1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/backend/move-optimizer.h"
6
7 #include "src/codegen/register-configuration.h"
8
9 namespace v8 {
10 namespace internal {
11 namespace compiler {
12
13 namespace {
14
15 struct MoveKey {
16 InstructionOperand source;
17 InstructionOperand destination;
18 };
19
20 struct MoveKeyCompare {
operator ()v8::internal::compiler::__anon0fe1d4ec0111::MoveKeyCompare21 bool operator()(const MoveKey& a, const MoveKey& b) const {
22 if (a.source.EqualsCanonicalized(b.source)) {
23 return a.destination.CompareCanonicalized(b.destination);
24 }
25 return a.source.CompareCanonicalized(b.source);
26 }
27 };
28
29 using MoveMap = ZoneMap<MoveKey, unsigned, MoveKeyCompare>;
30
31 class OperandSet {
32 public:
OperandSet(ZoneVector<InstructionOperand> * buffer)33 explicit OperandSet(ZoneVector<InstructionOperand>* buffer)
34 : set_(buffer), fp_reps_(0) {
35 buffer->clear();
36 }
37
InsertOp(const InstructionOperand & op)38 void InsertOp(const InstructionOperand& op) {
39 set_->push_back(op);
40
41 if (!kSimpleFPAliasing && op.IsFPRegister())
42 fp_reps_ |= RepresentationBit(LocationOperand::cast(op).representation());
43 }
44
Contains(const InstructionOperand & op) const45 bool Contains(const InstructionOperand& op) const {
46 for (const InstructionOperand& elem : *set_) {
47 if (elem.EqualsCanonicalized(op)) return true;
48 }
49 return false;
50 }
51
ContainsOpOrAlias(const InstructionOperand & op) const52 bool ContainsOpOrAlias(const InstructionOperand& op) const {
53 if (Contains(op)) return true;
54
55 if (!kSimpleFPAliasing && op.IsFPRegister()) {
56 // Platforms where FP registers have complex aliasing need extra checks.
57 const LocationOperand& loc = LocationOperand::cast(op);
58 MachineRepresentation rep = loc.representation();
59 // If haven't encountered mixed rep FP registers, skip the extra checks.
60 if (!HasMixedFPReps(fp_reps_ | RepresentationBit(rep))) return false;
61
62 // Check register against aliasing registers of other FP representations.
63 MachineRepresentation other_rep1, other_rep2;
64 switch (rep) {
65 case MachineRepresentation::kFloat32:
66 other_rep1 = MachineRepresentation::kFloat64;
67 other_rep2 = MachineRepresentation::kSimd128;
68 break;
69 case MachineRepresentation::kFloat64:
70 other_rep1 = MachineRepresentation::kFloat32;
71 other_rep2 = MachineRepresentation::kSimd128;
72 break;
73 case MachineRepresentation::kSimd128:
74 other_rep1 = MachineRepresentation::kFloat32;
75 other_rep2 = MachineRepresentation::kFloat64;
76 break;
77 default:
78 UNREACHABLE();
79 break;
80 }
81 const RegisterConfiguration* config = RegisterConfiguration::Default();
82 int base = -1;
83 int aliases =
84 config->GetAliases(rep, loc.register_code(), other_rep1, &base);
85 DCHECK(aliases > 0 || (aliases == 0 && base == -1));
86 while (aliases--) {
87 if (Contains(AllocatedOperand(LocationOperand::REGISTER, other_rep1,
88 base + aliases))) {
89 return true;
90 }
91 }
92 aliases = config->GetAliases(rep, loc.register_code(), other_rep2, &base);
93 DCHECK(aliases > 0 || (aliases == 0 && base == -1));
94 while (aliases--) {
95 if (Contains(AllocatedOperand(LocationOperand::REGISTER, other_rep2,
96 base + aliases))) {
97 return true;
98 }
99 }
100 }
101 return false;
102 }
103
104 private:
HasMixedFPReps(int reps)105 static bool HasMixedFPReps(int reps) {
106 return reps && !base::bits::IsPowerOfTwo(reps);
107 }
108
109 ZoneVector<InstructionOperand>* set_;
110 int fp_reps_;
111 };
112
FindFirstNonEmptySlot(const Instruction * instr)113 int FindFirstNonEmptySlot(const Instruction* instr) {
114 int i = Instruction::FIRST_GAP_POSITION;
115 for (; i <= Instruction::LAST_GAP_POSITION; i++) {
116 ParallelMove* moves = instr->parallel_moves()[i];
117 if (moves == nullptr) continue;
118 for (MoveOperands* move : *moves) {
119 if (!move->IsRedundant()) return i;
120 move->Eliminate();
121 }
122 moves->clear(); // Clear this redundant move.
