• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/execution/mips/simulator-mips.h"
6 
7 // Only build the simulator if not compiling for real MIPS hardware.
8 #if defined(USE_SIMULATOR)
9 
10 #include <limits.h>
11 #include <stdarg.h>
12 #include <stdlib.h>
13 #include <cmath>
14 
15 #include "src/base/bits.h"
16 #include "src/base/lazy-instance.h"
17 #include "src/codegen/assembler-inl.h"
18 #include "src/codegen/macro-assembler.h"
19 #include "src/codegen/mips/constants-mips.h"
20 #include "src/diagnostics/disasm.h"
21 #include "src/heap/combined-heap.h"
22 #include "src/runtime/runtime-utils.h"
23 #include "src/utils/ostreams.h"
24 #include "src/utils/vector.h"
25 
26 namespace v8 {
27 namespace internal {
28 
DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,Simulator::GlobalMonitor::Get)29 DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
30                                 Simulator::GlobalMonitor::Get)
31 
32 // Utils functions.
33 bool HaveSameSign(int32_t a, int32_t b) { return ((a ^ b) >= 0); }
34 
get_fcsr_condition_bit(uint32_t cc)35 uint32_t get_fcsr_condition_bit(uint32_t cc) {
36   if (cc == 0) {
37     return 23;
38   } else {
39     return 24 + cc;
40   }
41 }
42 
43 // This macro provides a platform independent use of sscanf. The reason for
44 // SScanF not being implemented in a platform independent was through
45 // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time
46 // Library does not provide vsscanf.
47 #define SScanF sscanf  // NOLINT
48 
49 // The MipsDebugger class is used by the simulator while debugging simulated
50 // code.
51 class MipsDebugger {
52  public:
MipsDebugger(Simulator * sim)53   explicit MipsDebugger(Simulator* sim) : sim_(sim) {}
54 
55   void Stop(Instruction* instr);
56   void Debug();
57   // Print all registers with a nice formatting.
58   void PrintAllRegs();
59   void PrintAllRegsIncludingFPU();
60 
61  private:
62   // We set the breakpoint code to 0xFFFFF to easily recognize it.
63   static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xFFFFF << 6;
64   static const Instr kNopInstr = 0x0;
65 
66   Simulator* sim_;
67 
68   int32_t GetRegisterValue(int regnum);
69   int32_t GetFPURegisterValue32(int regnum);
70   int64_t GetFPURegisterValue64(int regnum);
71   float GetFPURegisterValueFloat(int regnum);
72   double GetFPURegisterValueDouble(int regnum);
73   bool GetValue(const char* desc, int32_t* value);
74   bool GetValue(const char* desc, int64_t* value);
75 
76   // Set or delete a breakpoint. Returns true if successful.
77   bool SetBreakpoint(Instruction* breakpc);
78   bool DeleteBreakpoint(Instruction* breakpc);
79 
80   // Undo and redo all breakpoints. This is needed to bracket disassembly and
81   // execution to skip past breakpoints when run from the debugger.
82   void UndoBreakpoints();
83   void RedoBreakpoints();
84 };
85 
86 #define UNSUPPORTED() printf("Sim: Unsupported instruction.\n");
87 
Stop(Instruction * instr)88 void MipsDebugger::Stop(Instruction* instr) {
89   // Get the stop code.
90   uint32_t code = instr->Bits(25, 6);
91   PrintF("Simulator hit (%u)\n", code);
92   Debug();
93 }
94 
GetRegisterValue(int regnum)95 int32_t MipsDebugger::GetRegisterValue(int regnum) {
96   if (regnum == kNumSimuRegisters) {
97     return sim_->get_pc();
98   } else {
99     return sim_->get_register(regnum);
100   }
101 }
102 
GetFPURegisterValue32(int regnum)103 int32_t MipsDebugger::GetFPURegisterValue32(int regnum) {
104   if (regnum == kNumFPURegisters) {
105     return sim_->get_pc();
106   } else {
107     return sim_->get_fpu_register_word(regnum);
108   }
109 }
110 
GetFPURegisterValue64(int regnum)111 int64_t MipsDebugger::GetFPURegisterValue64(int regnum) {
112   if (regnum == kNumFPURegisters) {
113     return sim_->get_pc();
114   } else {
115     return sim_->get_fpu_register(regnum);
116   }
117 }
118 
GetFPURegisterValueFloat(int regnum)119 float MipsDebugger::GetFPURegisterValueFloat(int regnum) {
120   if (regnum == kNumFPURegisters) {
121     return sim_->get_pc();
122   } else {
123     return sim_->get_fpu_register_float(regnum);
124   }
125 }
126 
GetFPURegisterValueDouble(int regnum)127 double MipsDebugger::GetFPURegisterValueDouble(int regnum) {
128   if (regnum == kNumFPURegisters) {
129     return sim_->get_pc();
130   } else {
131     return sim_->get_fpu_register_double(regnum);
132   }
133 }
134 
GetValue(const char * desc,int32_t * value)135 bool MipsDebugger::GetValue(const char* desc, int32_t* value) {
136   int regnum = Registers::Number(desc);
137   int fpuregnum = FPURegisters::Number(desc);
138 
139   if (regnum != kInvalidRegister) {
140     *value = GetRegisterValue(regnum);
141     return true;
142   } else if (fpuregnum != kInvalidFPURegister) {
143     *value = GetFPURegisterValue32(fpuregnum);
144     return true;
145   } else if (strncmp(desc, "0x", 2) == 0) {
146     return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
147   } else {
148     return SScanF(desc, "%i", value) == 1;
149   }
150   return false;
151 }
152 
GetValue(const char * desc,int64_t * value)153 bool MipsDebugger::GetValue(const char* desc, int64_t* value) {
154   int regnum = Registers::Number(desc);
155   int fpuregnum = FPURegisters::Number(desc);
156 
157   if (regnum != kInvalidRegister) {
158     *value = GetRegisterValue(regnum);
159     return true;
160   } else if (fpuregnum != kInvalidFPURegister) {
161     *value = GetFPURegisterValue64(fpuregnum);
162     return true;
163   } else if (strncmp(desc, "0x", 2) == 0) {
164     return SScanF(desc + 2, "%" SCNx64, reinterpret_cast<uint64_t*>(value)) ==
165            1;
166   } else {
167     return SScanF(desc, "%" SCNu64, reinterpret_cast<uint64_t*>(value)) == 1;
168   }
169   return false;
170 }
171 
SetBreakpoint(Instruction * breakpc)172 bool MipsDebugger::SetBreakpoint(Instruction* breakpc) {
173   // Check if a breakpoint can be set. If not return without any side-effects.
174   if (sim_->break_pc_ != nullptr) {
175     return false;
176   }
177 
178   // Set the breakpoint.
179   sim_->break_pc_ = breakpc;
180   sim_->break_instr_ = breakpc->InstructionBits();
181   // Not setting the breakpoint instruction in the code itself. It will be set
182   // when the debugger shell continues.
183   return true;
184 }
185 
DeleteBreakpoint(Instruction * breakpc)186 bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) {
187   if (sim_->break_pc_ != nullptr) {
188     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
189   }
190 
191   sim_->break_pc_ = nullptr;
192   sim_->break_instr_ = 0;
193   return true;
194 }
195 
UndoBreakpoints()196 void MipsDebugger::UndoBreakpoints() {
197   if (sim_->break_pc_ != nullptr) {
198     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
199   }
200 }
201 
RedoBreakpoints()202 void MipsDebugger::RedoBreakpoints() {
203   if (sim_->break_pc_ != nullptr) {
204     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
205   }
206 }
207 
PrintAllRegs()208 void MipsDebugger::PrintAllRegs() {
209 #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n)
210 
211   PrintF("\n");
212   // at, v0, a0.
213   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(1),
214          REG_INFO(2), REG_INFO(4));
215   // v1, a1.
216   PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", "", REG_INFO(3),
217          REG_INFO(5));
218   // a2.
219   PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6));
220   // a3.
221   PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7));
222   PrintF("\n");
223   // t0-t7, s0-s7
224   for (int i = 0; i < 8; i++) {
225     PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(8 + i),
226            REG_INFO(16 + i));
227   }
228   PrintF("\n");
229   // t8, k0, LO.
230   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(24),
231          REG_INFO(26), REG_INFO(32));
232   // t9, k1, HI.
233   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(25),
234          REG_INFO(27), REG_INFO(33));
235   // sp, fp, gp.
236   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(29),
237          REG_INFO(30), REG_INFO(28));
238   // pc.
239   PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(31), REG_INFO(34));
240 
241 #undef REG_INFO
242 }
243 
PrintAllRegsIncludingFPU()244 void MipsDebugger::PrintAllRegsIncludingFPU() {
245 #define FPU_REG_INFO32(n)                                     \
246   FPURegisters::Name(n), FPURegisters::Name(n + 1),           \
247       GetFPURegisterValue32(n + 1), GetFPURegisterValue32(n), \
248       GetFPURegisterValueDouble(n)
249 
250 #define FPU_REG_INFO64(n) \
251   FPURegisters::Name(n), GetFPURegisterValue64(n), GetFPURegisterValueDouble(n)
252 
253   PrintAllRegs();
254 
255   PrintF("\n\n");
256   // f0, f1, f2, ... f31.
257   // This must be a compile-time switch,
258   // compiler will throw out warnings otherwise.
259   if (kFpuMode == kFP64) {
260     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(0));
261     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(1));
262     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(2));
263     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(3));
264     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(4));
265     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(5));
266     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(6));
267     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(7));
268     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(8));
269     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(9));
270     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(10));
271     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(11));
272     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(12));
273     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(13));
274     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(14));
275     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(15));
276     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(16));
277     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(17));
278     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(18));
279     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(19));
280     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(20));
281     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(21));
282     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(22));
283     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(23));
284     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(24));
285     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(25));
286     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(26));
287     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(27));
288     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(28));
289     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(29));
290     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(30));
291     PrintF("%3s: 0x%016llx %16.4e\n", FPU_REG_INFO64(31));
292   } else {
293     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(0));
294     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(2));
295     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(4));
296     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(6));
297     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(8));
298     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(10));
299     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(12));
300     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(14));
301     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(16));
302     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(18));
303     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(20));
304     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(22));
305     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(24));
306     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(26));
307     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(28));
308     PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO32(30));
309   }
310 
311 #undef FPU_REG_INFO32
312 #undef FPU_REG_INFO64
313 }
314 
Debug()315 void MipsDebugger::Debug() {
316   intptr_t last_pc = -1;
317   bool done = false;
318 
319 #define COMMAND_SIZE 63
320 #define ARG_SIZE 255
321 
322 #define STR(a) #a
323 #define XSTR(a) STR(a)
324 
325   char cmd[COMMAND_SIZE + 1];
326   char arg1[ARG_SIZE + 1];
327   char arg2[ARG_SIZE + 1];
328   char* argv[3] = {cmd, arg1, arg2};
329 
330   // Make sure to have a proper terminating character if reaching the limit.
331   cmd[COMMAND_SIZE] = 0;
332   arg1[ARG_SIZE] = 0;
333   arg2[ARG_SIZE] = 0;
334 
335   // Undo all set breakpoints while running in the debugger shell. This will
336   // make them invisible to all commands.
337   UndoBreakpoints();
338 
339   while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) {
340     if (last_pc != sim_->get_pc()) {
341       disasm::NameConverter converter;
342       disasm::Disassembler dasm(converter);
343       // Use a reasonably large buffer.
344       v8::internal::EmbeddedVector<char, 256> buffer;
345       dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
346       PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.begin());
347       last_pc = sim_->get_pc();
348     }
349     char* line = ReadLine("sim> ");
350     if (line == nullptr) {
351       break;
352     } else {
353       char* last_input = sim_->last_debugger_input();
354       if (strcmp(line, "\n") == 0 && last_input != nullptr) {
355         line = last_input;
356       } else {
357         // Ownership is transferred to sim_;
358         sim_->set_last_debugger_input(line);
359       }
360       // Use sscanf to parse the individual parts of the command line. At the
361       // moment no command expects more than two parameters.
362       int argc = SScanF(line,
363                         "%" XSTR(COMMAND_SIZE) "s "
364                         "%" XSTR(ARG_SIZE) "s "
365                         "%" XSTR(ARG_SIZE) "s",
366                         cmd, arg1, arg2);
367       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
368         Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc());
369         if (!(instr->IsTrap()) ||
370             instr->InstructionBits() == rtCallRedirInstr) {
371           sim_->InstructionDecode(
372               reinterpret_cast<Instruction*>(sim_->get_pc()));
373         } else {
374           // Allow si to jump over generated breakpoints.
375           PrintF("/!\\ Jumping over generated breakpoint.\n");
376           sim_->set_pc(sim_->get_pc() + kInstrSize);
377         }
378       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
379         // Execute the one instruction we broke at with breakpoints disabled.
380         sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
381         // Leave the debugger shell.
382         done = true;
383       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
384         if (argc == 2) {
385           if (strcmp(arg1, "all") == 0) {
386             PrintAllRegs();
387           } else if (strcmp(arg1, "allf") == 0) {
388             PrintAllRegsIncludingFPU();
389           } else {
390             int regnum = Registers::Number(arg1);
391             int fpuregnum = FPURegisters::Number(arg1);
392 
393             if (regnum != kInvalidRegister) {
394               int32_t value;
395               value = GetRegisterValue(regnum);
396               PrintF("%s: 0x%08x %d \n", arg1, value, value);
397             } else if (fpuregnum != kInvalidFPURegister) {
398               if (IsFp64Mode()) {
399                 int64_t value;
400                 double dvalue;
401                 value = GetFPURegisterValue64(fpuregnum);
402                 dvalue = GetFPURegisterValueDouble(fpuregnum);
403                 PrintF("%3s: 0x%016llx %16.4e\n", FPURegisters::Name(fpuregnum),
404                        value, dvalue);
405               } else {
406                 if (fpuregnum % 2 == 1) {
407                   int32_t value;
408                   float fvalue;
409                   value = GetFPURegisterValue32(fpuregnum);
410                   fvalue = GetFPURegisterValueFloat(fpuregnum);
411                   PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
412                 } else {
413                   double dfvalue;
414                   int32_t lvalue1 = GetFPURegisterValue32(fpuregnum);
415                   int32_t lvalue2 = GetFPURegisterValue32(fpuregnum + 1);
416                   dfvalue = GetFPURegisterValueDouble(fpuregnum);
417                   PrintF("%3s,%3s: 0x%08x%08x %16.4e\n",
418                          FPURegisters::Name(fpuregnum + 1),
419                          FPURegisters::Name(fpuregnum), lvalue1, lvalue2,
420                          dfvalue);
421                 }
422               }
423             } else {
424               PrintF("%s unrecognized\n", arg1);
425             }
426           }
427         } else {
428           if (argc == 3) {
429             if (strcmp(arg2, "single") == 0) {
430               int32_t value;
431               float fvalue;
432               int fpuregnum = FPURegisters::Number(arg1);
433 
434               if (fpuregnum != kInvalidFPURegister) {
435                 value = GetFPURegisterValue32(fpuregnum);
436                 fvalue = GetFPURegisterValueFloat(fpuregnum);
437                 PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue);
438               } else {
439                 PrintF("%s unrecognized\n", arg1);
440               }
441             } else {
442               PrintF("print <fpu register> single\n");
443             }
444           } else {
445             PrintF("print <register> or print <fpu register> single\n");
446           }
447         }
448       } else if ((strcmp(cmd, "po") == 0) ||
449                  (strcmp(cmd, "printobject") == 0)) {
450         if (argc == 2) {
451           int32_t value;
452           StdoutStream os;
453           if (GetValue(arg1, &value)) {
454             Object obj(value);
455             os << arg1 << ": \n";
456 #ifdef DEBUG
457             obj.Print(os);
458             os << "\n";
459 #else
460             os << Brief(obj) << "\n";
461 #endif
462           } else {
463             os << arg1 << " unrecognized\n";
464           }
465         } else {
466           PrintF("printobject <value>\n");
467         }
468       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0 ||
469                  strcmp(cmd, "dump") == 0) {
470         int32_t* cur = nullptr;
471         int32_t* end = nullptr;
472         int next_arg = 1;
473 
474         if (strcmp(cmd, "stack") == 0) {
475           cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
476         } else {  // Command "mem".
477           int32_t value;
478           if (!GetValue(arg1, &value)) {
479             PrintF("%s unrecognized\n", arg1);
480             continue;
481           }
482           cur = reinterpret_cast<int32_t*>(value);
483           next_arg++;
484         }
485 
486         // TODO(palfia): optimize this.
487         if (IsFp64Mode()) {
488           int64_t words;
489           if (argc == next_arg) {
490             words = 10;
491           } else {
492             if (!GetValue(argv[next_arg], &words)) {
493               words = 10;
494             }
495           }
496           end = cur + words;
497         } else {
498           int32_t words;
499           if (argc == next_arg) {
500             words = 10;
501           } else {
502             if (!GetValue(argv[next_arg], &words)) {
503               words = 10;
504             }
505           }
506           end = cur + words;
507         }
508 
509         bool skip_obj_print = (strcmp(cmd, "dump") == 0);
510         while (cur < end) {
511           PrintF("  0x%08" PRIxPTR ":  0x%08x %10d",
512                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
513           Object obj(*cur);
514           Heap* current_heap = sim_->isolate_->heap();
515           if (!skip_obj_print) {
516             if (obj.IsSmi() ||
517                 IsValidHeapObject(current_heap, HeapObject::cast(obj))) {
518               PrintF(" (");
519               if (obj.IsSmi()) {
520                 PrintF("smi %d", Smi::ToInt(obj));
521               } else {
522                 obj.ShortPrint();
523               }
524               PrintF(")");
525             }
526           }
527           PrintF("\n");
528           cur++;
529         }
530 
531       } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) ||
532                  (strcmp(cmd, "di") == 0)) {
533         disasm::NameConverter converter;
534         disasm::Disassembler dasm(converter);
535         // Use a reasonably large buffer.
