << 5) + 0),
755
756 // COP1 Encoding of rs Field for MSA Branch Instructions
757 BZ_V = (((1U << 3) + 3) << kRsShift),
758 BNZ_V = (((1U << 3) + 7) << kRsShift),
759 BZ_B = (((3U << 3) + 0) << kRsShift),
760 BZ_H = (((3U << 3) + 1) << kRsShift),
761 BZ_W = (((3U << 3) + 2) << kRsShift),
762 BZ_D = (((3U << 3) + 3) << kRsShift),
763 BNZ_B = (((3U << 3) + 4) << kRsShift),
764 BNZ_H = (((3U << 3) + 5) << kRsShift),
765 BNZ_W = (((3U << 3) + 6) << kRsShift),
766 BNZ_D = (((3U << 3) + 7) << kRsShift),
767
768 // MSA: Operation Field for MI10 Instruction Formats
769 MSA_LD = (8U << 2),
770 MSA_ST = (9U << 2),
771 LD_B = ((8U << 2) + 0),
772 LD_H = ((8U << 2) + 1),
773 LD_W = ((8U << 2) + 2),
774 LD_D = ((8U << 2) + 3),
775 ST_B = ((9U << 2) + 0),
776 ST_H = ((9U << 2) + 1),
777 ST_W = ((9U << 2) + 2),
778 ST_D = ((9U << 2) + 3),
779
780 // MSA: Operation Field for I5 Instruction Format
781 ADDVI = ((0U << 23) + 6),
782 SUBVI = ((1U << 23) + 6),
783 MAXI_S = ((2U << 23) + 6),
784 MAXI_U = ((3U << 23) + 6),
785 MINI_S = ((4U << 23) + 6),
786 MINI_U = ((5U << 23) + 6),
787 CEQI = ((0U << 23) + 7),
788 CLTI_S = ((2U << 23) + 7),
789 CLTI_U = ((3U << 23) + 7),
790 CLEI_S = ((4U << 23) + 7),
791 CLEI_U = ((5U << 23) + 7),
792 LDI = ((6U << 23) + 7), // I10 instruction format
793 I5_DF_b = (0U << 21),
794 I5_DF_h = (1U << 21),
795 I5_DF_w = (2U << 21),
796 I5_DF_d = (3U << 21),
797
798 // MSA: Operation Field for I8 Instruction Format
799 ANDI_B = ((0U << 24) + 0),
800 ORI_B = ((1U << 24) + 0),
801 NORI_B = ((2U << 24) + 0),
802 XORI_B = ((3U << 24) + 0),
803 BMNZI_B = ((0U << 24) + 1),
804 BMZI_B = ((1U << 24) + 1),
805 BSELI_B = ((2U << 24) + 1),
806 SHF_B = ((0U << 24) + 2),
807 SHF_H = ((1U << 24) + 2),
808 SHF_W = ((2U << 24) + 2),
809
810 MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
811
812 // MSA: Operation Field for VEC Instruction Formats
813 AND_V = (((0U << 2) + 0) << 21),
814 OR_V = (((0U << 2) + 1) << 21),
815 NOR_V = (((0U << 2) + 2) << 21),
816 XOR_V = (((0U << 2) + 3) << 21),
817 BMNZ_V = (((1U << 2) + 0) << 21),
818 BMZ_V = (((1U << 2) + 1) << 21),
819 BSEL_V = (((1U << 2) + 2) << 21),
820
821 // MSA: Operation Field for 2R Instruction Formats
822 MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
823 FILL = (0U << 18),
824 PCNT = (1U << 18),
825 NLOC = (2U << 18),
826 NLZC = (3U << 18),
827 MSA_2R_DF_b = (0U << 16),
828 MSA_2R_DF_h = (1U << 16),
829 MSA_2R_DF_w = (2U << 16),
830 MSA_2R_DF_d = (3U << 16),
831
832 // MSA: Operation Field for 2RF Instruction Formats
833 MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
834 FCLASS = (0U << 17),
835 FTRUNC_S = (1U << 17),
836 FTRUNC_U = (2U << 17),
837 FSQRT = (3U << 17),
838 FRSQRT = (4U << 17),
839 FRCP = (5U << 17),
840 FRINT = (6U << 17),
841 FLOG2 = (7U << 17),
842 FEXUPL = (8U << 17),
843 FEXUPR = (9U << 17),
844 FFQL = (10U << 17),
845 FFQR = (11U << 17),
846 FTINT_S = (12U << 17),
847 FTINT_U = (13U << 17),
848 FFINT_S = (14U << 17),
849 FFINT_U = (15U << 17),
850 MSA_2RF_DF_w = (0U << 16),
851 MSA_2RF_DF_d = (1U << 16),
852
853 // MSA: Operation Field for 3R Instruction Format
854 SLL_MSA = ((0U << 23) + 13),