123 }
124 return i;
125 }
126
127 } // namespace
128
MoveOptimizer(Zone * local_zone,InstructionSequence * code)129 MoveOptimizer::MoveOptimizer(Zone* local_zone, InstructionSequence* code)
130 : local_zone_(local_zone),
131 code_(code),
132 local_vector_(local_zone),
133 operand_buffer1(local_zone),
134 operand_buffer2(local_zone) {}
135
Run()136 void MoveOptimizer::Run() {
137 for (Instruction* instruction : code()->instructions()) {
138 CompressGaps(instruction);
139 }
140 for (InstructionBlock* block : code()->instruction_blocks()) {
141 CompressBlock(block);
142 }
143 for (InstructionBlock* block : code()->instruction_blocks()) {
144 if (block->PredecessorCount() <= 1) continue;
145 if (!block->IsDeferred()) {
146 bool has_only_deferred = true;
147 for (RpoNumber& pred_id : block->predecessors()) {
148 if (!code()->InstructionBlockAt(pred_id)->IsDeferred()) {
149 has_only_deferred = false;
150 break;
151 }
152 }
153 // This would pull down common moves. If the moves occur in deferred
154 // blocks, and the closest common successor is not deferred, we lose the
155 // optimization of just spilling/filling in deferred blocks, when the
156 // current block is not deferred.
157 if (has_only_deferred) continue;
158 }
159 OptimizeMerge(block);
160 }
161 for (Instruction* gap : code()->instructions()) {
162 FinalizeMoves(gap);
163 }
164 }
165
RemoveClobberedDestinations(Instruction * instruction)166 void MoveOptimizer::RemoveClobberedDestinations(Instruction* instruction) {
167 if (instruction->IsCall()) return;
168 ParallelMove* moves = instruction->parallel_moves()[0];
169 if (moves == nullptr) return;
170
171 DCHECK(instruction->parallel_moves()[1] == nullptr ||
172 instruction->parallel_moves()[1]->empty());
173
174 OperandSet outputs(&operand_buffer1);
175 OperandSet inputs(&operand_buffer2);
176
177 // Outputs and temps are treated together as potentially clobbering a
178 // destination operand.
179 for (size_t i = 0; i < instruction->OutputCount(); ++i) {
180 outputs.InsertOp(*instruction->OutputAt(i));
181 }
182 for (size_t i = 0; i < instruction->TempCount(); ++i) {
183 outputs.InsertOp(*instruction->TempAt(i));
184 }
185
186 // Input operands block elisions.
187 for (size_t i = 0; i < instruction->InputCount(); ++i) {
188 inputs.InsertOp(*instruction->InputAt(i));
189 }
190
191 // Elide moves made redundant by the instruction.
192 for (MoveOperands* move : *moves) {
193 if (outputs.ContainsOpOrAlias(move->destination()) &&
194 !inputs.ContainsOpOrAlias(move->destination())) {
195 move->Eliminate();
196 }
197 }
198
199 // The ret instruction makes any assignment before it unnecessary, except for
200 // the one for its input.
201 if (instruction->IsRet() || instruction->IsTailCall()) {
202 for (MoveOperands* move : *moves) {
203 if (!inputs.ContainsOpOrAlias(move->destination())) {
204 move->Eliminate();
205 }
206 }
207 }
208 }
209
MigrateMoves(Instruction * to,Instruction * from)210 void MoveOptimizer::MigrateMoves(Instruction* to, Instruction* from) {
211 if (from->IsCall()) return;
212
213 ParallelMove* from_moves = from->parallel_moves()[0];
214 if (from_moves == nullptr || from_moves->empty()) return;
215
216 OperandSet dst_cant_be(&operand_buffer1);
217 OperandSet src_cant_be(&operand_buffer2);
218
219 // If an operand is an input to the instruction, we cannot move assignments
220 // where it appears on the LHS.
221 for (size_t i = 0; i < from->InputCount(); ++i) {
222 dst_cant_be.InsertOp(*from->InputAt(i));
223 }
224 // If an operand is output to the instruction, we cannot move assignments
225 // where it appears on the RHS, because we would lose its value before the
226 // instruction.
227 // Same for temp operands.
228 // The output can't appear on the LHS because we performed
229 // RemoveClobberedDestinations for the "from" instruction.