536         v8::internal::EmbeddedVector<char, 256> buffer;
537 
538         byte* cur = nullptr;
539         byte* end = nullptr;
540 
541         if (argc == 1) {
542           cur = reinterpret_cast<byte*>(sim_->get_pc());
543           end = cur + (10 * kInstrSize);
544         } else if (argc == 2) {
545           int regnum = Registers::Number(arg1);
546           if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) {
547             // The argument is an address or a register name.
548             int32_t value;
549             if (GetValue(arg1, &value)) {
550               cur = reinterpret_cast<byte*>(value);
551               // Disassemble 10 instructions at <arg1>.
552               end = cur + (10 * kInstrSize);
553             }
554           } else {
555             // The argument is the number of instructions.
556             int32_t value;
557             if (GetValue(arg1, &value)) {
558               cur = reinterpret_cast<byte*>(sim_->get_pc());
559               // Disassemble <arg1> instructions.
560               end = cur + (value * kInstrSize);
561             }
562           }
563         } else {
564           int32_t value1;
565           int32_t value2;
566           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
567             cur = reinterpret_cast<byte*>(value1);
568             end = cur + (value2 * kInstrSize);
569           }
570         }
571 
572         while (cur < end) {
573           dasm.InstructionDecode(buffer, cur);
574           PrintF("  0x%08" PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(cur),
575                  buffer.begin());
576           cur += kInstrSize;
577         }
578       } else if (strcmp(cmd, "gdb") == 0) {
579         PrintF("relinquishing control to gdb\n");
580         v8::base::OS::DebugBreak();
581         PrintF("regaining control from gdb\n");
582       } else if (strcmp(cmd, "break") == 0) {
583         if (argc == 2) {
584           int32_t value;
585           if (GetValue(arg1, &value)) {
586             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
587               PrintF("setting breakpoint failed\n");
588             }
589           } else {
590             PrintF("%s unrecognized\n", arg1);
591           }
592         } else {
593           PrintF("break <address>\n");
594         }
595       } else if (strcmp(cmd, "del") == 0) {
596         if (!DeleteBreakpoint(nullptr)) {
597           PrintF("deleting breakpoint failed\n");
598         }
599       } else if (strcmp(cmd, "flags") == 0) {
600         PrintF("No flags on MIPS !\n");
601       } else if (strcmp(cmd, "stop") == 0) {
602         int32_t value;
603         intptr_t stop_pc = sim_->get_pc() - 2 * kInstrSize;
604         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
605         Instruction* msg_address =
606             reinterpret_cast<Instruction*>(stop_pc + kInstrSize);
607         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
608           // Remove the current stop.
609           if (sim_->IsStopInstruction(stop_instr)) {
610             stop_instr->SetInstructionBits(kNopInstr);
611             msg_address->SetInstructionBits(kNopInstr);
612           } else {
613             PrintF("Not at debugger stop.\n");
614           }
615         } else if (argc == 3) {
616           // Print information about all/the specified breakpoint(s).
617           if (strcmp(arg1, "info") == 0) {
618             if (strcmp(arg2, "all") == 0) {
619               PrintF("Stop information:\n");
620               for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
621                    i++) {
622                 sim_->PrintStopInfo(i);
623               }
624             } else if (GetValue(arg2, &value)) {
625               sim_->PrintStopInfo(value);
626             } else {
627               PrintF("Unrecognized argument.\n");
628             }
629           } else if (strcmp(arg1, "enable") == 0) {
630             // Enable all/the specified breakpoint(s).
631             if (strcmp(arg2, "all") == 0) {
632               for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
633                    i++) {
634                 sim_->EnableStop(i);
635               }
636             } else if (GetValue(arg2, &value)) {
637               sim_->EnableStop(value);
638             } else {
639               PrintF("Unrecognized argument.\n");
640             }
641           } else if (strcmp(arg1, "disable") == 0) {
642             // Disable all/the specified breakpoint(s).
643             if (strcmp(arg2, "all") == 0) {
644               for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode;
645                    i++) {
646                 sim_->DisableStop(i);
647               }
648             } else if (GetValue(arg2, &value)) {
649               sim_->DisableStop(value);
650             } else {
651               PrintF("Unrecognized argument.\n");
652             }
653           }
654         } else {
655           PrintF("Wrong usage. Use help command for more information.\n");
656         }
657       } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) {
658         // Print registers and disassemble.
659         PrintAllRegs();
660         PrintF("\n");
661 
662         disasm::NameConverter converter;
663         disasm::Disassembler dasm(converter);
664         // Use a reasonably large buffer.
665         v8::internal::EmbeddedVector<char, 256> buffer;
666 
667         byte* cur = nullptr;
668         byte* end = nullptr;
669 
670         if (argc == 1) {
671           cur = reinterpret_cast<byte*>(sim_->get_pc());
672           end = cur + (10 * kInstrSize);
673         } else if (argc == 2) {
674           int32_t value;
675           if (GetValue(arg1, &value)) {
676             cur = reinterpret_cast<byte*>(value);
677             // no length parameter passed, assume 10 instructions
678             end = cur + (10 * kInstrSize);
679           }
680         } else {
681           int32_t value1;
682           int32_t value2;
683           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
684             cur = reinterpret_cast<byte*>(value1);
685             end = cur + (value2 * kInstrSize);
686           }
687         }
688 
689         while (cur < end) {
690           dasm.InstructionDecode(buffer, cur);
691           PrintF("  0x%08" PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(cur),
692                  buffer.begin());
693           cur += kInstrSize;
694         }
695       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
696         PrintF("cont\n");
697         PrintF("  continue execution (alias 'c')\n");
698         PrintF("stepi\n");
699         PrintF("  step one instruction (alias 'si')\n");
700         PrintF("print <register>\n");
701         PrintF("  print register content (alias 'p')\n");
702         PrintF("  use register name 'all' to print all registers\n");
703         PrintF("printobject <register>\n");
704         PrintF("  print an object from a register (alias 'po')\n");
705         PrintF("stack [<words>]\n");
706         PrintF("  dump stack content, default dump 10 words)\n");
707         PrintF("mem <address> [<words>]\n");
708         PrintF("  dump memory content, default dump 10 words)\n");
709         PrintF("dump [<words>]\n");
710         PrintF(
711             "  dump memory content without pretty printing JS objects, default "
712             "dump 10 words)\n");
713         PrintF("flags\n");
714         PrintF("  print flags\n");
715         PrintF("disasm [<instructions>]\n");
716         PrintF("disasm [<address/register>]\n");
717         PrintF("disasm [[<address/register>] <instructions>]\n");
718         PrintF("  disassemble code, default is 10 instructions\n");
719         PrintF("  from pc (alias 'di')\n");
720         PrintF("gdb\n");
721         PrintF("  enter gdb\n");
722         PrintF("break <address>\n");
723         PrintF("  set a break point on the address\n");
724         PrintF("del\n");
725         PrintF("  delete the breakpoint\n");
726         PrintF("stop feature:\n");
727         PrintF("  Description:\n");
728         PrintF("    Stops are debug instructions inserted by\n");
729         PrintF("    the Assembler::stop() function.\n");
730         PrintF("    When hitting a stop, the Simulator will\n");
731         PrintF("    stop and give control to the Debugger.\n");
732         PrintF("    All stop codes are watched:\n");
733         PrintF("    - They can be enabled / disabled: the Simulator\n");
734         PrintF("       will / won't stop when hitting them.\n");
735         PrintF("    - The Simulator keeps track of how many times they \n");
736         PrintF("      are met. (See the info command.) Going over a\n");
737         PrintF("      disabled stop still increases its counter. \n");
738         PrintF("  Commands:\n");
739         PrintF("    stop info all/<code> : print infos about number <code>\n");
740         PrintF("      or all stop(s).\n");
741         PrintF("    stop enable/disable all/<code> : enables / disables\n");
742         PrintF("      all or number <code> stop(s)\n");
743         PrintF("    stop unstop\n");
744         PrintF("      ignore the stop instruction at the current location\n");
745         PrintF("      from now on\n");
746       } else {
747         PrintF("Unknown command: %s\n", cmd);
748       }
749     }
750   }
751 
752   // Add all the breakpoints back to stop execution and enter the debugger
753   // shell when hit.
754   RedoBreakpoints();
755 
756 #undef COMMAND_SIZE
757 #undef ARG_SIZE
758 
759 #undef STR
760 #undef XSTR
761 }
762 
ICacheMatch(void * one,void * two)763 bool Simulator::ICacheMatch(void* one, void* two) {
764   DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
765   DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
766   return one == two;
767 }
768 
ICacheHash(void * key)769 static uint32_t ICacheHash(void* key) {
770   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
771 }
772 
AllOnOnePage(uintptr_t start,int size)773 static bool AllOnOnePage(uintptr_t start, int size) {
774   intptr_t start_page = (start & ~CachePage::kPageMask);
775   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
776   return start_page == end_page;
777 }
778 
set_last_debugger_input(char * input)779 void Simulator::set_last_debugger_input(char* input) {
780   DeleteArray(last_debugger_input_);
781   last_debugger_input_ = input;
782 }
783 
SetRedirectInstruction(Instruction * instruction)784 void Simulator::SetRedirectInstruction(Instruction* instruction) {
785   instruction->SetInstructionBits(rtCallRedirInstr);
786 }
787 
FlushICache(base::CustomMatcherHashMap * i_cache,void * start_addr,size_t size)788 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
789                             void* start_addr, size_t size) {
790   intptr_t start = reinterpret_cast<intptr_t>(start_addr);
791   int intra_line = (start & CachePage::kLineMask);
792   start -= intra_line;
793   size += intra_line;
794   size = ((size - 1) | CachePage::kLineMask) + 1;
795   int offset = (start & CachePage::kPageMask);
796   while (!AllOnOnePage(start, size - 1)) {
797     int bytes_to_flush = CachePage::kPageSize - offset;
798     FlushOnePage(i_cache, start, bytes_to_flush);
799     start += bytes_to_flush;
800     size -= bytes_to_flush;
801     DCHECK_EQ(0, start & CachePage::kPageMask);
802     offset = 0;
803   }
804   if (size != 0) {
805     FlushOnePage(i_cache, start, size);
806   }
807 }
808 
GetCachePage(base::CustomMatcherHashMap * i_cache,void * page)809 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
810                                    void* page) {
811   base::CustomMatcherHashMap::Entry* entry =
812       i_cache->LookupOrInsert(page, ICacheHash(page));
813   if (entry->value == nullptr) {
814     CachePage* new_page = new CachePage();
815     entry->value = new_page;
816   }
817   return reinterpret_cast<CachePage*>(entry->value);
818 }
819 
820 // Flush from start up to and not including start + size.
FlushOnePage(base::CustomMatcherHashMap * i_cache,intptr_t start,int size)821 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
822                              intptr_t start, int size) {
823   DCHECK_LE(size, CachePage::kPageSize);
824   DCHECK(AllOnOnePage(start, size - 1));
825   DCHECK_EQ(start & CachePage::kLineMask, 0);
826   DCHECK_EQ(size & CachePage::kLineMask, 0);
827   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
828   int offset = (start & CachePage::kPageMask);
829   CachePage* cache_page = GetCachePage(i_cache, page);
830   char* valid_bytemap = cache_page->ValidityByte(offset);
831   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
832 }
833 
CheckICache(base::CustomMatcherHashMap * i_cache,Instruction * instr)834 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
835                             Instruction* instr) {
836   intptr_t address = reinterpret_cast<intptr_t>(instr);
837   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
838   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
839   int offset = (address & CachePage::kPageMask);
840   CachePage* cache_page = GetCachePage(i_cache, page);
841   char* cache_valid_byte = cache_page->ValidityByte(offset);
842   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
843   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
844   if (cache_hit) {
845     // Check that the data in memory matches the contents of the I-cache.
846     CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
847                        cache_page->CachedData(offset), kInstrSize));
848   } else {
849     // Cache miss.  Load memory into the cache.
850     memcpy(cached_line, line, CachePage::kLineLength);
851     *cache_valid_byte = CachePage::LINE_VALID;
852   }
853 }
854 
Simulator(Isolate * isolate)855 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
856   // Set up simulator support first. Some of this information is needed to
857   // setup the architecture state.
858   stack_size_ = FLAG_sim_stack_size * KB;
859   stack_ = reinterpret_cast<char*>(malloc(stack_size_));
860   pc_modified_ = false;
861   icount_ = 0;
862   break_count_ = 0;
863   break_pc_ = nullptr;
864   break_instr_ = 0;
865 
866   // Set up architecture state.
867   // All registers are initialized to zero to start with.
868   for (int i = 0; i < kNumSimuRegisters; i++) {
869     registers_[i] = 0;
870   }
871   for (int i = 0; i < kNumFPURegisters; i++) {
872     FPUregisters_[2 * i] = 0;
873     FPUregisters_[2 * i + 1] = 0;  // upper part for MSA ASE
874   }
875   if (IsMipsArchVariant(kMips32r6)) {
876     FCSR_ = kFCSRNaN2008FlagMask;
877     MSACSR_ = 0;
878   } else {
879     DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2));
880     FCSR_ = 0;
881   }
882 
883   // The sp is initialized to point to the bottom (high address) of the
884   // allocated stack area. To be safe in potential stack underflows we leave
885   // some buffer below.
886   registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
887   // The ra and pc are initialized to a known bad value that will cause an
888   // access violation if the simulator ever tries to execute it.
889   registers_[pc] = bad_ra;
890   registers_[ra] = bad_ra;
891   last_debugger_input_ = nullptr;
892 }
893 
~Simulator()894 Simulator::~Simulator() {
895   GlobalMonitor::Get()->RemoveLinkedAddress(&global_monitor_thread_);
896   free(stack_);
897 }
898 
899 // Get the active Simulator for the current thread.
current(Isolate * isolate)900 Simulator* Simulator::current(Isolate* isolate) {
901   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
902       isolate->FindOrAllocatePerThreadDataForThisThread();
903   DCHECK_NOT_NULL(isolate_data);
904 
905   Simulator* sim = isolate_data->simulator();
906   if (sim == nullptr) {
907     // TODO(146): delete the simulator object when a thread/isolate goes away.
908     sim = new Simulator(isolate);
909     isolate_data->set_simulator(sim);
910   }
911   return sim;
912 }
913 
914 // Sets the register in the architecture state. It will also deal with updating
915 // Simulator internal state for special registers such as PC.
set_register(int reg,int32_t value)916 void Simulator::set_register(int reg, int32_t value) {
917   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
918   if (reg == pc) {
919     pc_modified_ = true;
920   }
921 
922   // Zero register always holds 0.
923   registers_[reg] = (reg == 0) ? 0 : value;
924 }
925 
set_dw_register(int reg,const int * dbl)926 void Simulator::set_dw_register(int reg, const int* dbl) {
927   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
928   registers_[reg] = dbl[0];
929   registers_[reg + 1] = dbl[1];
930 }
931 
set_fpu_register(int fpureg,int64_t value)932 void Simulator::set_fpu_register(int fpureg, int64_t value) {
933   DCHECK(IsFp64Mode());
934   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
935   FPUregisters_[fpureg * 2] = value;
936 }
937 
set_fpu_register_word(int fpureg,int32_t value)938 void Simulator::set_fpu_register_word(int fpureg, int32_t value) {
939   // Set ONLY lower 32-bits, leaving upper bits untouched.
940   // TODO(plind): big endian issue.
941   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
942   int32_t* pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2]);
943   *pword = value;
944 }
945 
set_fpu_register_hi_word(int fpureg,int32_t value)946 void Simulator::set_fpu_register_hi_word(int fpureg, int32_t value) {
947   // Set ONLY upper 32-bits, leaving lower bits untouched.
948   // TODO(plind): big endian issue.
949   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
950   int32_t* phiword =
951       (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg * 2])) + 1;
952   *phiword = value;
953 }
954 
set_fpu_register_float(int fpureg,float value)955 void Simulator::set_fpu_register_float(int fpureg, float value) {
956   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
957   *bit_cast<float*>(&FPUregisters_[fpureg * 2]) = value;
958 }
959 
set_fpu_register_double(int fpureg,double value)960 void Simulator::set_fpu_register_double(int fpureg, double value) {
961   if (IsFp64Mode()) {
962     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
963     *bit_cast<double*>(&FPUregisters_[fpureg * 2]) = value;
964   } else {
965     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
966     int64_t i64 = bit_cast<int64_t>(value);
967     set_fpu_register_word(fpureg, i64 & 0xFFFFFFFF);
968     set_fpu_register_word(fpureg + 1, i64 >> 32);
969   }
970 }
971 
972 // Get the register from the architecture state. This function does handle
973 // the special case of accessing the PC register.
get_register(int reg) const974 int32_t Simulator::get_register(int reg) const {
975   DCHECK((reg >= 0) && (reg < kNumSimuRegisters));
976   if (reg == 0)
977     return 0;
978   else
979     return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
980 }
981 
get_double_from_register_pair(int reg)982 double Simulator::get_double_from_register_pair(int reg) {
983   // TODO(plind): bad ABI stuff, refactor or remove.