855 SRA_MSA = ((1U << 23) + 13),
856 SRL_MSA = ((2U << 23) + 13),
857 BCLR = ((3U << 23) + 13),
858 BSET = ((4U << 23) + 13),
859 BNEG = ((5U << 23) + 13),
860 BINSL = ((6U << 23) + 13),
861 BINSR = ((7U << 23) + 13),
862 ADDV = ((0U << 23) + 14),
863 SUBV = ((1U << 23) + 14),
864 MAX_S = ((2U << 23) + 14),
865 MAX_U = ((3U << 23) + 14),
866 MIN_S = ((4U << 23) + 14),
867 MIN_U = ((5U << 23) + 14),
868 MAX_A = ((6U << 23) + 14),
869 MIN_A = ((7U << 23) + 14),
870 CEQ = ((0U << 23) + 15),
871 CLT_S = ((2U << 23) + 15),
872 CLT_U = ((3U << 23) + 15),
873 CLE_S = ((4U << 23) + 15),
874 CLE_U = ((5U << 23) + 15),
875 ADD_A = ((0U << 23) + 16),
876 ADDS_A = ((1U << 23) + 16),
877 ADDS_S = ((2U << 23) + 16),
878 ADDS_U = ((3U << 23) + 16),
879 AVE_S = ((4U << 23) + 16),
880 AVE_U = ((5U << 23) + 16),
881 AVER_S = ((6U << 23) + 16),
882 AVER_U = ((7U << 23) + 16),
883 SUBS_S = ((0U << 23) + 17),
884 SUBS_U = ((1U << 23) + 17),
885 SUBSUS_U = ((2U << 23) + 17),
886 SUBSUU_S = ((3U << 23) + 17),
887 ASUB_S = ((4U << 23) + 17),
888 ASUB_U = ((5U << 23) + 17),
889 MULV = ((0U << 23) + 18),
890 MADDV = ((1U << 23) + 18),
891 MSUBV = ((2U << 23) + 18),
892 DIV_S_MSA = ((4U << 23) + 18),
893 DIV_U = ((5U << 23) + 18),
894 MOD_S = ((6U << 23) + 18),
895 MOD_U = ((7U << 23) + 18),
896 DOTP_S = ((0U << 23) + 19),
897 DOTP_U = ((1U << 23) + 19),
898 DPADD_S = ((2U << 23) + 19),
899 DPADD_U = ((3U << 23) + 19),
900 DPSUB_S = ((4U << 23) + 19),
901 DPSUB_U = ((5U << 23) + 19),
902 SLD = ((0U << 23) + 20),
903 SPLAT = ((1U << 23) + 20),
904 PCKEV = ((2U << 23) + 20),
905 PCKOD = ((3U << 23) + 20),
906 ILVL = ((4U << 23) + 20),
907 ILVR = ((5U << 23) + 20),
908 ILVEV = ((6U << 23) + 20),
909 ILVOD = ((7U << 23) + 20),
910 VSHF = ((0U << 23) + 21),
911 SRAR = ((1U << 23) + 21),
912 SRLR = ((2U << 23) + 21),
913 HADD_S = ((4U << 23) + 21),
914 HADD_U = ((5U << 23) + 21),
915 HSUB_S = ((6U << 23) + 21),
916 HSUB_U = ((7U << 23) + 21),
917 MSA_3R_DF_b = (0U << 21),
918 MSA_3R_DF_h = (1U << 21),
919 MSA_3R_DF_w = (2U << 21),
920 MSA_3R_DF_d = (3U << 21),
921
922 // MSA: Operation Field for 3RF Instruction Format
923 FCAF = ((0U << 22) + 26),
924 FCUN = ((1U << 22) + 26),
925 FCEQ = ((2U << 22) + 26),
926 FCUEQ = ((3U << 22) + 26),
927 FCLT = ((4U << 22) + 26),
928 FCULT = ((5U << 22) + 26),
929 FCLE = ((6U << 22) + 26),
930 FCULE = ((7U << 22) + 26),
931 FSAF = ((8U << 22) + 26),
932 FSUN = ((9U << 22) + 26),
933 FSEQ = ((10U << 22) + 26),
934 FSUEQ = ((11U << 22) + 26),
935 FSLT = ((12U << 22) + 26),
936 FSULT = ((13U << 22) + 26),
937 FSLE = ((14U << 22) + 26),
938 FSULE = ((15U << 22) + 26),
939 FADD = ((0U << 22) + 27),
940 FSUB = ((1U << 22) + 27),
941 FMUL = ((2U << 22) + 27),
942 FDIV = ((3U << 22) + 27),
943 FMADD = ((4U << 22) + 27),
944 FMSUB = ((5U << 22) + 27),
945 FEXP2 = ((7U << 22) + 27),
946 FEXDO = ((8U << 22) + 27),
947 FTQ = ((10U << 22) + 27),
948 FMIN = ((12U << 22) + 27),
949 FMIN_A = ((13U << 22) + 27),
950 FMAX = ((14U << 22) + 27),
951 FMAX_A = ((15U << 22) + 27),
952 FCOR = ((1U << 22) + 28),
953 FCUNE = ((2U << 22) + 28),
954 FCNE = ((3U << 22) + 28),
955 MUL_Q = ((4U << 22) + 28),