230 for (size_t i = 0; i < from->OutputCount(); ++i) {
231 src_cant_be.InsertOp(*from->OutputAt(i));
232 }
233 for (size_t i = 0; i < from->TempCount(); ++i) {
234 src_cant_be.InsertOp(*from->TempAt(i));
235 }
236 for (MoveOperands* move : *from_moves) {
237 if (move->IsRedundant()) continue;
238 // Assume dest has a value "V". If we have a "dest = y" move, then we can't
239 // move "z = dest", because z would become y rather than "V".
240 // We assume CompressMoves has happened before this, which means we don't
241 // have more than one assignment to dest.
242 src_cant_be.InsertOp(move->destination());
243 }
244
245 ZoneSet<MoveKey, MoveKeyCompare> move_candidates(local_zone());
246 // We start with all the moves that don't have conflicting source or
247 // destination operands are eligible for being moved down.
248 for (MoveOperands* move : *from_moves) {
249 if (move->IsRedundant()) continue;
250 if (!dst_cant_be.ContainsOpOrAlias(move->destination())) {
251 MoveKey key = {move->source(), move->destination()};
252 move_candidates.insert(key);
253 }
254 }
255 if (move_candidates.empty()) return;
256
257 // Stabilize the candidate set.
258 bool changed = false;
259 do {
260 changed = false;
261 for (auto iter = move_candidates.begin(); iter != move_candidates.end();) {
262 auto current = iter;
263 ++iter;
264 InstructionOperand src = current->source;
265 if (src_cant_be.ContainsOpOrAlias(src)) {
266 src_cant_be.InsertOp(current->destination);
267 move_candidates.erase(current);
268 changed = true;
269 }
270 }
271 } while (changed);
272
273 ParallelMove to_move(local_zone());
274 for (MoveOperands* move : *from_moves) {
275 if (move->IsRedundant()) continue;
276 MoveKey key = {move->source(), move->destination()};
277 if (move_candidates.find(key) != move_candidates.end()) {
278 to_move.AddMove(move->source(), move->destination(), code_zone());
279 move->Eliminate();
280 }
281 }
282 if (to_move.empty()) return;
283
284 ParallelMove* dest =
285 to->GetOrCreateParallelMove(Instruction::GapPosition::START, code_zone());
286
287 CompressMoves(&to_move, dest);
288 DCHECK(dest->empty());
289 for (MoveOperands* m : to_move) {
290 dest->push_back(m);
291 }
292 }
293
CompressMoves(ParallelMove * left,MoveOpVector * right)294 void MoveOptimizer::CompressMoves(ParallelMove* left, MoveOpVector* right) {
295 if (right == nullptr) return;
296
297 MoveOpVector& eliminated = local_vector();
298 DCHECK(eliminated.empty());
299
300 if (!left->empty()) {
301 // Modify the right moves in place and collect moves that will be killed by
302 // merging the two gaps.
303 for (MoveOperands* move : *right) {
304 if (move->IsRedundant()) continue;
305 left->PrepareInsertAfter(move, &eliminated);
306 }
307 // Eliminate dead moves.
308 for (MoveOperands* to_eliminate : eliminated) {
309 to_eliminate->Eliminate();
310 }
311 eliminated.clear();
312 }
313 // Add all possibly modified moves from right side.
314 for (MoveOperands* move : *right) {
315 if (move->IsRedundant()) continue;
316 left->push_back(move);
317 }
318 // Nuke right.
319 right->clear();
320 DCHECK(eliminated.empty());
321 }
322
CompressGaps(Instruction * instruction)323 void MoveOptimizer::CompressGaps(Instruction* instruction) {
324 int i = FindFirstNonEmptySlot(instruction);
325 bool has_moves = i <= Instruction::LAST_GAP_POSITION;
326 USE(has_moves);
327
328 if (i == Instruction::LAST_GAP_POSITION) {
329 std::swap(instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION],
330 instruction->parallel_moves()[Instruction::LAST_GAP_POSITION]);
331 } else if (i == Instruction::FIRST_GAP_POSITION) {
332 CompressMoves(
333 instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION],
334 instruction->parallel_moves()[Instruction::LAST_GAP_POSITION]);
335 }
336 // We either have no moves, or, after swapping or compressing, we have
337 // all the moves in the first gap position, and none in the second/end gap
338 // position.