984   DCHECK((reg >= 0) && (reg < kNumSimuRegisters) && ((reg % 2) == 0));
985 
986   double dm_val = 0.0;
987   // Read the bits from the unsigned integer register_[] array
988   // into the double precision floating point value and return it.
989   char buffer[2 * sizeof(registers_[0])];
990   memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
991   memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
992   return (dm_val);
993 }
994 
get_fpu_register(int fpureg) const995 int64_t Simulator::get_fpu_register(int fpureg) const {
996   if (IsFp64Mode()) {
997     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
998     return FPUregisters_[fpureg * 2];
999   } else {
1000     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
1001     uint64_t i64;
1002     i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg));
1003     i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32;
1004     return static_cast<int64_t>(i64);
1005   }
1006 }
1007 
get_fpu_register_word(int fpureg) const1008 int32_t Simulator::get_fpu_register_word(int fpureg) const {
1009   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1010   return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF);
1011 }
1012 
get_fpu_register_signed_word(int fpureg) const1013 int32_t Simulator::get_fpu_register_signed_word(int fpureg) const {
1014   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1015   return static_cast<int32_t>(FPUregisters_[fpureg * 2] & 0xFFFFFFFF);
1016 }
1017 
get_fpu_register_hi_word(int fpureg) const1018 int32_t Simulator::get_fpu_register_hi_word(int fpureg) const {
1019   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1020   return static_cast<int32_t>((FPUregisters_[fpureg * 2] >> 32) & 0xFFFFFFFF);
1021 }
1022 
get_fpu_register_float(int fpureg) const1023 float Simulator::get_fpu_register_float(int fpureg) const {
1024   DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1025   return *bit_cast<float*>(const_cast<int64_t*>(&FPUregisters_[fpureg * 2]));
1026 }
1027 
get_fpu_register_double(int fpureg) const1028 double Simulator::get_fpu_register_double(int fpureg) const {
1029   if (IsFp64Mode()) {
1030     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters));
1031     return *bit_cast<double*>(&FPUregisters_[fpureg * 2]);
1032   } else {
1033     DCHECK((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0));
1034     int64_t i64;
1035     i64 = static_cast<uint32_t>(get_fpu_register_word(fpureg));
1036     i64 |= static_cast<uint64_t>(get_fpu_register_word(fpureg + 1)) << 32;
1037     return bit_cast<double>(i64);
1038   }
1039 }
1040 
1041 template <typename T>
get_msa_register(int wreg,T * value)1042 void Simulator::get_msa_register(int wreg, T* value) {
1043   DCHECK((wreg >= 0) && (wreg < kNumMSARegisters));
1044   memcpy(value, FPUregisters_ + wreg * 2, kSimd128Size);
1045 }
1046 
1047 template <typename T>
set_msa_register(int wreg,const T * value)1048 void Simulator::set_msa_register(int wreg, const T* value) {
1049   DCHECK((wreg >= 0) && (wreg < kNumMSARegisters));
1050   memcpy(FPUregisters_ + wreg * 2, value, kSimd128Size);
1051 }
1052 
1053 // Runtime FP routines take up to two double arguments and zero
1054 // or one integer arguments. All are constructed here,
1055 // from a0-a3 or f12 and f14.
GetFpArgs(double * x,double * y,int32_t * z)1056 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1057   if (!IsMipsSoftFloatABI) {
1058     *x = get_fpu_register_double(12);
1059     *y = get_fpu_register_double(14);
1060     *z = get_register(a2);
1061   } else {
1062     // TODO(plind): bad ABI stuff, refactor or remove.
1063     // We use a char buffer to get around the strict-aliasing rules which
1064     // otherwise allow the compiler to optimize away the copy.
1065     char buffer[sizeof(*x)];
1066     int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
1067 
1068     // Registers a0 and a1 -> x.
1069     reg_buffer[0] = get_register(a0);
1070     reg_buffer[1] = get_register(a1);
1071     memcpy(x, buffer, sizeof(buffer));
1072     // Registers a2 and a3 -> y.
1073     reg_buffer[0] = get_register(a2);
1074     reg_buffer[1] = get_register(a3);
1075     memcpy(y, buffer, sizeof(buffer));
1076     // Register 2 -> z.
1077     reg_buffer[0] = get_register(a2);
1078     memcpy(z, buffer, sizeof(*z));
1079   }
1080 }
1081 
1082 // The return value is either in v0/v1 or f0.
SetFpResult(const double & result)1083 void Simulator::SetFpResult(const double& result) {
1084   if (!IsMipsSoftFloatABI) {
1085     set_fpu_register_double(0, result);
1086   } else {
1087     char buffer[2 * sizeof(registers_[0])];
1088     int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer);
1089     memcpy(buffer, &result, sizeof(buffer));
1090     // Copy result to v0 and v1.
1091     set_register(v0, reg_buffer[0]);
1092     set_register(v1, reg_buffer[1]);
1093   }
1094 }
1095 
1096 // Helper functions for setting and testing the FCSR register's bits.
set_fcsr_bit(uint32_t cc,bool value)1097 void Simulator::set_fcsr_bit(uint32_t cc, bool value) {
1098   if (value) {
1099     FCSR_ |= (1 << cc);
1100   } else {
1101     FCSR_ &= ~(1 << cc);
1102   }
1103 }
1104 
test_fcsr_bit(uint32_t cc)1105 bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); }
1106 
set_fcsr_rounding_mode(FPURoundingMode mode)1107 void Simulator::set_fcsr_rounding_mode(FPURoundingMode mode) {
1108   FCSR_ |= mode & kFPURoundingModeMask;
1109 }
1110 
set_msacsr_rounding_mode(FPURoundingMode mode)1111 void Simulator::set_msacsr_rounding_mode(FPURoundingMode mode) {
1112   MSACSR_ |= mode & kFPURoundingModeMask;
1113 }
1114 
get_fcsr_rounding_mode()1115 unsigned int Simulator::get_fcsr_rounding_mode() {
1116   return FCSR_ & kFPURoundingModeMask;
1117 }
1118 
get_msacsr_rounding_mode()1119 unsigned int Simulator::get_msacsr_rounding_mode() {
1120   return MSACSR_ & kFPURoundingModeMask;
1121 }
1122 
set_fpu_register_word_invalid_result(float original,float rounded)1123 void Simulator::set_fpu_register_word_invalid_result(float original,
1124                                                      float rounded) {
1125   if (FCSR_ & kFCSRNaN2008FlagMask) {
1126     double max_int32 = std::numeric_limits<int32_t>::max();
1127     double min_int32 = std::numeric_limits<int32_t>::min();
1128     if (std::isnan(original)) {
1129       set_fpu_register_word(fd_reg(), 0);
1130     } else if (rounded > max_int32) {
1131       set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1132     } else if (rounded < min_int32) {
1133       set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1134     } else {
1135       UNREACHABLE();
1136     }
1137   } else {
1138     set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1139   }
1140 }
1141 
set_fpu_register_invalid_result(float original,float rounded)1142 void Simulator::set_fpu_register_invalid_result(float original, float rounded) {
1143   if (FCSR_ & kFCSRNaN2008FlagMask) {
1144     double max_int32 = std::numeric_limits<int32_t>::max();
1145     double min_int32 = std::numeric_limits<int32_t>::min();
1146     if (std::isnan(original)) {
1147       set_fpu_register(fd_reg(), 0);
1148     } else if (rounded > max_int32) {
1149       set_fpu_register(fd_reg(), kFPUInvalidResult);
1150     } else if (rounded < min_int32) {
1151       set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1152     } else {
1153       UNREACHABLE();
1154     }
1155   } else {
1156     set_fpu_register(fd_reg(), kFPUInvalidResult);
1157   }
1158 }
1159 
set_fpu_register_invalid_result64(float original,float rounded)1160 void Simulator::set_fpu_register_invalid_result64(float original,
1161                                                   float rounded) {
1162   if (FCSR_ & kFCSRNaN2008FlagMask) {
1163     // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1164     // loading the most accurate representation into max_int64, which is 2^63.
1165     double max_int64 = std::numeric_limits<int64_t>::max();
1166     double min_int64 = std::numeric_limits<int64_t>::min();
1167     if (std::isnan(original)) {
1168       set_fpu_register(fd_reg(), 0);
1169     } else if (rounded >= max_int64) {
1170       set_fpu_register(fd_reg(), kFPU64InvalidResult);
1171     } else if (rounded < min_int64) {
1172       set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1173     } else {
1174       UNREACHABLE();
1175     }
1176   } else {
1177     set_fpu_register(fd_reg(), kFPU64InvalidResult);
1178   }
1179 }
1180 
set_fpu_register_word_invalid_result(double original,double rounded)1181 void Simulator::set_fpu_register_word_invalid_result(double original,
1182                                                      double rounded) {
1183   if (FCSR_ & kFCSRNaN2008FlagMask) {
1184     double max_int32 = std::numeric_limits<int32_t>::max();
1185     double min_int32 = std::numeric_limits<int32_t>::min();
1186     if (std::isnan(original)) {
1187       set_fpu_register_word(fd_reg(), 0);
1188     } else if (rounded > max_int32) {
1189       set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1190     } else if (rounded < min_int32) {
1191       set_fpu_register_word(fd_reg(), kFPUInvalidResultNegative);
1192     } else {
1193       UNREACHABLE();
1194     }
1195   } else {
1196     set_fpu_register_word(fd_reg(), kFPUInvalidResult);
1197   }
1198 }
1199 
set_fpu_register_invalid_result(double original,double rounded)1200 void Simulator::set_fpu_register_invalid_result(double original,
1201                                                 double rounded) {
1202   if (FCSR_ & kFCSRNaN2008FlagMask) {
1203     double max_int32 = std::numeric_limits<int32_t>::max();
1204     double min_int32 = std::numeric_limits<int32_t>::min();
1205     if (std::isnan(original)) {
1206       set_fpu_register(fd_reg(), 0);
1207     } else if (rounded > max_int32) {
1208       set_fpu_register(fd_reg(), kFPUInvalidResult);
1209     } else if (rounded < min_int32) {
1210       set_fpu_register(fd_reg(), kFPUInvalidResultNegative);
1211     } else {
1212       UNREACHABLE();
1213     }
1214   } else {
1215     set_fpu_register(fd_reg(), kFPUInvalidResult);
1216   }
1217 }
1218 
set_fpu_register_invalid_result64(double original,double rounded)1219 void Simulator::set_fpu_register_invalid_result64(double original,
1220                                                   double rounded) {
1221   if (FCSR_ & kFCSRNaN2008FlagMask) {
1222     // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1223     // loading the most accurate representation into max_int64, which is 2^63.
1224     double max_int64 = std::numeric_limits<int64_t>::max();
1225     double min_int64 = std::numeric_limits<int64_t>::min();
1226     if (std::isnan(original)) {
1227       set_fpu_register(fd_reg(), 0);
1228     } else if (rounded >= max_int64) {
1229       set_fpu_register(fd_reg(), kFPU64InvalidResult);
1230     } else if (rounded < min_int64) {
1231       set_fpu_register(fd_reg(), kFPU64InvalidResultNegative);
1232     } else {
1233       UNREACHABLE();
1234     }
1235   } else {
1236     set_fpu_register(fd_reg(), kFPU64InvalidResult);
1237   }
1238 }
1239 
1240 // Sets the rounding error codes in FCSR based on the result of the rounding.
1241 // Returns true if the operation was invalid.
set_fcsr_round_error(double original,double rounded)1242 bool Simulator::set_fcsr_round_error(double original, double rounded) {
1243   bool ret = false;
1244   double max_int32 = std::numeric_limits<int32_t>::max();
1245   double min_int32 = std::numeric_limits<int32_t>::min();
1246 
1247   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1248     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1249     ret = true;
1250   }
1251 
1252   if (original != rounded) {
1253     set_fcsr_bit(kFCSRInexactFlagBit, true);
1254   }
1255 
1256   if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1257     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1258     ret = true;
1259   }
1260 
1261   if (rounded > max_int32 || rounded < min_int32) {
1262     set_fcsr_bit(kFCSROverflowFlagBit, true);
1263     // The reference is not really clear but it seems this is required:
1264     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1265     ret = true;
1266   }
1267 
1268   return ret;
1269 }
1270 
1271 // Sets the rounding error codes in FCSR based on the result of the rounding.
1272 // Returns true if the operation was invalid.
set_fcsr_round64_error(double original,double rounded)1273 bool Simulator::set_fcsr_round64_error(double original, double rounded) {
1274   bool ret = false;
1275   // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1276   // loading the most accurate representation into max_int64, which is 2^63.
1277   double max_int64 = std::numeric_limits<int64_t>::max();
1278   double min_int64 = std::numeric_limits<int64_t>::min();
1279 
1280   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1281     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1282     ret = true;
1283   }
1284 
1285   if (original != rounded) {
1286     set_fcsr_bit(kFCSRInexactFlagBit, true);
1287   }
1288 
1289   if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) {
1290     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1291     ret = true;
1292   }
1293 
1294   if (rounded >= max_int64 || rounded < min_int64) {
1295     set_fcsr_bit(kFCSROverflowFlagBit, true);
1296     // The reference is not really clear but it seems this is required:
1297     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1298     ret = true;
1299   }
1300 
1301   return ret;
1302 }
1303 
1304 // Sets the rounding error codes in FCSR based on the result of the rounding.
1305 // Returns true if the operation was invalid.
set_fcsr_round_error(float original,float rounded)1306 bool Simulator::set_fcsr_round_error(float original, float rounded) {
1307   bool ret = false;
1308   double max_int32 = std::numeric_limits<int32_t>::max();
1309   double min_int32 = std::numeric_limits<int32_t>::min();
1310 
1311   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1312     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1313     ret = true;
1314   }
1315 
1316   if (original != rounded) {
1317     set_fcsr_bit(kFCSRInexactFlagBit, true);
1318   }
1319 
1320   if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1321     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1322     ret = true;
1323   }
1324 
1325   if (rounded > max_int32 || rounded < min_int32) {
1326     set_fcsr_bit(kFCSROverflowFlagBit, true);
1327     // The reference is not really clear but it seems this is required:
1328     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1329     ret = true;
1330   }
1331 
1332   return ret;
1333 }
1334 
1335 // Sets the rounding error codes in FCSR based on the result of the rounding.
1336 // Returns true if the operation was invalid.
set_fcsr_round64_error(float original,float rounded)1337 bool Simulator::set_fcsr_round64_error(float original, float rounded) {
1338   bool ret = false;
1339   // The value of INT64_MAX (2^63-1) can't be represented as double exactly,
1340   // loading the most accurate representation into max_int64, which is 2^63.
1341   double max_int64 = std::numeric_limits<int64_t>::max();
1342   double min_int64 = std::numeric_limits<int64_t>::min();
1343 
1344   if (!std::isfinite(original) || !std::isfinite(rounded)) {
1345     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1346     ret = true;
1347   }
1348 
1349   if (original != rounded) {
1350     set_fcsr_bit(kFCSRInexactFlagBit, true);
1351   }
1352 
1353   if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) {
1354     set_fcsr_bit(kFCSRUnderflowFlagBit, true);
1355     ret = true;
1356   }
1357 
1358   if (rounded >= max_int64 || rounded < min_int64) {
1359     set_fcsr_bit(kFCSROverflowFlagBit, true);
1360     // The reference is not really clear but it seems this is required:
1361     set_fcsr_bit(kFCSRInvalidOpFlagBit, true);
1362     ret = true;
1363   }
1364 
1365   return ret;
1366 }
1367 
round_according_to_fcsr(double toRound,double * rounded,int32_t * rounded_int,double fs)1368 void Simulator::round_according_to_fcsr(double toRound, double* rounded,
1369                                         int32_t* rounded_int, double fs) {
1370   // 0 RN (round to nearest): Round a result to the nearest
1371   // representable value; if the result is exactly halfway between
1372   // two representable values, round to zero. Behave like round_w_d.
1373 
1374   // 1 RZ (round toward zero): Round a result to the closest
1375   // representable value whose absolute value is less than or
1376   // equal to the infinitely accurate result. Behave like trunc_w_d.
1377 
1378   // 2 RP (round up, or toward  infinity): Round a result to the
1379   // next representable value up. Behave like ceil_w_d.
1380 
1381   // 3 RD (round down, or toward −infinity): Round a result to
1382   // the next representable value down. Behave like floor_w_d.
1383   switch (get_fcsr_rounding_mode()) {
1384     case kRoundToNearest:
1385       *rounded = std::floor(fs + 0.5);
1386       *rounded_int = static_cast<int32_t>(*rounded);
1387       if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) {
1388         // If the number is halfway between two integers,
1389         // round to the even one.
1390         *rounded_int -= 1;
1391         *rounded -= 1.;
1392       }
1393       break;
1394     case kRoundToZero:
1395       *rounded = trunc(fs);
1396       *rounded_int = static_cast<int32_t>(*rounded);
1397       break;
1398     case kRoundToPlusInf:
1399       *rounded = std::ceil(fs);
1400       *rounded_int = static_cast<int32_t>(*rounded);
1401       break;
1402     case kRoundToMinusInf:
1403       *rounded = std::floor(fs);
1404       *rounded_int = static_cast<int32_t>(*rounded);
1405       break;
1406   }
1407 }
1408 
round_according_to_fcsr(float toRound,float * rounded,int32_t * rounded_int,float fs)1409 void Simulator::round_according_to_fcsr(float toRound, float* rounded,
1410                                         int32_t* rounded_int, float fs) {
1411   // 0 RN (round to nearest): Round a result to the nearest
1412   // representable value; if the result is exactly halfway between
1413   // two representable values, round to zero. Behave like round_w_d.