956 MADD_Q = ((5U << 22) + 28),
957 MSUB_Q = ((6U << 22) + 28),
958 FSOR = ((9U << 22) + 28),
959 FSUNE = ((10U << 22) + 28),
960 FSNE = ((11U << 22) + 28),
961 MULR_Q = ((12U << 22) + 28),
962 MADDR_Q = ((13U << 22) + 28),
963 MSUBR_Q = ((14U << 22) + 28),
964
965 // MSA: Operation Field for ELM Instruction Format
966 MSA_ELM_MINOR = ((3U << 3) + 1),
967 SLDI = (0U << 22),
968 CTCMSA = ((0U << 22) | (62U << 16)),
969 SPLATI = (1U << 22),
970 CFCMSA = ((1U << 22) | (62U << 16)),
971 COPY_S = (2U << 22),
972 MOVE_V = ((2U << 22) | (62U << 16)),
973 COPY_U = (3U << 22),
974 INSERT = (4U << 22),
975 INSVE = (5U << 22),
976 ELM_DF_B = ((0U << 4) << 16),
977 ELM_DF_H = ((4U << 3) << 16),
978 ELM_DF_W = ((12U << 2) << 16),
979 ELM_DF_D = ((28U << 1) << 16),
980
981 // MSA: Operation Field for BIT Instruction Format
982 SLLI = ((0U << 23) + 9),
983 SRAI = ((1U << 23) + 9),
984 SRLI = ((2U << 23) + 9),
985 BCLRI = ((3U << 23) + 9),
986 BSETI = ((4U << 23) + 9),
987 BNEGI = ((5U << 23) + 9),
988 BINSLI = ((6U << 23) + 9),
989 BINSRI = ((7U << 23) + 9),
990 SAT_S = ((0U << 23) + 10),
991 SAT_U = ((1U << 23) + 10),
992 SRARI = ((2U << 23) + 10),
993 SRLRI = ((3U << 23) + 10),
994 BIT_DF_b = ((14U << 3) << 16),
995 BIT_DF_h = ((6U << 4) << 16),
996 BIT_DF_w = ((2U << 5) << 16),
997 BIT_DF_d = ((0U << 6) << 16),
998
999 nullptrSF = 0U
1000 };
1001
1002 enum MSAMinorOpcode : uint32_t {
1003 kMsaMinorUndefined = 0,
1004 kMsaMinorI8,
1005 kMsaMinorI5,
1006 kMsaMinorI10,
1007 kMsaMinorBIT,
1008 kMsaMinor3R,
1009 kMsaMinor3RF,
1010 kMsaMinorELM,
1011 kMsaMinorVEC,
1012 kMsaMinor2R,
1013 kMsaMinor2RF,
1014 kMsaMinorMI10
1015 };
1016
1017 // ----- Emulated conditions.
1018 // On MIPS we use this enum to abstract from conditional branch instructions.
1019 // The 'U' prefix is used to specify unsigned comparisons.
1020 // Opposite conditions must be paired as odd/even numbers
1021 // because 'NegateCondition' function flips LSB to negate condition.
1022 enum Condition {
1023 // Any value < 0 is considered no_condition.
1024 kNoCondition = -1,
1025 overflow = 0,
1026 no_overflow = 1,
1027 Uless = 2,
1028 Ugreater_equal = 3,
1029 Uless_equal = 4,
1030 Ugreater = 5,
1031 equal = 6,
1032 not_equal = 7, // Unordered or Not Equal.
1033 negative = 8,
1034 positive = 9,
1035 parity_even = 10,
1036 parity_odd = 11,
1037 less = 12,
1038 greater_equal = 13,
1039 less_equal = 14,
1040 greater = 15,
1041 ueq = 16, // Unordered or Equal.
1042 ogl = 17, // Ordered and Not Equal.
1043 cc_always = 18,
1044
1045 // Aliases.
1046 carry = Uless,
1047 not_carry = Ugreater_equal,
1048 zero = equal,
1049 eq = equal,
1050 not_zero = not_equal,
1051 ne = not_equal,
1052 nz = not_equal,
1053 sign = negative,
1054 not_sign = positive,
1055 mi = negative,
1056 pl = positive,
1057 hi = Ugreater,
1058 ls = Uless_equal,
1059 ge = greater_equal,
1060 lt = less,
1061 gt = greater,
1062 le = less_equal,
1063 hs = Ugreater_equal,
1064 lo = Uless,
1065 al = cc_always,
1066 ult = Uless,
1067 uge = Ugreater_equal,
1068 ule = Uless_equal,
1069 ugt = Ugreater,
1070 cc_default = kNoCondition
1071 };
1072
1073 // Returns the equivalent of !cc.