339 ParallelMove* first =
340 instruction->parallel_moves()[Instruction::FIRST_GAP_POSITION];
341 ParallelMove* last =
342 instruction->parallel_moves()[Instruction::LAST_GAP_POSITION];
343 USE(first);
344 USE(last);
345
346 DCHECK(!has_moves ||
347 (first != nullptr && (last == nullptr || last->empty())));
348 }
349
CompressBlock(InstructionBlock * block)350 void MoveOptimizer::CompressBlock(InstructionBlock* block) {
351 int first_instr_index = block->first_instruction_index();
352 int last_instr_index = block->last_instruction_index();
353
354 // Start by removing gap assignments where the output of the subsequent
355 // instruction appears on LHS, as long as they are not needed by its input.
356 Instruction* prev_instr = code()->instructions()[first_instr_index];
357 RemoveClobberedDestinations(prev_instr);
358
359 for (int index = first_instr_index + 1; index <= last_instr_index; ++index) {
360 Instruction* instr = code()->instructions()[index];
361 // Migrate to the gap of prev_instr eligible moves from instr.
362 MigrateMoves(instr, prev_instr);
363 // Remove gap assignments clobbered by instr's output.
364 RemoveClobberedDestinations(instr);
365 prev_instr = instr;
366 }
367 }
368
LastInstruction(const InstructionBlock * block) const369 const Instruction* MoveOptimizer::LastInstruction(
370 const InstructionBlock* block) const {
371 return code()->instructions()[block->last_instruction_index()];
372 }
373
OptimizeMerge(InstructionBlock * block)374 void MoveOptimizer::OptimizeMerge(InstructionBlock* block) {
375 DCHECK_LT(1, block->PredecessorCount());
376 // Ensure that the last instruction in all incoming blocks don't contain
377 // things that would prevent moving gap moves across them.
378 for (RpoNumber& pred_index : block->predecessors()) {
379 const InstructionBlock* pred = code()->InstructionBlockAt(pred_index);
380
381 // If the predecessor has more than one successor, we shouldn't attempt to
382 // move down to this block (one of the successors) any of the gap moves,
383 // because their effect may be necessary to the other successors.
384 if (pred->SuccessorCount() > 1) return;
385
386 const Instruction* last_instr =
387 code()->instructions()[pred->last_instruction_index()];
388 if (last_instr->IsCall()) return;
389 if (last_instr->TempCount() != 0) return;
390 if (last_instr->OutputCount() != 0) return;
391 for (size_t i = 0; i < last_instr->InputCount(); ++i) {
392 const InstructionOperand* op = last_instr->InputAt(i);
393 if (!op->IsConstant() && !op->IsImmediate()) return;
394 }
395 }
396 // TODO(dcarney): pass a ZoneStats down for this?
397 MoveMap move_map(local_zone());
398 size_t correct_counts = 0;
399 // Accumulate set of shared moves.
400 for (RpoNumber& pred_index : block->predecessors()) {
401 const InstructionBlock* pred = code()->InstructionBlockAt(pred_index);
402 const Instruction* instr = LastInstruction(pred);
403 if (instr->parallel_moves()[0] == nullptr ||
404 instr->parallel_moves()[0]->empty()) {
405 return;
406 }
407 for (const MoveOperands* move : *instr->parallel_moves()[0]) {
408 if (move->IsRedundant()) continue;
409 InstructionOperand src = move->source();
410 InstructionOperand dst = move->destination();
411 MoveKey key = {src, dst};
412 auto res = move_map.insert(std::make_pair(key, 1));
413 if (!res.second) {
414 res.first->second++;
415 if (res.first->second == block->PredecessorCount()) {
416 correct_counts++;
417 }
418 }
419 }
420 }
421 if (move_map.empty() || correct_counts == 0) return;
422
423 // Find insertion point.
424 Instruction* instr = code()->instructions()[block->first_instruction_index()];
425
426 if (correct_counts != move_map.size()) {
427 // Moves that are unique to each predecessor won't be pushed to the common
428 // successor.
429 OperandSet conflicting_srcs(&operand_buffer1);
430 for (auto iter = move_map.begin(), end = move_map.end(); iter != end;) {
431 auto current = iter;
432 ++iter;
433 if (current->second != block->PredecessorCount()) {
434 InstructionOperand dest = current->first.destination;
435 // Not all the moves in all the gaps are the same. Maybe some are. If
436 // there are such moves, we could move them, but the destination of the
437 // moves staying behind can't appear as a source of a common move,
438 // because the move staying behind will clobber this destination.