1414 
1415   // 1 RZ (round toward zero): Round a result to the closest
1416   // representable value whose absolute value is less than or
1417   // equal to the infinitely accurate result. Behave like trunc_w_d.
1418 
1419   // 2 RP (round up, or toward  infinity): Round a result to the
1420   // next representable value up. Behave like ceil_w_d.
1421 
1422   // 3 RD (round down, or toward −infinity): Round a result to
1423   // the next representable value down. Behave like floor_w_d.
1424   switch (get_fcsr_rounding_mode()) {
1425     case kRoundToNearest:
1426       *rounded = std::floor(fs + 0.5);
1427       *rounded_int = static_cast<int32_t>(*rounded);
1428       if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) {
1429         // If the number is halfway between two integers,
1430         // round to the even one.
1431         *rounded_int -= 1;
1432         *rounded -= 1.f;
1433       }
1434       break;
1435     case kRoundToZero:
1436       *rounded = trunc(fs);
1437       *rounded_int = static_cast<int32_t>(*rounded);
1438       break;
1439     case kRoundToPlusInf:
1440       *rounded = std::ceil(fs);
1441       *rounded_int = static_cast<int32_t>(*rounded);
1442       break;
1443     case kRoundToMinusInf:
1444       *rounded = std::floor(fs);
1445       *rounded_int = static_cast<int32_t>(*rounded);
1446       break;
1447   }
1448 }
1449 
1450 template <typename T_fp, typename T_int>
round_according_to_msacsr(T_fp toRound,T_fp * rounded,T_int * rounded_int)1451 void Simulator::round_according_to_msacsr(T_fp toRound, T_fp* rounded,
1452                                           T_int* rounded_int) {
1453   // 0 RN (round to nearest): Round a result to the nearest
1454   // representable value; if the result is exactly halfway between
1455   // two representable values, round to zero. Behave like round_w_d.
1456 
1457   // 1 RZ (round toward zero): Round a result to the closest
1458   // representable value whose absolute value is less than or
1459   // equal to the infinitely accurate result. Behave like trunc_w_d.
1460 
1461   // 2 RP (round up, or toward  infinity): Round a result to the
1462   // next representable value up. Behave like ceil_w_d.
1463 
1464   // 3 RD (round down, or toward −infinity): Round a result to
1465   // the next representable value down. Behave like floor_w_d.
1466   switch (get_msacsr_rounding_mode()) {
1467     case kRoundToNearest:
1468       *rounded = std::floor(toRound + 0.5);
1469       *rounded_int = static_cast<T_int>(*rounded);
1470       if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) {
1471         // If the number is halfway between two integers,
1472         // round to the even one.
1473         *rounded_int -= 1;
1474         *rounded -= 1;
1475       }
1476       break;
1477     case kRoundToZero:
1478       *rounded = trunc(toRound);
1479       *rounded_int = static_cast<T_int>(*rounded);
1480       break;
1481     case kRoundToPlusInf:
1482       *rounded = std::ceil(toRound);
1483       *rounded_int = static_cast<T_int>(*rounded);
1484       break;
1485     case kRoundToMinusInf:
1486       *rounded = std::floor(toRound);
1487       *rounded_int = static_cast<T_int>(*rounded);
1488       break;
1489   }
1490 }
1491 
round64_according_to_fcsr(double toRound,double * rounded,int64_t * rounded_int,double fs)1492 void Simulator::round64_according_to_fcsr(double toRound, double* rounded,
1493                                           int64_t* rounded_int, double fs) {
1494   // 0 RN (round to nearest): Round a result to the nearest
1495   // representable value; if the result is exactly halfway between
1496   // two representable values, round to zero. Behave like round_w_d.
1497 
1498   // 1 RZ (round toward zero): Round a result to the closest
1499   // representable value whose absolute value is less than or.
1500   // equal to the infinitely accurate result. Behave like trunc_w_d.
1501 
1502   // 2 RP (round up, or toward +infinity): Round a result to the
1503   // next representable value up. Behave like ceil_w_d.
1504 
1505   // 3 RN (round down, or toward −infinity): Round a result to
1506   // the next representable value down. Behave like floor_w_d.
1507   switch (FCSR_ & 3) {
1508     case kRoundToNearest:
1509       *rounded = std::floor(fs + 0.5);
1510       *rounded_int = static_cast<int64_t>(*rounded);
1511       if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) {
1512         // If the number is halfway between two integers,
1513         // round to the even one.
1514         *rounded_int -= 1;
1515         *rounded -= 1.;
1516       }
1517       break;
1518     case kRoundToZero:
1519       *rounded = trunc(fs);
1520       *rounded_int = static_cast<int64_t>(*rounded);
1521       break;
1522     case kRoundToPlusInf:
1523       *rounded = std::ceil(fs);
1524       *rounded_int = static_cast<int64_t>(*rounded);
1525       break;
1526     case kRoundToMinusInf:
1527       *rounded = std::floor(fs);
1528       *rounded_int = static_cast<int64_t>(*rounded);
1529       break;
1530   }
1531 }
1532 
round64_according_to_fcsr(float toRound,float * rounded,int64_t * rounded_int,float fs)1533 void Simulator::round64_according_to_fcsr(float toRound, float* rounded,
1534                                           int64_t* rounded_int, float fs) {
1535   // 0 RN (round to nearest): Round a result to the nearest
1536   // representable value; if the result is exactly halfway between
1537   // two representable values, round to zero. Behave like round_w_d.
1538 
1539   // 1 RZ (round toward zero): Round a result to the closest
1540   // representable value whose absolute value is less than or.
1541   // equal to the infinitely accurate result. Behave like trunc_w_d.
1542 
1543   // 2 RP (round up, or toward +infinity): Round a result to the
1544   // next representable value up. Behave like ceil_w_d.
1545 
1546   // 3 RN (round down, or toward −infinity): Round a result to
1547   // the next representable value down. Behave like floor_w_d.
1548   switch (FCSR_ & 3) {
1549     case kRoundToNearest:
1550       *rounded = std::floor(fs + 0.5);
1551       *rounded_int = static_cast<int64_t>(*rounded);
1552       if ((*rounded_int & 1) != 0 && *rounded_int - fs == 0.5) {
1553         // If the number is halfway between two integers,
1554         // round to the even one.
1555         *rounded_int -= 1;
1556         *rounded -= 1.f;
1557       }
1558       break;
1559     case kRoundToZero:
1560       *rounded = trunc(fs);
1561       *rounded_int = static_cast<int64_t>(*rounded);
1562       break;
1563     case kRoundToPlusInf:
1564       *rounded = std::ceil(fs);
1565       *rounded_int = static_cast<int64_t>(*rounded);
1566       break;
1567     case kRoundToMinusInf:
1568       *rounded = std::floor(fs);
1569       *rounded_int = static_cast<int64_t>(*rounded);
1570       break;
1571   }
1572 }
1573 
1574 // Raw access to the PC register.
set_pc(int32_t value)1575 void Simulator::set_pc(int32_t value) {
1576   pc_modified_ = true;
1577   registers_[pc] = value;
1578 }
1579 
has_bad_pc() const1580 bool Simulator::has_bad_pc() const {
1581   return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc));
1582 }
1583 
1584 // Raw access to the PC register without the special adjustment when reading.
get_pc() const1585 int32_t Simulator::get_pc() const { return registers_[pc]; }
1586 
1587 // The MIPS cannot do unaligned reads and writes.  On some MIPS platforms an
1588 // interrupt is caused.  On others it does a funky rotation thing.  For now we
1589 // simply disallow unaligned reads, but at some point we may want to move to
1590 // emulating the rotate behaviour.  Note that simulator runs have the runtime
1591 // system running directly on the host system and only generated code is
1592 // executed in the simulator.  Since the host is typically IA32 we will not
1593 // get the correct MIPS-like behaviour on unaligned accesses.
1594 
TraceRegWr(int32_t value,TraceType t)1595 void Simulator::TraceRegWr(int32_t value, TraceType t) {
1596   if (::v8::internal::FLAG_trace_sim) {
1597     union {
1598       int32_t fmt_int32;
1599       float fmt_float;
1600     } v;
1601     v.fmt_int32 = value;
1602 
1603     switch (t) {
1604       case WORD:
1605         SNPrintF(trace_buf_,
1606                  "%08" PRIx32 "    (%" PRIu64 ")    int32:%" PRId32
1607                  " uint32:%" PRIu32,
1608                  value, icount_, value, value);
1609         break;
1610       case FLOAT:
1611         SNPrintF(trace_buf_, "%08" PRIx32 "    (%" PRIu64 ")    flt:%e",
1612                  v.fmt_int32, icount_, v.fmt_float);
1613         break;
1614       default:
1615         UNREACHABLE();
1616     }
1617   }
1618 }
1619 
TraceRegWr(int64_t value,TraceType t)1620 void Simulator::TraceRegWr(int64_t value, TraceType t) {
1621   if (::v8::internal::FLAG_trace_sim) {
1622     union {
1623       int64_t fmt_int64;
1624       double fmt_double;
1625     } v;
1626     v.fmt_int64 = value;
1627 
1628     switch (t) {
1629       case DWORD:
1630         SNPrintF(trace_buf_,
1631                  "%016" PRIx64 "    (%" PRIu64 ")    int64:%" PRId64
1632                  " uint64:%" PRIu64,
1633                  value, icount_, value, value);
1634         break;
1635       case DOUBLE:
1636         SNPrintF(trace_buf_, "%016" PRIx64 "    (%" PRIu64 ")    dbl:%e",
1637                  v.fmt_int64, icount_, v.fmt_double);
1638         break;
1639       default:
1640         UNREACHABLE();
1641     }
1642   }
1643 }
1644 
1645 template <typename T>
TraceMSARegWr(T * value,TraceType t)1646 void Simulator::TraceMSARegWr(T* value, TraceType t) {
1647   if (::v8::internal::FLAG_trace_sim) {
1648     union {
1649       uint8_t b[16];
1650       uint16_t h[8];
1651       uint32_t w[4];
1652       uint64_t d[2];
1653       float f[4];
1654       double df[2];
1655     } v;
1656     memcpy(v.b, value, kSimd128Size);
1657     switch (t) {
1658       case BYTE:
1659         SNPrintF(trace_buf_,
1660                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")",
1661                  v.d[0], v.d[1], icount_);
1662         break;
1663       case HALF:
1664         SNPrintF(trace_buf_,
1665                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")",
1666                  v.d[0], v.d[1], icount_);
1667         break;
1668       case WORD:
1669         SNPrintF(trace_buf_,
1670                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1671                  ")    int32[0..3]:%" PRId32 "  %" PRId32 "  %" PRId32
1672                  "  %" PRId32,
1673                  v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]);
1674         break;
1675       case DWORD:
1676         SNPrintF(trace_buf_,
1677                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")",
1678                  v.d[0], v.d[1], icount_);
1679         break;
1680       case FLOAT:
1681         SNPrintF(trace_buf_,
1682                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1683                  ")    flt[0..3]:%e  %e  %e  %e",
1684                  v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]);
1685         break;
1686       case DOUBLE:
1687         SNPrintF(trace_buf_,
1688                  "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1689                  ")    dbl[0..1]:%e  %e",
1690                  v.d[0], v.d[1], icount_, v.df[0], v.df[1]);
1691         break;
1692       default:
1693         UNREACHABLE();
1694     }
1695   }
1696 }
1697 
1698 template <typename T>
TraceMSARegWr(T * value)1699 void Simulator::TraceMSARegWr(T* value) {
1700   if (::v8::internal::FLAG_trace_sim) {
1701     union {
1702       uint8_t b[kMSALanesByte];
1703       uint16_t h[kMSALanesHalf];
1704       uint32_t w[kMSALanesWord];
1705       uint64_t d[kMSALanesDword];
1706       float f[kMSALanesWord];
1707       double df[kMSALanesDword];
1708     } v;
1709     memcpy(v.b, value, kMSALanesByte);
1710 
1711     if (std::is_same<T, int32_t>::value) {
1712       SNPrintF(trace_buf_,
1713                "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1714                ")    int32[0..3]:%" PRId32 "  %" PRId32 "  %" PRId32
1715                "  %" PRId32,
1716                v.d[0], v.d[1], icount_, v.w[0], v.w[1], v.w[2], v.w[3]);
1717     } else if (std::is_same<T, float>::value) {
1718       SNPrintF(trace_buf_,
1719                "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1720                ")    flt[0..3]:%e  %e  %e  %e",
1721                v.d[0], v.d[1], icount_, v.f[0], v.f[1], v.f[2], v.f[3]);
1722     } else if (std::is_same<T, double>::value) {
1723       SNPrintF(trace_buf_,
1724                "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64
1725                ")    dbl[0..1]:%e  %e",
1726                v.d[0], v.d[1], icount_, v.df[0], v.df[1]);
1727     } else {
1728       SNPrintF(trace_buf_,
1729                "LO: %016" PRIx64 "  HI: %016" PRIx64 "    (%" PRIu64 ")",
1730                v.d[0], v.d[1], icount_);
1731     }
1732   }
1733 }
1734 
1735 // TODO(plind): consider making icount_ printing a flag option.
TraceMemRd(int32_t addr,int32_t value,TraceType t)1736 void Simulator::TraceMemRd(int32_t addr, int32_t value, TraceType t) {
1737   if (::v8::internal::FLAG_trace_sim) {
1738     union {
1739       int32_t fmt_int32;
1740       float fmt_float;
1741     } v;
1742     v.fmt_int32 = value;
1743 
1744     switch (t) {
1745       case WORD:
1746         SNPrintF(trace_buf_,
1747                  "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64
1748                  ")    int32:%" PRId32 " uint32:%" PRIu32,
1749                  value, addr, icount_, value, value);
1750         break;
1751       case FLOAT:
1752         SNPrintF(trace_buf_,
1753                  "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64 ")    flt:%e",
1754                  v.fmt_int32, addr, icount_, v.fmt_float);
1755         break;
1756       default:
1757         UNREACHABLE();
1758     }
1759   }
1760 }
1761 
TraceMemWr(int32_t addr,int32_t value,TraceType t)1762 void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) {
1763   if (::v8::internal::FLAG_trace_sim) {
1764     switch (t) {
1765       case BYTE:
1766         SNPrintF(trace_buf_,
1767                  "      %02" PRIx8 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1768                  static_cast<uint8_t>(value), addr, icount_);
1769         break;
1770       case HALF:
1771         SNPrintF(trace_buf_,
1772                  "    %04" PRIx16 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1773                  static_cast<uint16_t>(value), addr, icount_);
1774         break;
1775       case WORD:
1776         SNPrintF(trace_buf_,
1777                  "%08" PRIx32 " --> [%08" PRIx32 "]    (%" PRIu64 ")", value,
1778                  addr, icount_);
1779         break;
1780       default:
1781         UNREACHABLE();
1782     }
1783   }
1784 }
1785 
1786 template <typename T>
TraceMemRd(int32_t addr,T value)1787 void Simulator::TraceMemRd(int32_t addr, T value) {
1788   if (::v8::internal::FLAG_trace_sim) {
1789     switch (sizeof(T)) {
1790       case 1:
1791         SNPrintF(trace_buf_,
1792                  "%08" PRIx8 " <-- [%08" PRIx32 "]    (%" PRIu64
1793                  ")    int8:%" PRId8 " uint8:%" PRIu8,
1794                  static_cast<uint8_t>(value), addr, icount_,
1795                  static_cast<int8_t>(value), static_cast<uint8_t>(value));
1796         break;
1797       case 2:
1798         SNPrintF(trace_buf_,
1799                  "%08" PRIx16 " <-- [%08" PRIx32 "]    (%" PRIu64
1800                  ")    int16:%" PRId16 " uint16:%" PRIu16,
1801                  static_cast<uint16_t>(value), addr, icount_,
1802                  static_cast<int16_t>(value), static_cast<uint16_t>(value));
1803         break;
1804       case 4:
1805         SNPrintF(trace_buf_,
1806                  "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64
1807                  ")    int32:%" PRId32 " uint32:%" PRIu32,
1808                  static_cast<uint32_t>(value), addr, icount_,
1809                  static_cast<int32_t>(value), static_cast<uint32_t>(value));
1810         break;
1811       case 8:
1812         SNPrintF(trace_buf_,
1813                  "%08" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64
1814                  ")    int64:%" PRId64 " uint64:%" PRIu64,
1815                  static_cast<uint64_t>(value), addr, icount_,
1816                  static_cast<int64_t>(value), static_cast<uint64_t>(value));
1817         break;
1818       default:
1819         UNREACHABLE();
1820     }
1821   }
1822 }
1823 
1824 template <typename T>
TraceMemWr(int32_t addr,T value)1825 void Simulator::TraceMemWr(int32_t addr, T value) {
1826   if (::v8::internal::FLAG_trace_sim) {
1827     switch (sizeof(T)) {
1828       case 1:
1829         SNPrintF(trace_buf_,
1830                  "      %02" PRIx8 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1831                  static_cast<uint8_t>(value), addr, icount_);
1832         break;
1833       case 2:
1834         SNPrintF(trace_buf_,
1835                  "    %04" PRIx16 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1836                  static_cast<uint16_t>(value), addr, icount_);
1837         break;
1838       case 4:
1839         SNPrintF(trace_buf_,
1840                  "%08" PRIx32 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1841                  static_cast<uint32_t>(value), addr, icount_);
1842         break;
1843       case 8:
1844         SNPrintF(trace_buf_,
1845                  "%16" PRIx64 " --> [%08" PRIx32 "]    (%" PRIu64 ")",
1846                  static_cast<uint64_t>(value), addr, icount_);
1847         break;
1848       default:
1849         UNREACHABLE();
1850     }
1851   }
1852 }
1853 
TraceMemRd(int32_t addr,int64_t value,TraceType t)1854 void Simulator::TraceMemRd(int32_t addr, int64_t value, TraceType t) {
1855   if (::v8::internal::FLAG_trace_sim) {
1856     union {
1857       int64_t fmt_int64;
1858       int32_t fmt_int32[2];
1859       float fmt_float[2];
1860       double fmt_double;
1861     } v;
1862     v.fmt_int64 = value;
1863 
1864     switch (t) {
1865       case DWORD:
1866         SNPrintF(trace_buf_,
1867                  "%016" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64
1868                  ")    int64:%" PRId64 " uint64:%" PRIu64,
1869                  v.fmt_int64, addr, icount_, v.fmt_int64, v.fmt_int64);
1870         break;
1871       case DOUBLE:
1872         SNPrintF(trace_buf_,
1873                  "%016" PRIx64 " <-- [%08" PRIx32 "]    (%" PRIu64
1874                  ")    dbl:%e",
1875                  v.fmt_int64, addr, icount_, v.fmt_double);
1876         break;
1877       case FLOAT_DOUBLE:
1878         SNPrintF(trace_buf_,
1879                  "%08" PRIx32 " <-- [%08" PRIx32 "]    (%" PRIu64
1880                  ")    flt:%e dbl:%e",
1881                  v.fmt_int32[1], addr, icount_, v.fmt_float[1], v.fmt_double);
1882         break;
1883       default:
1884         UNREACHABLE();
1885     }
1886   }
1887 }
1888 
TraceMemWr(int32_t addr,int64_t value,TraceType t)1889 void Simulator::TraceMemWr(int32_t addr, int64_t value, TraceType t) {
1890   if (::v8::internal::FLAG_trace_sim) {
1891     switch (t) {
1892       case DWORD:
1893         SNPrintF(trace_buf_,
1894                  "%016" PRIx64 " --> [%08" PRIx32 "]    (%" PRIu64 ")", value,
1895                  addr, icount_);
1896         break;
1897       default:
1898         UNREACHABLE();
1899     }
1900   }
1901 }
1902 
ReadW(int32_t addr,Instruction * instr,TraceType t)1903 int Simulator::ReadW(int32_t addr, Instruction* instr, TraceType t) {
1904   if (addr >= 0 && addr < 0x400) {
1905     // This has to be a nullptr-dereference, drop into debugger.