1074 // Negation of the default kNoCondition (-1) results in a non-default
1075 // no_condition value (-2). As long as tests for no_condition check
1076 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)1077 inline Condition NegateCondition(Condition cc) {
1078 DCHECK(cc != cc_always);
1079 return static_cast<Condition>(cc ^ 1);
1080 }
1081
NegateFpuCondition(Condition cc)1082 inline Condition NegateFpuCondition(Condition cc) {
1083 DCHECK(cc != cc_always);
1084 switch (cc) {
1085 case ult:
1086 return ge;
1087 case ugt:
1088 return le;
1089 case uge:
1090 return lt;
1091 case ule:
1092 return gt;
1093 case lt:
1094 return uge;
1095 case gt:
1096 return ule;
1097 case ge:
1098 return ult;
1099 case le:
1100 return ugt;
1101 case eq:
1102 return ne;
1103 case ne:
1104 return eq;
1105 case ueq:
1106 return ogl;
1107 case ogl:
1108 return ueq;
1109 default:
1110 return cc;
1111 }
1112 }
1113
1114 enum MSABranchCondition {
1115 all_not_zero = 0, // Branch If All Elements Are Not Zero
1116 one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not
1117 // Zero
1118 one_elem_zero, // Branch If At Least One Element Is Zero
1119 all_zero // Branch If All Elements of Any Format Are Zero
1120 };
1121
NegateMSABranchCondition(MSABranchCondition cond)1122 inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1123 switch (cond) {
1124 case all_not_zero:
1125 return one_elem_zero;
1126 case one_elem_not_zero:
1127 return all_zero;
1128 case one_elem_zero:
1129 return all_not_zero;
1130 case all_zero:
1131 return one_elem_not_zero;
1132 default:
1133 return cond;
1134 }
1135 }
1136
1137 enum MSABranchDF {
1138 MSA_BRANCH_B = 0,
1139 MSA_BRANCH_H,
1140 MSA_BRANCH_W,
1141 MSA_BRANCH_D,
1142 MSA_BRANCH_V
1143 };
1144
1145 // ----- Coprocessor conditions.
1146 enum FPUCondition {
1147 kNoFPUCondition = -1,
1148
1149 F = 0x00, // False.
1150 UN = 0x01, // Unordered.
1151 EQ = 0x02, // Equal.
1152 UEQ = 0x03, // Unordered or Equal.
1153 OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
1154 LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
1155 ULT = 0x05, // Unordered or Less Than.
1156 OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
1157 LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
1158 ULE = 0x07, // Unordered or Less Than or Equal.
1159
1160 // Following constants are available on Mips release >= 6 only.
1161 ORD = 0x11, // Ordered, on Mips release >= 6.
1162 UNE = 0x12, // Not equal, on Mips release >= 6.
1163 NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
1164 };
1165
1166 // FPU rounding modes.
1167 enum FPURoundingMode {
1168 RN = 0 << 0, // Round to Nearest.
1169 RZ = 1 << 0, // Round towards zero.
1170 RP = 2 << 0, // Round towards Plus Infinity.
1171 RM = 3 << 0, // Round towards Minus Infinity.
1172
1173 // Aliases.
1174 kRoundToNearest = RN,
1175 kRoundToZero = RZ,
1176 kRoundToPlusInf = RP,
1177 kRoundToMinusInf = RM,
1178
1179 mode_round = RN,
1180 mode_ceil = RP,
1181 mode_floor = RM,
1182 mode_trunc = RZ
1183 };
1184
1185 const uint32_t kFPURoundingModeMask = 3 << 0;
1186
1187 enum CheckForInexactConversion {
1188 kCheckForInexactConversion,
1189 kDontCheckForInexactConversion
1190 };
1191
1192 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1193
1194 // -----------------------------------------------------------------------------
1195 // Hints.
1196
1197 // Branch hints are not used on the MIPS. They are defined so that they can
1198 // appear in shared function signatures, but will be ignored in MIPS
1199 // implementations.
1200 enum Hint { no_hint = 0 };
1201
NegateHint(Hint hint)1202 inline Hint NegateHint(Hint hint) { return no_hint; }
1203
1204 // -----------------------------------------------------------------------------
1205 // Specific instructions, constants, and masks.
1206 // These constants are declared in assembler-mips.cc, as they use named
1207 // registers and other constants.
1208
1209 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1210 // operations as post-increment of sp.
1211 extern const Instr kPopInstruction;
1212 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1213 extern const Instr kPushInstruction;
1214 // Sw(r, MemOperand(sp, 0))
1215 extern const Instr kPushRegPattern;
1216 // Lw(r, MemOperand(sp, 0))
1217 extern const Instr kPopRegPattern;
1218 extern const Instr kLwRegFpOffsetPattern;
1219 extern const Instr kSwRegFpOffsetPattern;
1220 extern const Instr kLwRegFpNegOffsetPattern;
1221 extern const Instr kSwRegFpNegOffsetPattern;
1222 // A mask for the Rt register for push, pop, lw, sw instructions.
1223 extern const Instr kRtMask;
1224 extern const Instr kLwSwInstrTypeMask;
1225 extern const Instr kLwSwInstrArgumentMask;
1226 extern const Instr kLwSwOffsetMask;
1227
1228 // Break 0xfffff, reserved for redirected real time call.
1229 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1230 // A nop instruction. (Encoding of sll 0 0 0).
1231 const Instr nopInstr = 0;
1232
OpcodeToBitNumber(Opcode opcode)1233 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1234 return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1235 }
1236
1237 constexpr uint8_t kInstrSize = 4;
1238 constexpr uint8_t kInstrSizeLog2 = 2;
1239
1240 class InstructionBase {
1241 public:
1242 enum {
1243 // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1244 // always the value of the current instruction being executed.