439 conflicting_srcs.InsertOp(dest);
440 move_map.erase(current);
441 }
442 }
443
444 bool changed = false;
445 do {
446 // If a common move can't be pushed to the common successor, then its
447 // destination also can't appear as source to any move being pushed.
448 changed = false;
449 for (auto iter = move_map.begin(), end = move_map.end(); iter != end;) {
450 auto current = iter;
451 ++iter;
452 DCHECK_EQ(block->PredecessorCount(), current->second);
453 if (conflicting_srcs.ContainsOpOrAlias(current->first.source)) {
454 conflicting_srcs.InsertOp(current->first.destination);
455 move_map.erase(current);
456 changed = true;
457 }
458 }
459 } while (changed);
460 }
461
462 if (move_map.empty()) return;
463
464 DCHECK_NOT_NULL(instr);
465 bool gap_initialized = true;
466 if (instr->parallel_moves()[0] != nullptr &&
467 !instr->parallel_moves()[0]->empty()) {
468 // Will compress after insertion.
469 gap_initialized = false;
470 std::swap(instr->parallel_moves()[0], instr->parallel_moves()[1]);
471 }
472 ParallelMove* moves = instr->GetOrCreateParallelMove(
473 static_cast<Instruction::GapPosition>(0), code_zone());
474 // Delete relevant entries in predecessors and move everything to block.
475 bool first_iteration = true;
476 for (RpoNumber& pred_index : block->predecessors()) {
477 const InstructionBlock* pred = code()->InstructionBlockAt(pred_index);
478 for (MoveOperands* move : *LastInstruction(pred)->parallel_moves()[0]) {
479 if (move->IsRedundant()) continue;
480 MoveKey key = {move->source(), move->destination()};
481 auto it = move_map.find(key);
482 if (it != move_map.end()) {
483 if (first_iteration) {
484 moves->AddMove(move->source(), move->destination());
485 }
486 move->Eliminate();
487 }
488 }
489 first_iteration = false;
490 }
491 // Compress.
492 if (!gap_initialized) {
493 CompressMoves(instr->parallel_moves()[0], instr->parallel_moves()[1]);
494 }
495 CompressBlock(block);
496 }
497
498 namespace {
499
IsSlot(const InstructionOperand & op)500 bool IsSlot(const InstructionOperand& op) {
501 return op.IsStackSlot() || op.IsFPStackSlot();
502 }
503
LoadCompare(const MoveOperands * a,const MoveOperands * b)504 bool LoadCompare(const MoveOperands* a, const MoveOperands* b) {
505 if (!a->source().EqualsCanonicalized(b->source())) {
506 return a->source().CompareCanonicalized(b->source());
507 }
508 if (IsSlot(a->destination()) && !IsSlot(b->destination())) return false;
509 if (!IsSlot(a->destination()) && IsSlot(b->destination())) return true;
510 return a->destination().CompareCanonicalized(b->destination());
511 }
512
513 } // namespace
514
515 // Split multiple loads of the same constant or stack slot off into the second
516 // slot and keep remaining moves in the first slot.
FinalizeMoves(Instruction * instr)517 void MoveOptimizer::FinalizeMoves(Instruction* instr) {
518 MoveOpVector& loads = local_vector();
519 DCHECK(loads.empty());
520
521 ParallelMove* parallel_moves = instr->parallel_moves()[0];
522 if (parallel_moves == nullptr) return;
523 // Find all the loads.
524 for (MoveOperands* move : *parallel_moves) {
525 if (move->IsRedundant()) continue;
526 if (move->source().IsConstant() || IsSlot(move->source())) {
527 loads.push_back(move);
528 }
529 }
530 if (loads.empty()) return;
531 // Group the loads by source, moving the preferred destination to the
532 // beginning of the group.
533 std::sort(loads.begin(), loads.end(), LoadCompare);
534 MoveOperands* group_begin = nullptr;
535 for (MoveOperands* load : loads) {
536 // New group.
537 if (group_begin == nullptr ||
538 !load->source().EqualsCanonicalized(group_begin->source())) {
539 group_begin = load;
540 continue;
541 }
542 // Nothing to be gained from splitting here.
543 if (IsSlot(group_begin->destination())) continue;
544 // Insert new move into slot 1.
545 ParallelMove* slot_1 = instr->GetOrCreateParallelMove(
546 static_cast<Instruction::GapPosition>(1), code_zone());
547 slot_1->AddMove(group_begin->destination(), load->destination());
548 load->Eliminate();
549 }
550 loads.clear();
551 }
552
553 } // namespace compiler
554 } // namespace internal
555 } // namespace v8
556