1906     PrintF("Memory read from bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
1907            reinterpret_cast<intptr_t>(instr));
1908     MipsDebugger dbg(this);
1909     dbg.Debug();
1910   }
1911   if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
1912     local_monitor_.NotifyLoad();
1913     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1914     switch (t) {
1915       case WORD:
1916         TraceMemRd(addr, static_cast<int32_t>(*ptr), t);
1917         break;
1918       case FLOAT:
1919         // This TraceType is allowed but tracing for this value will be omitted.
1920         break;
1921       default:
1922         UNREACHABLE();
1923     }
1924     return *ptr;
1925   }
1926   PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
1927          reinterpret_cast<intptr_t>(instr));
1928   MipsDebugger dbg(this);
1929   dbg.Debug();
1930   return 0;
1931 }
1932 
WriteW(int32_t addr,int value,Instruction * instr)1933 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
1934   if (addr >= 0 && addr < 0x400) {
1935     // This has to be a nullptr-dereference, drop into debugger.
1936     PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
1937            reinterpret_cast<intptr_t>(instr));
1938     MipsDebugger dbg(this);
1939     dbg.Debug();
1940   }
1941   if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
1942     local_monitor_.NotifyStore();
1943     base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
1944     GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
1945     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1946     TraceMemWr(addr, value, WORD);
1947     *ptr = value;
1948     return;
1949   }
1950   PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
1951          reinterpret_cast<intptr_t>(instr));
1952   MipsDebugger dbg(this);
1953   dbg.Debug();
1954 }
1955 
WriteConditionalW(int32_t addr,int32_t value,Instruction * instr,int32_t rt_reg)1956 void Simulator::WriteConditionalW(int32_t addr, int32_t value,
1957                                   Instruction* instr, int32_t rt_reg) {
1958   if (addr >= 0 && addr < 0x400) {
1959     // This has to be a nullptr-dereference, drop into debugger.
1960     PrintF("Memory write to bad address: 0x%08x, pc=0x%08" PRIxPTR "\n", addr,
1961            reinterpret_cast<intptr_t>(instr));
1962     MipsDebugger dbg(this);
1963     dbg.Debug();
1964   }
1965   if ((addr & kPointerAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
1966     base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
1967     if (local_monitor_.NotifyStoreConditional(addr, TransactionSize::Word) &&
1968         GlobalMonitor::Get()->NotifyStoreConditional_Locked(
1969             addr, &global_monitor_thread_)) {
1970       local_monitor_.NotifyStore();
1971       GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
1972       TraceMemWr(addr, value, WORD);
1973       int* ptr = reinterpret_cast<int*>(addr);
1974       *ptr = value;
1975       set_register(rt_reg, 1);
1976     } else {
1977       set_register(rt_reg, 0);
1978     }
1979     return;
1980   }
1981   PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
1982          reinterpret_cast<intptr_t>(instr));
1983   MipsDebugger dbg(this);
1984   dbg.Debug();
1985 }
1986 
ReadD(int32_t addr,Instruction * instr)1987 double Simulator::ReadD(int32_t addr, Instruction* instr) {
1988   if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
1989     local_monitor_.NotifyLoad();
1990     double* ptr = reinterpret_cast<double*>(addr);
1991     return *ptr;
1992   }
1993   PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
1994          reinterpret_cast<intptr_t>(instr));
1995   base::OS::Abort();
1996   return 0;
1997 }
1998 
WriteD(int32_t addr,double value,Instruction * instr)1999 void Simulator::WriteD(int32_t addr, double value, Instruction* instr) {
2000   if ((addr & kDoubleAlignmentMask) == 0 || IsMipsArchVariant(kMips32r6)) {
2001     local_monitor_.NotifyStore();
2002     base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2003     GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2004     double* ptr = reinterpret_cast<double*>(addr);
2005     *ptr = value;
2006     return;
2007   }
2008   PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
2009          reinterpret_cast<intptr_t>(instr));
2010   base::OS::Abort();
2011 }
2012 
ReadHU(int32_t addr,Instruction * instr)2013 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
2014   if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
2015     local_monitor_.NotifyLoad();
2016     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
2017     TraceMemRd(addr, static_cast<int32_t>(*ptr));
2018     return *ptr;
2019   }
2020   PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
2021          addr, reinterpret_cast<intptr_t>(instr));
2022   base::OS::Abort();
2023   return 0;
2024 }
2025 
ReadH(int32_t addr,Instruction * instr)2026 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
2027   if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
2028     local_monitor_.NotifyLoad();
2029     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
2030     TraceMemRd(addr, static_cast<int32_t>(*ptr));
2031     return *ptr;
2032   }
2033   PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
2034          addr, reinterpret_cast<intptr_t>(instr));
2035   base::OS::Abort();
2036   return 0;
2037 }
2038 
WriteH(int32_t addr,uint16_t value,Instruction * instr)2039 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
2040   if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
2041     local_monitor_.NotifyStore();
2042     base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2043     GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2044     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
2045     TraceMemWr(addr, value, HALF);
2046     *ptr = value;
2047     return;
2048   }
2049   PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
2050          addr, reinterpret_cast<intptr_t>(instr));
2051   base::OS::Abort();
2052 }
2053 
WriteH(int32_t addr,int16_t value,Instruction * instr)2054 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
2055   if ((addr & 1) == 0 || IsMipsArchVariant(kMips32r6)) {
2056     local_monitor_.NotifyStore();
2057     base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2058     GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2059     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
2060     TraceMemWr(addr, value, HALF);
2061     *ptr = value;
2062     return;
2063   }
2064   PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr,
2065          reinterpret_cast<intptr_t>(instr));
2066   base::OS::Abort();
2067 }
2068 
ReadBU(int32_t addr)2069 uint32_t Simulator::ReadBU(int32_t addr) {
2070   local_monitor_.NotifyLoad();
2071   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
2072   TraceMemRd(addr, static_cast<int32_t>(*ptr));
2073   return *ptr & 0xFF;
2074 }
2075 
ReadB(int32_t addr)2076 int32_t Simulator::ReadB(int32_t addr) {
2077   local_monitor_.NotifyLoad();
2078   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
2079   TraceMemRd(addr, static_cast<int32_t>(*ptr));
2080   return *ptr;
2081 }
2082 
WriteB(int32_t addr,uint8_t value)2083 void Simulator::WriteB(int32_t addr, uint8_t value) {
2084   local_monitor_.NotifyStore();
2085   base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2086   GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2087   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
2088   TraceMemWr(addr, value, BYTE);
2089   *ptr = value;
2090 }
2091 
WriteB(int32_t addr,int8_t value)2092 void Simulator::WriteB(int32_t addr, int8_t value) {
2093   local_monitor_.NotifyStore();
2094   base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2095   GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2096   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
2097   TraceMemWr(addr, value, BYTE);
2098   *ptr = value;
2099 }
2100 
2101 template <typename T>
ReadMem(int32_t addr,Instruction * instr)2102 T Simulator::ReadMem(int32_t addr, Instruction* instr) {
2103   int alignment_mask = (1 << sizeof(T)) - 1;
2104   if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) {
2105     local_monitor_.NotifyLoad();
2106     T* ptr = reinterpret_cast<T*>(addr);
2107     TraceMemRd(addr, *ptr);
2108     return *ptr;
2109   }
2110   PrintF("Unaligned read of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
2111          sizeof(T), addr, reinterpret_cast<intptr_t>(instr));
2112   base::OS::Abort();
2113   return 0;
2114 }
2115 
2116 template <typename T>
WriteMem(int32_t addr,T value,Instruction * instr)2117 void Simulator::WriteMem(int32_t addr, T value, Instruction* instr) {
2118   local_monitor_.NotifyStore();
2119   base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
2120   GlobalMonitor::Get()->NotifyStore_Locked(&global_monitor_thread_);
2121   int alignment_mask = (1 << sizeof(T)) - 1;
2122   if ((addr & alignment_mask) == 0 || IsMipsArchVariant(kMips32r6)) {
2123     T* ptr = reinterpret_cast<T*>(addr);
2124     *ptr = value;
2125     TraceMemWr(addr, value);
2126     return;
2127   }
2128   PrintF("Unaligned write of type sizeof(%d) at 0x%08x, pc=0x%08" V8PRIxPTR
2129          "\n",
2130          sizeof(T), addr, reinterpret_cast<intptr_t>(instr));
2131   base::OS::Abort();
2132 }
2133 
2134 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const2135 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
2136   // The simulator uses a separate JS stack. If we have exhausted the C stack,
2137   // we also drop down the JS limit to reflect the exhaustion on the JS stack.
2138   if (GetCurrentStackPosition() < c_limit) {
2139     return reinterpret_cast<uintptr_t>(get_sp());
2140   }
2141 
2142   // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
2143   // to prevent overrunning the stack when pushing values.
2144   return reinterpret_cast<uintptr_t>(stack_) + 1024;
2145 }
2146 
2147 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)2148 void Simulator::Format(Instruction* instr, const char* format) {
2149   PrintF("Simulator found unsupported instruction:\n 0x%08" PRIxPTR ": %s\n",
2150          reinterpret_cast<intptr_t>(instr), format);
2151   UNIMPLEMENTED_MIPS();
2152 }
2153 
2154 // Calls into the V8 runtime are based on this very simple interface.
2155 // Note: To be able to return two values from some calls the code in runtime.cc
2156 // uses the ObjectPair which is essentially two 32-bit values stuffed into a
2157 // 64-bit value. With the code below we assume that all runtime calls return
2158 // 64 bits of result. If they don't, the v1 result register contains a bogus
2159 // value, which is fine because it is caller-saved.
2160 using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1,
2161                                          int32_t arg2, int32_t arg3,
2162                                          int32_t arg4, int32_t arg5,
2163                                          int32_t arg6, int32_t arg7,
2164                                          int32_t arg8, int32_t arg9);
2165 
2166 // These prototypes handle the four types of FP calls.
2167 using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1);
2168 using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1);
2169 using SimulatorRuntimeFPCall = double (*)(double darg0);
2170 using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0);
2171 
2172 // This signature supports direct call in to API function native callback
2173 // (refer to InvocationCallback in v8.h).
2174 using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0);
2175 using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1);
2176 
2177 // This signature supports direct call to accessor getter callback.
2178 using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1);
2179 using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1,
2180                                                      void* arg2);
2181 
2182 // Software interrupt instructions are used by the simulator to call into the
2183 // C-based V8 runtime. They are also used for debugging with simulator.
SoftwareInterrupt()2184 void Simulator::SoftwareInterrupt() {
2185   // There are several instructions that could get us here,
2186   // the break_ instruction, or several variants of traps. All
2187   // Are "SPECIAL" class opcode, and are distinuished by function.
2188   int32_t func = instr_.FunctionFieldRaw();
2189   uint32_t code = (func == BREAK) ? instr_.Bits(25, 6) : -1;
2190 
2191   // We first check if we met a call_rt_redirected.
2192   if (instr_.InstructionBits() == rtCallRedirInstr) {
2193     Redirection* redirection = Redirection::FromInstruction(instr_.instr());
2194     int32_t arg0 = get_register(a0);
2195     int32_t arg1 = get_register(a1);
2196     int32_t arg2 = get_register(a2);
2197     int32_t arg3 = get_register(a3);
2198 
2199     int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
2200     // Args 4 and 5 are on the stack after the reserved space for args 0..3.
2201     int32_t arg4 = stack_pointer[4];
2202     int32_t arg5 = stack_pointer[5];
2203     int32_t arg6 = stack_pointer[6];
2204     int32_t arg7 = stack_pointer[7];
2205     int32_t arg8 = stack_pointer[8];
2206     int32_t arg9 = stack_pointer[9];
2207     STATIC_ASSERT(kMaxCParameters == 10);
2208 
2209     bool fp_call =
2210         (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
2211         (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
2212         (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
2213         (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
2214 
2215     if (!IsMipsSoftFloatABI) {
2216       // With the hard floating point calling convention, double
2217       // arguments are passed in FPU registers. Fetch the arguments
2218       // from there and call the builtin using soft floating point
2219       // convention.
2220       switch (redirection->type()) {
2221         case ExternalReference::BUILTIN_FP_FP_CALL:
2222         case ExternalReference::BUILTIN_COMPARE_CALL:
2223           if (IsFp64Mode()) {
2224             arg0 = get_fpu_register_word(f12);
2225             arg1 = get_fpu_register_hi_word(f12);
2226             arg2 = get_fpu_register_word(f14);
2227             arg3 = get_fpu_register_hi_word(f14);
2228           } else {
2229             arg0 = get_fpu_register_word(f12);
2230             arg1 = get_fpu_register_word(f13);
2231             arg2 = get_fpu_register_word(f14);
2232             arg3 = get_fpu_register_word(f15);
2233           }
2234           break;
2235         case ExternalReference::BUILTIN_FP_CALL:
2236           if (IsFp64Mode()) {
2237             arg0 = get_fpu_register_word(f12);
2238             arg1 = get_fpu_register_hi_word(f12);
2239           } else {
2240             arg0 = get_fpu_register_word(f12);
2241             arg1 = get_fpu_register_word(f13);
2242           }
2243           break;
2244         case ExternalReference::BUILTIN_FP_INT_CALL:
2245           if (IsFp64Mode()) {
2246             arg0 = get_fpu_register_word(f12);
2247             arg1 = get_fpu_register_hi_word(f12);
2248           } else {
2249             arg0 = get_fpu_register_word(f12);
2250             arg1 = get_fpu_register_word(f13);
2251           }
2252           arg2 = get_register(a2);
2253           break;
2254         default:
2255           break;
2256       }
2257     }
2258 
2259     // This is dodgy but it works because the C entry stubs are never moved.
2260     // See comment in codegen-arm.cc and bug 1242173.
2261     int32_t saved_ra = get_register(ra);
2262 
2263     intptr_t external =
2264         reinterpret_cast<intptr_t>(redirection->external_function());
2265 
2266     // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware
2267     // FPU, or gcc soft-float routines. Hardware FPU is simulated in this
2268     // simulator. Soft-float has additional abstraction of ExternalReference,
2269     // to support serialization.