1245 kPCReadOffset = 0
1246 };
1247
1248 // Instruction type.
1249 enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1250
1251 // Get the raw instruction bits.
InstructionBits()1252 inline Instr InstructionBits() const {
1253 return *reinterpret_cast<const Instr*>(this);
1254 }
1255
1256 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)1257 inline void SetInstructionBits(Instr value) {
1258 *reinterpret_cast<Instr*>(this) = value;
1259 }
1260
1261 // Read one particular bit out of the instruction bits.
Bit(int nr)1262 inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1263
1264 // Read a bit field out of the instruction bits.
Bits(int hi,int lo)1265 inline int Bits(int hi, int lo) const {
1266 return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1267 }
1268
1269 static constexpr uint64_t kOpcodeImmediateTypeMask =
1270 OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1271 OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1272 OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1273 OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1274 OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
1275 OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
1276 OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
1277 OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
1278 OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
1279 OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
1280 OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
1281 OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
1282 OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1283 OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
1284 OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1285 OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
1286 OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
1287 OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1288 OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1289 OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
1290 OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
1291
1292 #define FunctionFieldToBitNumber(function) (1ULL << function)
1293
1294 // On r6, DCLZ_R6 aliases to existing MFLO.
1295 static const uint64_t kFunctionFieldRegisterTypeMask =
1296 FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1297 FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1298 FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
1299 FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
1300 FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
1301 FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
1302 FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
1303 FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
1304 FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
1305 FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
1306 FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1307 FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
1308 FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
1309 FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
1310 FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
1311 FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
1312 FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
1313 FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
1314 FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
1315 FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1316 FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1317 FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1318 FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1319 FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1320 FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1321 FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1322 FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1323 FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1324
1325 // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()1326 inline Opcode OpcodeValue() const {
1327 return static_cast<Opcode>(
1328 Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1329 }
1330
FunctionFieldRaw()1331 inline int FunctionFieldRaw() const {
1332 return InstructionBits() & kFunctionFieldMask;
1333 }
1334
1335 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1336 inline Opcode OpcodeFieldRaw() const {
1337 return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1338 }
1339
1340 // Safe to call within InstructionType().
RsFieldRawNoAssert()1341 inline int RsFieldRawNoAssert() const {
1342 return InstructionBits() & kRsFieldMask;
1343 }
1344
SaFieldRaw()1345 inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1346
1347 // Get the encoding type of the instruction.
1348 inline Type InstructionType() const;
1349
MSAMinorOpcodeField()1350 inline MSAMinorOpcode MSAMinorOpcodeField() const {
1351 int op = this->FunctionFieldRaw();
1352 switch (op) {
1353 case 0:
1354 case 1:
1355 case 2:
1356 return kMsaMinorI8;
1357 case 6:
1358 return kMsaMinorI5;
1359 case 7:
1360 return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1361 ? kMsaMinorI10
1362 : kMsaMinorI5);
1363 case 9:
1364 case 10:
1365 return kMsaMinorBIT;
1366 case 13:
1367 case 14:
1368 case 15:
1369 case 16:
1370 case 17:
1371 case 18:
1372 case 19:
1373 case 20:
1374 case 21:
1375 return kMsaMinor3R;
1376 case 25:
1377 return kMsaMinorELM;
1378 case 26:
1379 case 27:
1380 case 28:
1381 return kMsaMinor3RF;
1382 case 30:
1383 switch (this->RsFieldRawNoAssert()) {
1384 case MSA_2R_FORMAT:
1385 return kMsaMinor2R;
1386 case MSA_2RF_FORMAT:
1387 return kMsaMinor2RF;
1388 default:
1389 return kMsaMinorVEC;
1390 }
1391 break;
1392 case 32:
1393 case 33:
1394 case 34:
1395 case 35:
1396 case 36:
1397 case 37:
1398 case 38:
1399 case 39:
1400 return kMsaMinorMI10;
1401 default:
1402 return kMsaMinorUndefined;
1403 }
1404 }
1405
1406 protected:
InstructionBase()1407 InstructionBase() {}
1408 };
1409
1410 template <class T>
1411 class InstructionGetters : public T {
1412 public:
RsValue()1413 inline int RsValue() const {
1414 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1415 this->InstructionType() == InstructionBase::kImmediateType);
1416 return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1417 }
1418
RtValue()1419 inline int RtValue() const {
1420 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1421 this->InstructionType() == InstructionBase::kImmediateType);
1422 return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1423 }
1424
RdValue()1425 inline int RdValue() const {
1426 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1427 return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1428 }
1429
BaseValue()1430 inline int BaseValue() const {
1431 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1432 return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1433 }
1434
SaValue()1435 inline int SaValue() const {
1436 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1437 return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1438 }
1439
LsaSaValue()1440 inline int LsaSaValue() const {
1441 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1442 return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1443 }
1444
FunctionValue()1445 inline int FunctionValue() const {
1446 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1447 this->InstructionType() == InstructionBase::kImmediateType);
1448 return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1449 }
1450
FdValue()1451 inline int FdValue() const {
1452 return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1453 }
1454
FsValue()1455 inline int FsValue() const {
1456 return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1457 }
1458
FtValue()1459 inline int FtValue() const {
1460 return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1461 }
1462
FrValue()1463 inline int FrValue() const {
1464 return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1465 }
1466
WdValue()1467 inline int WdValue() const {
1468 return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1469 }
1470
WsValue()1471 inline int WsValue() const {
1472 return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1473 }
1474
WtValue()1475 inline int WtValue() const {
1476 return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1477 }
1478
Bp2Value()1479 inline int Bp2Value() const {
1480 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1481 return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1482 }
1483
Bp3Value()1484 inline int Bp3Value() const {
1485 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1486 return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1487 }
1488
1489 // Float Compare condition code instruction bits.