2270     if (fp_call) {
2271       double dval0, dval1;  // one or two double parameters
2272       int32_t ival;         // zero or one integer parameters
2273       int64_t iresult = 0;  // integer return value
2274       double dresult = 0;   // double return value
2275       GetFpArgs(&dval0, &dval1, &ival);
2276       SimulatorRuntimeCall generic_target =
2277           reinterpret_cast<SimulatorRuntimeCall>(external);
2278       if (::v8::internal::FLAG_trace_sim) {
2279         switch (redirection->type()) {
2280           case ExternalReference::BUILTIN_FP_FP_CALL:
2281           case ExternalReference::BUILTIN_COMPARE_CALL:
2282             PrintF("Call to host function at %p with args %f, %f",
2283                    reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
2284                    dval0, dval1);
2285             break;
2286           case ExternalReference::BUILTIN_FP_CALL:
2287             PrintF("Call to host function at %p with arg %f",
2288                    reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
2289                    dval0);
2290             break;
2291           case ExternalReference::BUILTIN_FP_INT_CALL:
2292             PrintF("Call to host function at %p with args %f, %d",
2293                    reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
2294                    dval0, ival);
2295             break;
2296           default:
2297             UNREACHABLE();
2298             break;
2299         }
2300       }
2301       switch (redirection->type()) {
2302         case ExternalReference::BUILTIN_COMPARE_CALL: {
2303           SimulatorRuntimeCompareCall target =
2304               reinterpret_cast<SimulatorRuntimeCompareCall>(external);
2305           iresult = target(dval0, dval1);
2306           set_register(v0, static_cast<int32_t>(iresult));
2307           set_register(v1, static_cast<int32_t>(iresult >> 32));
2308           break;
2309         }
2310         case ExternalReference::BUILTIN_FP_FP_CALL: {
2311           SimulatorRuntimeFPFPCall target =
2312               reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
2313           dresult = target(dval0, dval1);
2314           SetFpResult(dresult);
2315           break;
2316         }
2317         case ExternalReference::BUILTIN_FP_CALL: {
2318           SimulatorRuntimeFPCall target =
2319               reinterpret_cast<SimulatorRuntimeFPCall>(external);
2320           dresult = target(dval0);
2321           SetFpResult(dresult);
2322           break;
2323         }
2324         case ExternalReference::BUILTIN_FP_INT_CALL: {
2325           SimulatorRuntimeFPIntCall target =
2326               reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
2327           dresult = target(dval0, ival);
2328           SetFpResult(dresult);
2329           break;
2330         }
2331         default:
2332           UNREACHABLE();
2333           break;
2334       }
2335       if (::v8::internal::FLAG_trace_sim) {
2336         switch (redirection->type()) {
2337           case ExternalReference::BUILTIN_COMPARE_CALL:
2338             PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
2339             break;
2340           case ExternalReference::BUILTIN_FP_FP_CALL:
2341           case ExternalReference::BUILTIN_FP_CALL:
2342           case ExternalReference::BUILTIN_FP_INT_CALL:
2343             PrintF("Returned %f\n", dresult);
2344             break;
2345           default:
2346             UNREACHABLE();
2347             break;
2348         }
2349       }
2350     } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
2351       if (::v8::internal::FLAG_trace_sim) {
2352         PrintF("Call to host function at %p args %08x\n",
2353                reinterpret_cast<void*>(external), arg0);
2354       }
2355       SimulatorRuntimeDirectApiCall target =
2356           reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
2357       target(arg0);
2358     } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
2359       if (::v8::internal::FLAG_trace_sim) {
2360         PrintF("Call to host function at %p args %08x %08x\n",
2361                reinterpret_cast<void*>(external), arg0, arg1);
2362       }
2363       SimulatorRuntimeProfilingApiCall target =
2364           reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
2365       target(arg0, Redirection::ReverseRedirection(arg1));
2366     } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
2367       if (::v8::internal::FLAG_trace_sim) {
2368         PrintF("Call to host function at %p args %08x %08x\n",
2369                reinterpret_cast<void*>(external), arg0, arg1);
2370       }
2371       SimulatorRuntimeDirectGetterCall target =
2372           reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
2373       target(arg0, arg1);
2374     } else if (redirection->type() ==
2375                ExternalReference::PROFILING_GETTER_CALL) {
2376       if (::v8::internal::FLAG_trace_sim) {
2377         PrintF("Call to host function at %p args %08x %08x %08x\n",
2378                reinterpret_cast<void*>(external), arg0, arg1, arg2);
2379       }
2380       SimulatorRuntimeProfilingGetterCall target =
2381           reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
2382       target(arg0, arg1, Redirection::ReverseRedirection(arg2));
2383     } else {
2384       DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
2385              redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
2386       SimulatorRuntimeCall target =
2387           reinterpret_cast<SimulatorRuntimeCall>(external);
2388       if (::v8::internal::FLAG_trace_sim) {
2389         PrintF(
2390             "Call to host function at %p "
2391             "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x\n",
2392             reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2,
2393             arg3, arg4, arg5, arg6, arg7, arg8, arg9);
2394       }
2395       int64_t result =
2396           target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9);
2397       set_register(v0, static_cast<int32_t>(result));
2398       set_register(v1, static_cast<int32_t>(result >> 32));
2399     }
2400     if (::v8::internal::FLAG_trace_sim) {
2401       PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0));
2402     }
2403     set_register(ra, saved_ra);
2404     set_pc(get_register(ra));
2405 
2406   } else if (func == BREAK && code <= kMaxStopCode) {
2407     if (IsWatchpoint(code)) {
2408       PrintWatchpoint(code);
2409     } else {
2410       IncreaseStopCounter(code);
2411       HandleStop(code, instr_.instr());
2412     }
2413   } else {
2414     // All remaining break_ codes, and all traps are handled here.
2415     MipsDebugger dbg(this);
2416     dbg.Debug();
2417   }
2418 }
2419 
2420 // Stop helper functions.
IsWatchpoint(uint32_t code)2421 bool Simulator::IsWatchpoint(uint32_t code) {
2422   return (code <= kMaxWatchpointCode);
2423 }
2424 
PrintWatchpoint(uint32_t code)2425 void Simulator::PrintWatchpoint(uint32_t code) {
2426   MipsDebugger dbg(this);
2427   ++break_count_;
2428   PrintF("\n---- break %d marker: %3d  (instr count: %" PRIu64
2429          ") ----------"
2430          "----------------------------------",
2431          code, break_count_, icount_);
2432   dbg.PrintAllRegs();  // Print registers and continue running.
2433 }
2434 
HandleStop(uint32_t code,Instruction * instr)2435 void Simulator::HandleStop(uint32_t code, Instruction* instr) {
2436   // Stop if it is enabled, otherwise go on jumping over the stop
2437   // and the message address.
2438   if (IsEnabledStop(code)) {
2439     MipsDebugger dbg(this);
2440     dbg.Stop(instr);
2441   }
2442 }
2443 
IsStopInstruction(Instruction * instr)2444 bool Simulator::IsStopInstruction(Instruction* instr) {
2445   int32_t func = instr->FunctionFieldRaw();
2446   uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6));
2447   return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode;
2448 }
2449 
IsEnabledStop(uint32_t code)2450 bool Simulator::IsEnabledStop(uint32_t code) {
2451   DCHECK_LE(code, kMaxStopCode);
2452   DCHECK_GT(code, kMaxWatchpointCode);
2453   return !(watched_stops_[code].count & kStopDisabledBit);
2454 }
2455 
EnableStop(uint32_t code)2456 void Simulator::EnableStop(uint32_t code) {
2457   if (!IsEnabledStop(code)) {
2458     watched_stops_[code].count &= ~kStopDisabledBit;
2459   }
2460 }
2461 
DisableStop(uint32_t code)2462 void Simulator::DisableStop(uint32_t code) {
2463   if (IsEnabledStop(code)) {
2464     watched_stops_[code].count |= kStopDisabledBit;
2465   }
2466 }
2467 
IncreaseStopCounter(uint32_t code)2468 void Simulator::IncreaseStopCounter(uint32_t code) {
2469   DCHECK_LE(code, kMaxStopCode);
2470   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
2471     PrintF(
2472         "Stop counter for code %i has overflowed.\n"
2473         "Enabling this code and reseting the counter to 0.\n",
2474         code);
2475     watched_stops_[code].count = 0;
2476     EnableStop(code);
2477   } else {
2478     watched_stops_[code].count++;
2479   }
2480 }
2481 
2482 // Print a stop status.
PrintStopInfo(uint32_t code)2483 void Simulator::PrintStopInfo(uint32_t code) {
2484   if (code <= kMaxWatchpointCode) {
2485     PrintF("That is a watchpoint, not a stop.\n");
2486     return;
2487   } else if (code > kMaxStopCode) {
2488     PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1);
2489     return;
2490   }
2491   const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled";
2492   int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
2493   // Don't print the state of unused breakpoints.
2494   if (count != 0) {
2495     if (watched_stops_[code].desc) {
2496       PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state,
2497              count, watched_stops_[code].desc);
2498     } else {
2499       PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
2500              count);
2501     }
2502   }
2503 }
2504 
SignalException(Exception e)2505 void Simulator::SignalException(Exception e) {
2506   FATAL("Error: Exception %i raised.", static_cast<int>(e));
2507 }
2508 
2509 // Min/Max template functions for Double and Single arguments.
2510 
2511 template <typename T>
2512 static T FPAbs(T a);
2513 
2514 template <>
FPAbs(double a)2515 double FPAbs<double>(double a) {
2516   return fabs(a);
2517 }
2518 
2519 template <>
FPAbs(float a)2520 float FPAbs<float>(float a) {
2521   return fabsf(a);
2522 }
2523 
2524 template <typename T>
FPUProcessNaNsAndZeros(T a,T b,MaxMinKind kind,T * result)2525 static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) {
2526   if (std::isnan(a) && std::isnan(b)) {
2527     *result = a;
2528   } else if (std::isnan(a)) {
2529     *result = b;
2530   } else if (std::isnan(b)) {
2531     *result = a;
2532   } else if (b == a) {
2533     // Handle -0.0 == 0.0 case.
2534     // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax
2535     // negates the result.
2536     *result = std::signbit(b) - static_cast<int>(kind) ? b : a;
2537   } else {
2538     return false;
2539   }
2540   return true;
2541 }
2542 
2543 template <typename T>
FPUMin(T a,T b)2544 static T FPUMin(T a, T b) {
2545   T result;
2546   if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
2547     return result;
2548   } else {
2549     return b < a ? b : a;
2550   }
2551 }
2552 
2553 template <typename T>
FPUMax(T a,T b)2554 static T FPUMax(T a, T b) {
2555   T result;
2556   if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) {
2557     return result;
2558   } else {
2559     return b > a ? b : a;
2560   }
2561 }
2562 
2563 template <typename T>
FPUMinA(T a,T b)2564 static T FPUMinA(T a, T b) {
2565   T result;
2566   if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
2567     if (FPAbs(a) < FPAbs(b)) {
2568       result = a;
2569     } else if (FPAbs(b) < FPAbs(a)) {
2570       result = b;
2571     } else {
2572       result = a < b ? a : b;
2573     }
2574   }
2575   return result;
2576 }
2577 
2578 template <typename T>
FPUMaxA(T a,T b)2579 static T FPUMaxA(T a, T b) {
2580   T result;
2581   if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) {
2582     if (FPAbs(a) > FPAbs(b)) {
2583       result = a;
2584     } else if (FPAbs(b) > FPAbs(a)) {
2585       result = b;
2586     } else {
2587       result = a > b ? a : b;
2588     }
2589   }
2590   return result;
2591 }
2592 
2593 enum class KeepSign : bool { no = false, yes };
2594 
2595 template <typename T, typename std::enable_if<std::is_floating_point<T>::value,
2596                                               int>::type = 0>
FPUCanonalizeNaNArg(T result,T arg,KeepSign keepSign=KeepSign::no)2597 T FPUCanonalizeNaNArg(T result, T arg, KeepSign keepSign = KeepSign::no) {
2598   DCHECK(std::isnan(arg));
2599   T qNaN = std::numeric_limits<T>::quiet_NaN();
2600   if (keepSign == KeepSign::yes) {
2601     return std::copysign(qNaN, result);
2602   }
2603   return qNaN;
2604 }
2605 
2606 template <typename T>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first)2607 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first) {
2608   if (std::isnan(first)) {
2609     return FPUCanonalizeNaNArg(result, first, keepSign);
2610   }
2611   return result;
2612 }
2613 
2614 template <typename T, typename... Args>
FPUCanonalizeNaNArgs(T result,KeepSign keepSign,T first,Args...args)2615 T FPUCanonalizeNaNArgs(T result, KeepSign keepSign, T first, Args... args) {
2616   if (std::isnan(first)) {
2617     return FPUCanonalizeNaNArg(result, first, keepSign);
2618   }
2619   return FPUCanonalizeNaNArgs(result, keepSign, args...);
2620 }
2621 
2622 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,T first,Args...args)2623 T FPUCanonalizeOperation(Func f, T first, Args... args) {
2624   return FPUCanonalizeOperation(f, KeepSign::no, first, args...);
2625 }
2626 
2627 template <typename Func, typename T, typename... Args>
FPUCanonalizeOperation(Func f,KeepSign keepSign,T first,Args...args)2628 T FPUCanonalizeOperation(Func f, KeepSign keepSign, T first, Args... args) {
2629   T result = f(first, args...);
2630   if (std::isnan(result)) {
2631     result = FPUCanonalizeNaNArgs(result, keepSign, first, args...);
2632   }
2633   return result;
2634 }
2635 
2636 // Handle execution based on instruction types.
2637 
DecodeTypeRegisterDRsType()2638 void Simulator::DecodeTypeRegisterDRsType() {
2639   double ft, fs, fd;
2640   uint32_t cc, fcsr_cc;
2641   int64_t i64;
2642   fs = get_fpu_register_double(fs_reg());
2643   ft = (instr_.FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg())
2644                                            : 0.0;
2645   fd = get_fpu_register_double(fd_reg());
2646   int64_t ft_int = bit_cast<int64_t>(ft);
2647   int64_t fd_int = bit_cast<int64_t>(fd);
2648   cc = instr_.FCccValue();
2649   fcsr_cc = get_fcsr_condition_bit(cc);
2650   switch (instr_.FunctionFieldRaw()) {
2651     case RINT: {
2652       DCHECK(IsMipsArchVariant(kMips32r6));
2653       double result, temp, temp_result;
2654       double upper = std::ceil(fs);
2655       double lower = std::floor(fs);
2656       switch (get_fcsr_rounding_mode()) {
2657         case kRoundToNearest:
2658           if (upper - fs < fs - lower) {
2659             result = upper;
2660           } else if (upper - fs > fs - lower) {
2661             result = lower;
2662           } else {
2663             temp_result = upper / 2;
2664             double reminder = modf(temp_result, &temp);
2665             if (reminder == 0) {
2666               result = upper;
2667             } else {
2668               result = lower;
2669             }
2670           }
2671           break;
2672         case kRoundToZero:
2673           result = (fs > 0 ? lower : upper);
2674           break;
2675         case kRoundToPlusInf:
2676           result = upper;
2677           break;
2678         case kRoundToMinusInf:
2679           result = lower;
2680           break;
2681       }
2682       SetFPUDoubleResult(fd_reg(), result);
2683       if (result != fs) {
2684         set_fcsr_bit(kFCSRInexactFlagBit, true);
2685       }
2686       break;
2687     }
2688     case SEL:
2689       DCHECK(IsMipsArchVariant(kMips32r6));
2690       SetFPUDoubleResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2691       break;
2692     case SELEQZ_C:
2693       DCHECK(IsMipsArchVariant(kMips32r6));
2694       SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
2695       break;
2696     case SELNEZ_C:
2697       DCHECK(IsMipsArchVariant(kMips32r6));
2698       SetFPUDoubleResult(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
2699       break;
2700     case MOVZ_C: {
2701       DCHECK(IsMipsArchVariant(kMips32r2));
2702       if (rt() == 0) {
2703         SetFPUDoubleResult(fd_reg(), fs);
2704       }
2705       break;
2706     }
2707     case MOVN_C: {
2708       DCHECK(IsMipsArchVariant(kMips32r2));
2709       int32_t rt_reg = instr_.RtValue();
2710       int32_t rt = get_register(rt_reg);
2711       if (rt != 0) {
2712         SetFPUDoubleResult(fd_reg(), fs);
2713       }
2714       break;
2715     }
2716     case MOVF: {
2717       // Same function field for MOVT.D and MOVF.D
2718       uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2719       ft_cc = get_fcsr_condition_bit(ft_cc);
2720       if (instr_.Bit(16)) {  // Read Tf bit.