FCccValue()1490 inline int FCccValue() const {
1491 return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1492 }
1493
1494 // Float Branch condition code instruction bits.
FBccValue()1495 inline int FBccValue() const {
1496 return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1497 }
1498
1499 // Float Branch true/false instruction bit.
FBtrueValue()1500 inline int FBtrueValue() const {
1501 return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1502 }
1503
1504 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1505 inline Opcode OpcodeFieldRaw() const {
1506 return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1507 }
1508
RsFieldRaw()1509 inline int RsFieldRaw() const {
1510 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1511 this->InstructionType() == InstructionBase::kImmediateType);
1512 return this->InstructionBits() & kRsFieldMask;
1513 }
1514
1515 // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1516 inline int RsFieldRawNoAssert() const {
1517 return this->InstructionBits() & kRsFieldMask;
1518 }
1519
RtFieldRaw()1520 inline int RtFieldRaw() const {
1521 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1522 this->InstructionType() == InstructionBase::kImmediateType);
1523 return this->InstructionBits() & kRtFieldMask;
1524 }
1525
RdFieldRaw()1526 inline int RdFieldRaw() const {
1527 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1528 return this->InstructionBits() & kRdFieldMask;
1529 }
1530
SaFieldRaw()1531 inline int SaFieldRaw() const {
1532 return this->InstructionBits() & kSaFieldMask;
1533 }
1534
FunctionFieldRaw()1535 inline int FunctionFieldRaw() const {
1536 return this->InstructionBits() & kFunctionFieldMask;
1537 }
1538
1539 // Get the secondary field according to the opcode.
SecondaryValue()1540 inline int SecondaryValue() const {
1541 Opcode op = this->OpcodeFieldRaw();
1542 switch (op) {
1543 case SPECIAL:
1544 case SPECIAL2:
1545 return FunctionValue();
1546 case COP1:
1547 return RsValue();
1548 case REGIMM:
1549 return RtValue();
1550 default:
1551 return nullptrSF;
1552 }
1553 }
1554
ImmValue(int bits)1555 inline int32_t ImmValue(int bits) const {
1556 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1557 return this->Bits(bits - 1, 0);
1558 }
1559
Imm9Value()1560 inline int32_t Imm9Value() const {
1561 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1562 return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1563 }
1564
Imm16Value()1565 inline int32_t Imm16Value() const {
1566 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1567 return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1568 }
1569
Imm18Value()1570 inline int32_t Imm18Value() const {
1571 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1572 return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1573 }
1574
Imm19Value()1575 inline int32_t Imm19Value() const {
1576 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1577 return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1578 }
1579
Imm21Value()1580 inline int32_t Imm21Value() const {
1581 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1582 return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1583 }
1584
Imm26Value()1585 inline int32_t Imm26Value() const {
1586 DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1587 (this->InstructionType() == InstructionBase::kImmediateType));
1588 return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1589 }
1590
MsaImm8Value()1591 inline int32_t MsaImm8Value() const {
1592 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1593 return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1594 }
1595
MsaImm5Value()1596 inline int32_t MsaImm5Value() const {
1597 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1598 return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1599 }
1600
MsaImm10Value()1601 inline int32_t MsaImm10Value() const {
1602 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1603 return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1604 }
1605
MsaImmMI10Value()1606 inline int32_t MsaImmMI10Value() const {
1607 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1608 return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1609 }
1610
MsaBitDf()1611 inline int32_t MsaBitDf() const {
1612 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1613 int32_t df_m = this->Bits(22, 16);
1614 if (((df_m >> 6) & 1U) == 0) {
1615 return 3;
1616 } else if (((df_m >> 5) & 3U) == 2) {
1617 return 2;
1618 } else if (((df_m >> 4) & 7U) == 6) {
1619 return 1;
1620 } else if (((df_m >> 3) & 15U) == 14) {
1621 return 0;
1622 } else {
1623 return -1;
1624 }
1625 }
1626
MsaBitMValue()1627 inline int32_t MsaBitMValue() const {
1628 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1629 return this->Bits(16 + this->MsaBitDf() + 3, 16);
1630 }
1631
MsaElmDf()1632 inline int32_t MsaElmDf() const {
1633 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1634 this->InstructionType() == InstructionBase::kImmediateType);
1635 int32_t df_n = this->Bits(21, 16);
1636 if (((df_n >> 4) & 3U) == 0) {
1637 return 0;
1638 } else if (((df_n >> 3) & 7U) == 4) {
1639 return 1;
1640 } else if (((df_n >> 2) & 15U) == 12) {
1641 return 2;
1642 } else if (((df_n >> 1) & 31U) == 28) {
1643 return 3;
1644 } else {
1645 return -1;
1646 }
1647 }
1648
MsaElmNValue()1649 inline int32_t MsaElmNValue() const {
1650 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1651 this->InstructionType() == InstructionBase::kImmediateType);
1652 return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1653 }
1654
1655 static bool IsForbiddenAfterBranchInstr(Instr instr);
1656
1657 // Say if the instruction should not be used in a branch delay slot or
1658 // immediately after a compact branch.
IsForbiddenAfterBranch()1659 inline bool IsForbiddenAfterBranch() const {
1660 return IsForbiddenAfterBranchInstr(this->InstructionBits());
1661 }
1662
IsForbiddenInBranchDelay()1663 inline bool IsForbiddenInBranchDelay() const {
1664 return IsForbiddenAfterBranch();
1665 }
1666
1667 // Say if the instruction 'links'. e.g. jal, bal.
1668 bool IsLinkingInstruction() const;
1669 // Say if the instruction is a break or a trap.
1670 bool IsTrap() const;
1671
IsMSABranchInstr()1672 inline bool IsMSABranchInstr() const {
1673 if (this->OpcodeFieldRaw() == COP1) {
1674 switch (this->RsFieldRaw()) {
1675 case BZ_V:
1676 case BZ_B:
1677 case BZ_H:
1678 case BZ_W:
1679 case BZ_D:
1680 case BNZ_V:
1681 case BNZ_B:
1682 case BNZ_H:
1683 case BNZ_W:
1684 case BNZ_D:
1685 return true;
1686 default:
1687 return false;
1688 }
1689 }
1690 return false;
1691 }
1692
IsMSAInstr()1693 inline bool IsMSAInstr() const {
1694 if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1695 return true;
1696 return false;
1697 }
1698 };
1699
1700 class Instruction : public InstructionGetters<InstructionBase> {
1701 public:
1702 // Instructions are read of out a code stream. The only way to get a
1703 // reference to an instruction is to convert a pointer. There is no way
1704 // to allocate or create instances of class Instruction.
1705 // Use the At(pc) function to create references to Instruction.
At(byte * pc)1706 static Instruction* At(byte* pc) {
1707 return reinterpret_cast<Instruction*>(pc);
1708 }
1709
1710 private:
1711 // We need to prevent the creation of instances of class Instruction.
1712 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1713 };
1714
1715 // -----------------------------------------------------------------------------
1716 // MIPS assembly various constants.
1717
1718 // C/C++ argument slots size.
1719 const int kCArgSlotCount = 0;
1720
1721 // TODO(plind): below should be based on kPointerSize
1722 // TODO(plind): find all usages and remove the needless instructions for n64.
1723 const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
1724
1725 const int kInvalidStackOffset = -1;
1726 const int kBranchReturnOffset = 2 * kInstrSize;
1727
1728 static const int kNegOffset = 0x00008000;
1729
InstructionType()1730 InstructionBase::Type InstructionBase::InstructionType() const {
1731 switch (OpcodeFieldRaw()) {
1732 case SPECIAL:
1733 if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1734 kFunctionFieldRegisterTypeMask) {
1735 return kRegisterType;
1736 }
1737 return kUnsupported;
1738 case SPECIAL2:
1739 switch (FunctionFieldRaw()) {
1740 case MUL:
1741 case CLZ:
1742 case DCLZ:
1743 return kRegisterType;
1744 default:
1745 return kUnsupported;
1746 }
1747 break;
1748 case SPECIAL3:
1749 switch (FunctionFieldRaw()) {
1750 case INS:
1751 case DINS:
1752 case DINSM:
1753 case DINSU:
1754 case EXT:
1755 case DEXT:
1756 case DEXTM:
1757 case DEXTU:
1758 return kRegisterType;
1759 case BSHFL: {
1760 int sa = SaFieldRaw() >> kSaShift;
1761 switch (sa) {
1762 case BITSWAP:
1763 case WSBH:
1764 case SEB:
1765 case SEH:
1766 return kRegisterType;
1767 }
1768 sa >>= kBp2Bits;
1769 switch (sa) {
1770 case ALIGN:
1771 return kRegisterType;
1772 default:
1773 return kUnsupported;
1774 }
1775 }
1776 case LL_R6:
1777 case LLD_R6:
1778 case SC_R6:
1779 case SCD_R6: {
1780 DCHECK_EQ(kArchVariant, kMips64r6);
1781 return kImmediateType;
1782 }
1783 case DBSHFL: {
1784 int sa = SaFieldRaw() >> kSaShift;
1785 switch (sa) {
1786 case DBITSWAP:
1787 case DSBH:
1788 case DSHD:
1789 return kRegisterType;
1790 }
1791 sa = SaFieldRaw() >> kSaShift;
1792 sa >>= kBp3Bits;
1793 switch (sa) {
1794 case DALIGN:
1795 return kRegisterType;
1796 default:
1797 return kUnsupported;
1798 }
1799 }
1800 default:
1801 return kUnsupported;
1802 }
1803 break;
1804 case COP1: // Coprocessor instructions.