2721         // MOVT.D
2722         if (test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs);
2723       } else {
2724         // MOVF.D
2725         if (!test_fcsr_bit(ft_cc)) SetFPUDoubleResult(fd_reg(), fs);
2726       }
2727       break;
2728     }
2729     case MIN:
2730       DCHECK(IsMipsArchVariant(kMips32r6));
2731       SetFPUDoubleResult(fd_reg(), FPUMin(ft, fs));
2732       break;
2733     case MAX:
2734       DCHECK(IsMipsArchVariant(kMips32r6));
2735       SetFPUDoubleResult(fd_reg(), FPUMax(ft, fs));
2736       break;
2737     case MINA:
2738       DCHECK(IsMipsArchVariant(kMips32r6));
2739       SetFPUDoubleResult(fd_reg(), FPUMinA(ft, fs));
2740       break;
2741     case MAXA:
2742       DCHECK(IsMipsArchVariant(kMips32r6));
2743       SetFPUDoubleResult(fd_reg(), FPUMaxA(ft, fs));
2744       break;
2745     case ADD_D:
2746       SetFPUDoubleResult(
2747           fd_reg(),
2748           FPUCanonalizeOperation(
2749               [](double lhs, double rhs) { return lhs + rhs; }, fs, ft));
2750       break;
2751     case SUB_D:
2752       SetFPUDoubleResult(
2753           fd_reg(),
2754           FPUCanonalizeOperation(
2755               [](double lhs, double rhs) { return lhs - rhs; }, fs, ft));
2756       break;
2757     case MADDF_D:
2758       DCHECK(IsMipsArchVariant(kMips32r6));
2759       SetFPUDoubleResult(fd_reg(), std::fma(fs, ft, fd));
2760       break;
2761     case MSUBF_D:
2762       DCHECK(IsMipsArchVariant(kMips32r6));
2763       SetFPUDoubleResult(fd_reg(), std::fma(-fs, ft, fd));
2764       break;
2765     case MUL_D:
2766       SetFPUDoubleResult(
2767           fd_reg(),
2768           FPUCanonalizeOperation(
2769               [](double lhs, double rhs) { return lhs * rhs; }, fs, ft));
2770       break;
2771     case DIV_D:
2772       SetFPUDoubleResult(
2773           fd_reg(),
2774           FPUCanonalizeOperation(
2775               [](double lhs, double rhs) { return lhs / rhs; }, fs, ft));
2776       break;
2777     case ABS_D:
2778       SetFPUDoubleResult(
2779           fd_reg(),
2780           FPUCanonalizeOperation([](double fs) { return FPAbs(fs); }, fs));
2781       break;
2782     case MOV_D:
2783       SetFPUDoubleResult(fd_reg(), fs);
2784       break;
2785     case NEG_D:
2786       SetFPUDoubleResult(fd_reg(),
2787                          FPUCanonalizeOperation([](double src) { return -src; },
2788                                                 KeepSign::yes, fs));
2789       break;
2790     case SQRT_D:
2791       SetFPUDoubleResult(
2792           fd_reg(),
2793           FPUCanonalizeOperation([](double fs) { return std::sqrt(fs); }, fs));
2794       break;
2795     case RSQRT_D:
2796       SetFPUDoubleResult(
2797           fd_reg(), FPUCanonalizeOperation(
2798                         [](double fs) { return 1.0 / std::sqrt(fs); }, fs));
2799       break;
2800     case RECIP_D:
2801       SetFPUDoubleResult(fd_reg(), FPUCanonalizeOperation(
2802                                        [](double fs) { return 1.0 / fs; }, fs));
2803       break;
2804     case C_UN_D:
2805       set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2806       TraceRegWr(test_fcsr_bit(fcsr_cc));
2807       break;
2808     case C_EQ_D:
2809       set_fcsr_bit(fcsr_cc, (fs == ft));
2810       TraceRegWr(test_fcsr_bit(fcsr_cc));
2811       break;
2812     case C_UEQ_D:
2813       set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2814       TraceRegWr(test_fcsr_bit(fcsr_cc));
2815       break;
2816     case C_OLT_D:
2817       set_fcsr_bit(fcsr_cc, (fs < ft));
2818       TraceRegWr(test_fcsr_bit(fcsr_cc));
2819       break;
2820     case C_ULT_D:
2821       set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2822       TraceRegWr(test_fcsr_bit(fcsr_cc));
2823       break;
2824     case C_OLE_D:
2825       set_fcsr_bit(fcsr_cc, (fs <= ft));
2826       TraceRegWr(test_fcsr_bit(fcsr_cc));
2827       break;
2828     case C_ULE_D:
2829       set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2830       TraceRegWr(test_fcsr_bit(fcsr_cc));
2831       break;
2832     case CVT_W_D: {  // Convert double to word.
2833       double rounded;
2834       int32_t result;
2835       round_according_to_fcsr(fs, &rounded, &result, fs);
2836       SetFPUWordResult(fd_reg(), result);
2837       if (set_fcsr_round_error(fs, rounded)) {
2838         set_fpu_register_word_invalid_result(fs, rounded);
2839       }
2840     } break;
2841     case ROUND_W_D:  // Round double to word (round half to even).
2842     {
2843       double rounded = std::floor(fs + 0.5);
2844       int32_t result = static_cast<int32_t>(rounded);
2845       if ((result & 1) != 0 && result - fs == 0.5) {
2846         // If the number is halfway between two integers,
2847         // round to the even one.
2848         result--;
2849       }
2850       SetFPUWordResult(fd_reg(), result);
2851       if (set_fcsr_round_error(fs, rounded)) {
2852         set_fpu_register_word_invalid_result(fs, rounded);
2853       }
2854     } break;
2855     case TRUNC_W_D:  // Truncate double to word (round towards 0).
2856     {
2857       double rounded = trunc(fs);
2858       int32_t result = static_cast<int32_t>(rounded);
2859       SetFPUWordResult(fd_reg(), result);
2860       if (set_fcsr_round_error(fs, rounded)) {
2861         set_fpu_register_word_invalid_result(fs, rounded);
2862       }
2863     } break;
2864     case FLOOR_W_D:  // Round double to word towards negative infinity.
2865     {
2866       double rounded = std::floor(fs);
2867       int32_t result = static_cast<int32_t>(rounded);
2868       SetFPUWordResult(fd_reg(), result);
2869       if (set_fcsr_round_error(fs, rounded)) {
2870         set_fpu_register_word_invalid_result(fs, rounded);
2871       }
2872     } break;
2873     case CEIL_W_D:  // Round double to word towards positive infinity.
2874     {
2875       double rounded = std::ceil(fs);
2876       int32_t result = static_cast<int32_t>(rounded);
2877       SetFPUWordResult(fd_reg(), result);
2878       if (set_fcsr_round_error(fs, rounded)) {
2879         set_fpu_register_word_invalid_result(fs, rounded);
2880       }
2881     } break;
2882     case CVT_S_D:  // Convert double to float (single).
2883       SetFPUFloatResult(fd_reg(), static_cast<float>(fs));
2884       break;
2885     case CVT_L_D: {  // Mips32r2: Truncate double to 64-bit long-word.
2886       if (IsFp64Mode()) {
2887         int64_t result;
2888         double rounded;
2889         round64_according_to_fcsr(fs, &rounded, &result, fs);
2890         SetFPUResult(fd_reg(), result);
2891         if (set_fcsr_round64_error(fs, rounded)) {
2892           set_fpu_register_invalid_result64(fs, rounded);
2893         }
2894       } else {
2895         UNSUPPORTED();
2896       }
2897       break;
2898       break;
2899     }
2900     case TRUNC_L_D: {  // Mips32r2 instruction.
2901       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2902       double rounded = trunc(fs);
2903       i64 = static_cast<int64_t>(rounded);
2904       if (IsFp64Mode()) {
2905         SetFPUResult(fd_reg(), i64);
2906         if (set_fcsr_round64_error(fs, rounded)) {
2907           set_fpu_register_invalid_result64(fs, rounded);
2908         }
2909       } else {
2910         UNSUPPORTED();
2911       }
2912       break;
2913     }
2914     case ROUND_L_D: {  // Mips32r2 instruction.
2915       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2916       double rounded = std::floor(fs + 0.5);
2917       int64_t result = static_cast<int64_t>(rounded);
2918       if ((result & 1) != 0 && result - fs == 0.5) {
2919         // If the number is halfway between two integers,
2920         // round to the even one.
2921         result--;
2922       }
2923       int64_t i64 = static_cast<int64_t>(result);
2924       if (IsFp64Mode()) {
2925         SetFPUResult(fd_reg(), i64);
2926         if (set_fcsr_round64_error(fs, rounded)) {
2927           set_fpu_register_invalid_result64(fs, rounded);
2928         }
2929       } else {
2930         UNSUPPORTED();
2931       }
2932       break;
2933     }
2934     case FLOOR_L_D: {  // Mips32r2 instruction.
2935       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2936       double rounded = std::floor(fs);
2937       int64_t i64 = static_cast<int64_t>(rounded);
2938       if (IsFp64Mode()) {
2939         SetFPUResult(fd_reg(), i64);
2940         if (set_fcsr_round64_error(fs, rounded)) {
2941           set_fpu_register_invalid_result64(fs, rounded);
2942         }
2943       } else {
2944         UNSUPPORTED();
2945       }
2946       break;
2947     }
2948     case CEIL_L_D: {  // Mips32r2 instruction.
2949       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2950       double rounded = std::ceil(fs);
2951       int64_t i64 = static_cast<int64_t>(rounded);
2952       if (IsFp64Mode()) {
2953         SetFPUResult(fd_reg(), i64);
2954         if (set_fcsr_round64_error(fs, rounded)) {
2955           set_fpu_register_invalid_result64(fs, rounded);
2956         }
2957       } else {
2958         UNSUPPORTED();
2959       }
2960       break;
2961     }
2962     case CLASS_D: {  // Mips32r6 instruction
2963       // Convert double input to uint64_t for easier bit manipulation
2964       uint64_t classed = bit_cast<uint64_t>(fs);
2965 
2966       // Extracting sign, exponent and mantissa from the input double
2967       uint32_t sign = (classed >> 63) & 1;
2968       uint32_t exponent = (classed >> 52) & 0x00000000000007FF;
2969       uint64_t mantissa = classed & 0x000FFFFFFFFFFFFF;
2970       uint64_t result;
2971       double dResult;
2972 
2973       // Setting flags if input double is negative infinity,
2974       // positive infinity, negative zero or positive zero
2975       bool negInf = (classed == 0xFFF0000000000000);
2976       bool posInf = (classed == 0x7FF0000000000000);
2977       bool negZero = (classed == 0x8000000000000000);
2978       bool posZero = (classed == 0x0000000000000000);
2979 
2980       bool signalingNan;
2981       bool quietNan;
2982       bool negSubnorm;
2983       bool posSubnorm;
2984       bool negNorm;
2985       bool posNorm;
2986 
2987       // Setting flags if double is NaN
2988       signalingNan = false;
2989       quietNan = false;
2990       if (!negInf && !posInf && exponent == 0x7FF) {
2991         quietNan = ((mantissa & 0x0008000000000000) != 0) &&
2992                    ((mantissa & (0x0008000000000000 - 1)) == 0);
2993         signalingNan = !quietNan;
2994       }
2995 
2996       // Setting flags if double is subnormal number
2997       posSubnorm = false;
2998       negSubnorm = false;
2999       if ((exponent == 0) && (mantissa != 0)) {
3000         DCHECK(sign == 0 || sign == 1);
3001         posSubnorm = (sign == 0);
3002         negSubnorm = (sign == 1);
3003       }
3004 
3005       // Setting flags if double is normal number
3006       posNorm = false;
3007       negNorm = false;
3008       if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
3009           !quietNan && !negZero && !posZero) {
3010         DCHECK(sign == 0 || sign == 1);
3011         posNorm = (sign == 0);
3012         negNorm = (sign == 1);
3013       }
3014 
3015       // Calculating result according to description of CLASS.D instruction
3016       result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3017                (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3018                (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3019 
3020       DCHECK_NE(result, 0);
3021 
3022       dResult = bit_cast<double>(result);
3023       SetFPUDoubleResult(fd_reg(), dResult);
3024 
3025       break;
3026     }
3027     case C_F_D: {
3028       set_fcsr_bit(fcsr_cc, false);
3029       TraceRegWr(test_fcsr_bit(fcsr_cc));
3030       break;
3031     }
3032     default:
3033       UNREACHABLE();
3034   }
3035 }
3036 
DecodeTypeRegisterWRsType()3037 void Simulator::DecodeTypeRegisterWRsType() {
3038   float fs = get_fpu_register_float(fs_reg());
3039   float ft = get_fpu_register_float(ft_reg());
3040   int32_t alu_out = 0x12345678;
3041   switch (instr_.FunctionFieldRaw()) {
3042     case CVT_S_W:  // Convert word to float (single).
3043       alu_out = get_fpu_register_signed_word(fs_reg());
3044       SetFPUFloatResult(fd_reg(), static_cast<float>(alu_out));
3045       break;
3046     case CVT_D_W:  // Convert word to double.
3047       alu_out = get_fpu_register_signed_word(fs_reg());
3048       SetFPUDoubleResult(fd_reg(), static_cast<double>(alu_out));
3049       break;
3050     case CMP_AF:
3051       SetFPUWordResult(fd_reg(), 0);
3052       break;
3053     case CMP_UN:
3054       if (std::isnan(fs) || std::isnan(ft)) {
3055         SetFPUWordResult(fd_reg(), -1);
3056       } else {
3057         SetFPUWordResult(fd_reg(), 0);
3058       }
3059       break;
3060     case CMP_EQ:
3061       if (fs == ft) {
3062         SetFPUWordResult(fd_reg(), -1);
3063       } else {
3064         SetFPUWordResult(fd_reg(), 0);
3065       }
3066       break;
3067     case CMP_UEQ:
3068       if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3069         SetFPUWordResult(fd_reg(), -1);
3070       } else {
3071         SetFPUWordResult(fd_reg(), 0);
3072       }
3073       break;
3074     case CMP_LT:
3075       if (fs < ft) {
3076         SetFPUWordResult(fd_reg(), -1);
3077       } else {
3078         SetFPUWordResult(fd_reg(), 0);
3079       }
3080       break;
3081     case CMP_ULT:
3082       if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3083         SetFPUWordResult(fd_reg(), -1);
3084       } else {
3085         SetFPUWordResult(fd_reg(), 0);
3086       }
3087       break;
3088     case CMP_LE:
3089       if (fs <= ft) {
3090         SetFPUWordResult(fd_reg(), -1);
3091       } else {
3092         SetFPUWordResult(fd_reg(), 0);
3093       }
3094       break;
3095     case CMP_ULE:
3096       if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3097         SetFPUWordResult(fd_reg(), -1);
3098       } else {
3099         SetFPUWordResult(fd_reg(), 0);
3100       }
3101       break;
3102     case CMP_OR:
3103       if (!std::isnan(fs) && !std::isnan(ft)) {
3104         SetFPUWordResult(fd_reg(), -1);
3105       } else {
3106         SetFPUWordResult(fd_reg(), 0);
3107       }
3108       break;
3109     case CMP_UNE:
3110       if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3111         SetFPUWordResult(fd_reg(), -1);
3112       } else {
3113         SetFPUWordResult(fd_reg(), 0);
3114       }
3115       break;
3116     case CMP_NE:
3117       if (fs != ft) {
3118         SetFPUWordResult(fd_reg(), -1);
3119       } else {
3120         SetFPUWordResult(fd_reg(), 0);
3121       }
3122       break;
3123     default:
3124       UNREACHABLE();
3125   }
3126 }
3127 
DecodeTypeRegisterSRsType()3128 void Simulator::DecodeTypeRegisterSRsType() {
3129   float fs, ft, fd;
3130   fs = get_fpu_register_float(fs_reg());
3131   ft = get_fpu_register_float(ft_reg());
3132   fd = get_fpu_register_float(fd_reg());
3133   int32_t ft_int = bit_cast<int32_t>(ft);
3134   int32_t fd_int = bit_cast<int32_t>(fd);
3135   uint32_t cc, fcsr_cc;
3136   cc = instr_.FCccValue();
3137   fcsr_cc = get_fcsr_condition_bit(cc);
3138   switch (instr_.FunctionFieldRaw()) {
3139     case RINT: {
3140       DCHECK(IsMipsArchVariant(kMips32r6));
3141       float result, temp_result;
3142       double temp;
3143       float upper = std::ceil(fs);
3144       float lower = std::floor(fs);
3145       switch (get_fcsr_rounding_mode()) {
3146         case kRoundToNearest:
3147           if (upper - fs < fs - lower) {
3148             result = upper;
3149           } else if (upper - fs > fs - lower) {
3150             result = lower;
3151           } else {
3152             temp_result = upper / 2;
3153             float reminder = modf(temp_result, &temp);
3154             if (reminder == 0) {
3155               result = upper;
3156             } else {
3157               result = lower;
3158             }
3159           }
3160           break;
3161         case kRoundToZero:
3162           result = (fs > 0 ? lower : upper);
3163           break;
3164         case kRoundToPlusInf:
3165           result = upper;
3166           break;
3167         case kRoundToMinusInf:
3168           result = lower;
3169           break;
3170       }
3171       SetFPUFloatResult(fd_reg(), result);
3172       if (result != fs) {
3173         set_fcsr_bit(kFCSRInexactFlagBit, true);
3174       }
3175       break;
3176     }
3177     case ADD_S:
3178       SetFPUFloatResult(
3179           fd_reg(),
3180           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs + rhs; },
3181                                  fs, ft));
3182       break;
3183     case SUB_S:
3184       SetFPUFloatResult(
3185           fd_reg(),
3186           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs - rhs; },
3187                                  fs, ft));
3188       break;
3189     case MADDF_S:
3190       DCHECK(IsMipsArchVariant(kMips32r6));
3191       SetFPUFloatResult(fd_reg(), std::fma(fs, ft, fd));
3192       break;
3193     case MSUBF_S:
3194       DCHECK(IsMipsArchVariant(kMips32r6));