1805 switch (RsFieldRawNoAssert()) {
1806 case BC1: // Branch on coprocessor condition.
1807 case BC1EQZ:
1808 case BC1NEZ:
1809 return kImmediateType;
1810 // MSA Branch instructions
1811 case BZ_V:
1812 case BNZ_V:
1813 case BZ_B:
1814 case BZ_H:
1815 case BZ_W:
1816 case BZ_D:
1817 case BNZ_B:
1818 case BNZ_H:
1819 case BNZ_W:
1820 case BNZ_D:
1821 return kImmediateType;
1822 default:
1823 return kRegisterType;
1824 }
1825 break;
1826 case COP1X:
1827 return kRegisterType;
1828
1829 // 26 bits immediate type instructions. e.g.: j imm26.
1830 case J:
1831 case JAL:
1832 return kJumpType;
1833
1834 case MSA:
1835 switch (MSAMinorOpcodeField()) {
1836 case kMsaMinor3R:
1837 case kMsaMinor3RF:
1838 case kMsaMinorVEC:
1839 case kMsaMinor2R:
1840 case kMsaMinor2RF:
1841 return kRegisterType;
1842 case kMsaMinorELM:
1843 switch (InstructionBits() & kMsaLongerELMMask) {
1844 case CFCMSA:
1845 case CTCMSA:
1846 case MOVE_V:
1847 return kRegisterType;
1848 default:
1849 return kImmediateType;
1850 }
1851 default:
1852 return kImmediateType;
1853 }
1854
1855 default:
1856 return kImmediateType;
1857 }
1858 return kUnsupported;
1859 }
1860 #undef OpcodeToBitNumber
1861 #undef FunctionFieldToBitNumber
1862
1863 // -----------------------------------------------------------------------------
1864 // Instructions.
1865
1866 template <class P>
IsLinkingInstruction()1867 bool InstructionGetters<P>::IsLinkingInstruction() const {
1868 switch (OpcodeFieldRaw()) {
1869 case JAL:
1870 return true;
1871 case POP76:
1872 if (RsFieldRawNoAssert() == JIALC)
1873 return true; // JIALC
1874 else
1875 return false; // BNEZC
1876 case REGIMM:
1877 switch (RtFieldRaw()) {
1878 case BGEZAL:
1879 case BLTZAL:
1880 return true;
1881 default:
1882 return false;
1883 }
1884 case SPECIAL:
1885 switch (FunctionFieldRaw()) {
1886 case JALR:
1887 return true;
1888 default:
1889 return false;
1890 }
1891 default:
1892 return false;
1893 }
1894 }
1895
1896 template <class P>
IsTrap()1897 bool InstructionGetters<P>::IsTrap() const {
1898 if (OpcodeFieldRaw() != SPECIAL) {
1899 return false;
1900 } else {
1901 switch (FunctionFieldRaw()) {
1902 case BREAK:
1903 case TGE:
1904 case TGEU:
1905 case TLT:
1906 case TLTU:
1907 case TEQ:
1908 case TNE:
1909 return true;
1910 default:
1911 return false;
1912 }
1913 }
1914 }
1915
1916 // static
1917 template <class T>
IsForbiddenAfterBranchInstr(Instr instr)1918 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1919 Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1920 switch (opcode) {
1921 case J:
1922 case JAL:
1923 case BEQ:
1924 case BNE:
1925 case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
1926 case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1927 case BEQL:
1928 case BNEL:
1929 case BLEZL: // POP26 bgezc, blezc, bgec/blec
1930 case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
1931 case BC:
1932 case BALC:
1933 case POP10: // beqzalc, bovc, beqc
1934 case POP30: // bnezalc, bnvc, bnec
1935 case POP66: // beqzc, jic
1936 case POP76: // bnezc, jialc
1937 return true;
1938 case REGIMM:
1939 switch (instr & kRtFieldMask) {
1940 case BLTZ:
1941 case BGEZ:
1942 case BLTZAL:
1943 case BGEZAL:
1944 return true;
1945 default:
1946 return false;
1947 }
1948 break;
1949 case SPECIAL:
1950 switch (instr & kFunctionFieldMask) {
1951 case JR:
1952 case JALR:
1953 return true;
1954 default:
1955 return false;
1956 }
1957 break;
1958 case COP1:
1959 switch (instr & kRsFieldMask) {
1960 case BC1:
1961 case BC1EQZ:
1962 case BC1NEZ:
1963 case BZ_V:
1964 case BZ_B:
1965 case BZ_H:
1966 case BZ_W:
1967 case BZ_D:
1968 case BNZ_V:
1969 case BNZ_B:
1970 case BNZ_H:
1971 case BNZ_W:
1972 case BNZ_D:
1973 return true;
1974 break;
1975 default:
1976 return false;
1977 }
1978 break;
1979 default:
1980 return false;
1981 }
1982 }
1983 } // namespace internal
1984 } // namespace v8
1985
1986 #endif // V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
1987