3195       SetFPUFloatResult(fd_reg(), std::fma(-fs, ft, fd));
3196       break;
3197     case MUL_S:
3198       SetFPUFloatResult(
3199           fd_reg(),
3200           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs * rhs; },
3201                                  fs, ft));
3202       break;
3203     case DIV_S:
3204       SetFPUFloatResult(
3205           fd_reg(),
3206           FPUCanonalizeOperation([](float lhs, float rhs) { return lhs / rhs; },
3207                                  fs, ft));
3208       break;
3209     case ABS_S:
3210       SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation(
3211                                       [](float fs) { return FPAbs(fs); }, fs));
3212       break;
3213     case MOV_S:
3214       SetFPUFloatResult(fd_reg(), fs);
3215       break;
3216     case NEG_S:
3217       SetFPUFloatResult(fd_reg(),
3218                         FPUCanonalizeOperation([](float src) { return -src; },
3219                                                KeepSign::yes, fs));
3220       break;
3221     case SQRT_S:
3222       SetFPUFloatResult(
3223           fd_reg(),
3224           FPUCanonalizeOperation([](float src) { return std::sqrt(src); }, fs));
3225       break;
3226     case RSQRT_S:
3227       SetFPUFloatResult(
3228           fd_reg(), FPUCanonalizeOperation(
3229                         [](float src) { return 1.0 / std::sqrt(src); }, fs));
3230       break;
3231     case RECIP_S:
3232       SetFPUFloatResult(fd_reg(), FPUCanonalizeOperation(
3233                                       [](float src) { return 1.0 / src; }, fs));
3234       break;
3235     case C_F_D:
3236       set_fcsr_bit(fcsr_cc, false);
3237       TraceRegWr(test_fcsr_bit(fcsr_cc));
3238       break;
3239     case C_UN_D:
3240       set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
3241       TraceRegWr(test_fcsr_bit(fcsr_cc));
3242       break;
3243     case C_EQ_D:
3244       set_fcsr_bit(fcsr_cc, (fs == ft));
3245       TraceRegWr(test_fcsr_bit(fcsr_cc));
3246       break;
3247     case C_UEQ_D:
3248       set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
3249       TraceRegWr(test_fcsr_bit(fcsr_cc));
3250       break;
3251     case C_OLT_D:
3252       set_fcsr_bit(fcsr_cc, (fs < ft));
3253       TraceRegWr(test_fcsr_bit(fcsr_cc));
3254       break;
3255     case C_ULT_D:
3256       set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
3257       TraceRegWr(test_fcsr_bit(fcsr_cc));
3258       break;
3259     case C_OLE_D:
3260       set_fcsr_bit(fcsr_cc, (fs <= ft));
3261       TraceRegWr(test_fcsr_bit(fcsr_cc));
3262       break;
3263     case C_ULE_D:
3264       set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
3265       TraceRegWr(test_fcsr_bit(fcsr_cc));
3266       break;
3267     case CVT_D_S:
3268       SetFPUDoubleResult(fd_reg(), static_cast<double>(fs));
3269       break;
3270     case SEL:
3271       DCHECK(IsMipsArchVariant(kMips32r6));
3272       SetFPUFloatResult(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
3273       break;
3274     case CLASS_S: {  // Mips32r6 instruction
3275       // Convert float input to uint32_t for easier bit manipulation
3276       float fs = get_fpu_register_float(fs_reg());
3277       uint32_t classed = bit_cast<uint32_t>(fs);
3278 
3279       // Extracting sign, exponent and mantissa from the input float
3280       uint32_t sign = (classed >> 31) & 1;
3281       uint32_t exponent = (classed >> 23) & 0x000000FF;
3282       uint32_t mantissa = classed & 0x007FFFFF;
3283       uint32_t result;
3284       float fResult;
3285 
3286       // Setting flags if input float is negative infinity,
3287       // positive infinity, negative zero or positive zero
3288       bool negInf = (classed == 0xFF800000);
3289       bool posInf = (classed == 0x7F800000);
3290       bool negZero = (classed == 0x80000000);
3291       bool posZero = (classed == 0x00000000);
3292 
3293       bool signalingNan;
3294       bool quietNan;
3295       bool negSubnorm;
3296       bool posSubnorm;
3297       bool negNorm;
3298       bool posNorm;
3299 
3300       // Setting flags if float is NaN
3301       signalingNan = false;
3302       quietNan = false;
3303       if (!negInf && !posInf && (exponent == 0xFF)) {
3304         quietNan = ((mantissa & 0x00200000) == 0) &&
3305                    ((mantissa & (0x00200000 - 1)) == 0);
3306         signalingNan = !quietNan;
3307       }
3308 
3309       // Setting flags if float is subnormal number
3310       posSubnorm = false;
3311       negSubnorm = false;
3312       if ((exponent == 0) && (mantissa != 0)) {
3313         DCHECK(sign == 0 || sign == 1);
3314         posSubnorm = (sign == 0);
3315         negSubnorm = (sign == 1);
3316       }
3317 
3318       // Setting flags if float is normal number
3319       posNorm = false;
3320       negNorm = false;
3321       if (!posSubnorm && !negSubnorm && !posInf && !negInf && !signalingNan &&
3322           !quietNan && !negZero && !posZero) {
3323         DCHECK(sign == 0 || sign == 1);
3324         posNorm = (sign == 0);
3325         negNorm = (sign == 1);
3326       }
3327 
3328       // Calculating result according to description of CLASS.S instruction
3329       result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3330                (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3331                (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3332 
3333       DCHECK_NE(result, 0);
3334 
3335       fResult = bit_cast<float>(result);
3336       SetFPUFloatResult(fd_reg(), fResult);
3337 
3338       break;
3339     }
3340     case SELEQZ_C:
3341       DCHECK(IsMipsArchVariant(kMips32r6));
3342       SetFPUFloatResult(fd_reg(), (ft_int & 0x1) == 0
3343                                       ? get_fpu_register_float(fs_reg())
3344                                       : 0.0);
3345       break;
3346     case SELNEZ_C:
3347       DCHECK(IsMipsArchVariant(kMips32r6));
3348       SetFPUFloatResult(fd_reg(), (ft_int & 0x1) != 0
3349                                       ? get_fpu_register_float(fs_reg())
3350                                       : 0.0);
3351       break;
3352     case MOVZ_C: {
3353       DCHECK(IsMipsArchVariant(kMips32r2));
3354       if (rt() == 0) {
3355         SetFPUFloatResult(fd_reg(), fs);
3356       }
3357       break;
3358     }
3359     case MOVN_C: {
3360       DCHECK(IsMipsArchVariant(kMips32r2));
3361       if (rt() != 0) {
3362         SetFPUFloatResult(fd_reg(), fs);
3363       }
3364       break;
3365     }
3366     case MOVF: {
3367       // Same function field for MOVT.D and MOVF.D
3368       uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
3369       ft_cc = get_fcsr_condition_bit(ft_cc);
3370 
3371       if (instr_.Bit(16)) {  // Read Tf bit.
3372         // MOVT.D
3373         if (test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs);
3374       } else {
3375         // MOVF.D
3376         if (!test_fcsr_bit(ft_cc)) SetFPUFloatResult(fd_reg(), fs);
3377       }
3378       break;
3379     }
3380     case TRUNC_W_S: {  // Truncate single to word (round towards 0).
3381       float rounded = trunc(fs);
3382       int32_t result = static_cast<int32_t>(rounded);
3383       SetFPUWordResult(fd_reg(), result);
3384       if (set_fcsr_round_error(fs, rounded)) {
3385         set_fpu_register_word_invalid_result(fs, rounded);
3386       }
3387     } break;
3388     case TRUNC_L_S: {  // Mips32r2 instruction.
3389       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3390       float rounded = trunc(fs);
3391       int64_t i64 = static_cast<int64_t>(rounded);
3392       if (IsFp64Mode()) {
3393         SetFPUResult(fd_reg(), i64);
3394         if (set_fcsr_round64_error(fs, rounded)) {
3395           set_fpu_register_invalid_result64(fs, rounded);
3396         }
3397       } else {
3398         UNSUPPORTED();
3399       }
3400       break;
3401     }
3402     case FLOOR_W_S:  // Round double to word towards negative infinity.
3403     {
3404       float rounded = std::floor(fs);
3405       int32_t result = static_cast<int32_t>(rounded);
3406       SetFPUWordResult(fd_reg(), result);
3407       if (set_fcsr_round_error(fs, rounded)) {
3408         set_fpu_register_word_invalid_result(fs, rounded);
3409       }
3410     } break;
3411     case FLOOR_L_S: {  // Mips32r2 instruction.
3412       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3413       float rounded = std::floor(fs);
3414       int64_t i64 = static_cast<int64_t>(rounded);
3415       if (IsFp64Mode()) {
3416         SetFPUResult(fd_reg(), i64);
3417         if (set_fcsr_round64_error(fs, rounded)) {
3418           set_fpu_register_invalid_result64(fs, rounded);
3419         }
3420       } else {
3421         UNSUPPORTED();
3422       }
3423       break;
3424     }
3425     case ROUND_W_S: {
3426       float rounded = std::floor(fs + 0.5);
3427       int32_t result = static_cast<int32_t>(rounded);
3428       if ((result & 1) != 0 && result - fs == 0.5) {
3429         // If the number is halfway between two integers,
3430         // round to the even one.
3431         result--;
3432       }
3433       SetFPUWordResult(fd_reg(), result);
3434       if (set_fcsr_round_error(fs, rounded)) {
3435         set_fpu_register_word_invalid_result(fs, rounded);
3436       }
3437       break;
3438     }
3439     case ROUND_L_S: {  // Mips32r2 instruction.
3440       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3441       float rounded = std::floor(fs + 0.5);
3442       int64_t result = static_cast<int64_t>(rounded);
3443       if ((result & 1) != 0 && result - fs == 0.5) {
3444         // If the number is halfway between two integers,
3445         // round to the even one.
3446         result--;
3447       }
3448       int64_t i64 = static_cast<int64_t>(result);
3449       if (IsFp64Mode()) {
3450         SetFPUResult(fd_reg(), i64);
3451         if (set_fcsr_round64_error(fs, rounded)) {
3452           set_fpu_register_invalid_result64(fs, rounded);
3453         }
3454       } else {
3455         UNSUPPORTED();
3456       }
3457       break;
3458     }
3459     case CEIL_W_S:  // Round double to word towards positive infinity.
3460     {
3461       float rounded = std::ceil(fs);
3462       int32_t result = static_cast<int32_t>(rounded);
3463       SetFPUWordResult(fd_reg(), result);
3464       if (set_fcsr_round_error(fs, rounded)) {
3465         set_fpu_register_word_invalid_result(fs, rounded);
3466       }
3467     } break;
3468     case CEIL_L_S: {  // Mips32r2 instruction.
3469       DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3470       float rounded = std::ceil(fs);
3471       int64_t i64 = static_cast<int64_t>(rounded);
3472       if (IsFp64Mode()) {
3473         SetFPUResult(fd_reg(), i64);
3474         if (set_fcsr_round64_error(fs, rounded)) {
3475           set_fpu_register_invalid_result64(fs, rounded);
3476         }
3477       } else {
3478         UNSUPPORTED();
3479       }
3480       break;
3481     }
3482     case MIN:
3483       DCHECK(IsMipsArchVariant(kMips32r6));
3484       SetFPUFloatResult(fd_reg(), FPUMin(ft, fs));
3485       break;
3486     case MAX:
3487       DCHECK(IsMipsArchVariant(kMips32r6));
3488       SetFPUFloatResult(fd_reg(), FPUMax(ft, fs));
3489       break;
3490     case MINA:
3491       DCHECK(IsMipsArchVariant(kMips32r6));
3492       SetFPUFloatResult(fd_reg(), FPUMinA(ft, fs));
3493       break;
3494     case MAXA:
3495       DCHECK(IsMipsArchVariant(kMips32r6));
3496       SetFPUFloatResult(fd_reg(), FPUMaxA(ft, fs));
3497       break;
3498     case CVT_L_S: {
3499       if (IsFp64Mode()) {
3500         int64_t result;
3501         float rounded;
3502         round64_according_to_fcsr(fs, &rounded, &result, fs);
3503         SetFPUResult(fd_reg(), result);
3504         if (set_fcsr_round64_error(fs, rounded)) {
3505           set_fpu_register_invalid_result64(fs, rounded);
3506         }
3507       } else {
3508         UNSUPPORTED();
3509       }
3510       break;
3511     }
3512     case CVT_W_S: {
3513       float rounded;
3514       int32_t result;
3515       round_according_to_fcsr(fs, &rounded, &result, fs);
3516       SetFPUWordResult(fd_reg(), result);
3517       if (set_fcsr_round_error(fs, rounded)) {
3518         set_fpu_register_word_invalid_result(fs, rounded);
3519       }
3520       break;
3521     }
3522     default:
3523       // CVT_W_S CVT_L_S  ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
3524       // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
3525       UNREACHABLE();
3526   }
3527 }
3528 
DecodeTypeRegisterLRsType()3529 void Simulator::DecodeTypeRegisterLRsType() {
3530   double fs = get_fpu_register_double(fs_reg());
3531   double ft = get_fpu_register_double(ft_reg());
3532   switch (instr_.FunctionFieldRaw()) {
3533     case CVT_D_L:  // Mips32r2 instruction.
3534       // Watch the signs here, we want 2 32-bit vals
3535       // to make a sign-64.
3536       int64_t i64;
3537       if (IsFp64Mode()) {
3538         i64 = get_fpu_register(fs_reg());
3539       } else {
3540         i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
3541         i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
3542       }
3543       SetFPUDoubleResult(fd_reg(), static_cast<double>(i64));
3544       break;
3545     case CVT_S_L:
3546       if (IsFp64Mode()) {
3547         i64 = get_fpu_register(fs_reg());
3548       } else {
3549         i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
3550         i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
3551       }
3552       SetFPUFloatResult(fd_reg(), static_cast<float>(i64));
3553       break;
3554     case CMP_AF:  // Mips64r6 CMP.D instructions.
3555       SetFPUResult(fd_reg(), 0);
3556       break;
3557     case CMP_UN:
3558       if (std::isnan(fs) || std::isnan(ft)) {
3559         SetFPUResult(fd_reg(), -1);
3560       } else {
3561         SetFPUResult(fd_reg(), 0);
3562       }
3563       break;
3564     case CMP_EQ:
3565       if (fs == ft) {
3566         SetFPUResult(fd_reg(), -1);
3567       } else {
3568         SetFPUResult(fd_reg(), 0);
3569       }
3570       break;
3571     case CMP_UEQ:
3572       if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3573         SetFPUResult(fd_reg(), -1);
3574       } else {
3575         SetFPUResult(fd_reg(), 0);
3576       }
3577       break;
3578     case CMP_LT:
3579       if (fs < ft) {
3580         SetFPUResult(fd_reg(), -1);
3581       } else {
3582         SetFPUResult(fd_reg(), 0);
3583       }
3584       break;
3585     case CMP_ULT:
3586       if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3587         SetFPUResult(fd_reg(), -1);
3588       } else {
3589         SetFPUResult(fd_reg(), 0);
3590       }
3591       break;
3592     case CMP_LE:
3593       if (fs <= ft) {
3594         SetFPUResult(fd_reg(), -1);
3595       } else {
3596         SetFPUResult(fd_reg(), 0);
3597       }
3598       break;
3599     case CMP_ULE:
3600       if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3601         SetFPUResult(fd_reg(), -1);
3602       } else {
3603         SetFPUResult(fd_reg(), 0);
3604       }
3605       break;
3606     case CMP_OR:
3607       if (!std::isnan(fs) && !std::isnan(ft)) {
3608         SetFPUResult(fd_reg(), -1);
3609       } else {
3610         SetFPUResult(fd_reg(), 0);
3611       }
3612       break;
3613     case CMP_UNE:
3614       if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3615         SetFPUResult(fd_reg(), -1);
3616       } else {
3617         SetFPUResult(fd_reg(), 0);
3618       }
3619       break;
3620     case CMP_NE:
3621       if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
3622         SetFPUResult(fd_reg(), -1);
3623       } else {
3624         SetFPUResult(fd_reg(), 0);
3625       }
3626       break;
3627     default:
3628       UNREACHABLE();
3629   }
3630 }
3631 
DecodeTypeRegisterCOP1()3632 void Simulator::DecodeTypeRegisterCOP1() {
3633   switch (instr_.RsFieldRaw()) {
3634     case CFC1:
3635       // At the moment only FCSR is supported.
3636       DCHECK_EQ(fs_reg(), kFCSRRegister);
3637       SetResult(rt_reg(), FCSR_);
3638       break;
3639     case MFC1:
3640       SetResult(rt_reg(), get_fpu_register_word(fs_reg()));
3641       break;
3642     case MFHC1:
3643       if (IsFp64Mode()) {
3644         SetResult(rt_reg(), get_fpu_register_hi_word(fs_reg()));
3645       } else {
3646         SetResult(rt_reg(), get_fpu_register_word(fs_reg() + 1));
3647       }
3648       break;
3649     case CTC1: {
3650       // At the moment only FCSR is supported.
3651       DCHECK_EQ(fs_reg(), kFCSRRegister);
3652       int32_t reg = registers_[rt_reg()];
3653       if (IsMipsArchVariant(kMips32r6)) {
3654         FCSR_ = reg | kFCSRNaN2008FlagMask;
3655       } else {
3656         DCHECK(IsMipsArchVariant(kMips32r1) || IsMipsArchVariant(kMips32r2));
3657         FCSR_ = reg & ~kFCSRNaN2008FlagMask;
3658       }
3659       TraceRegWr(static_cast<int32_t>(FCSR_));
3660       break;
3661     }
3662     case MTC1:
3663       // Hardware writes upper 32-bits to zero on mtc1.
3664       set_fpu_register_hi_word(fs_reg(), 0);
3665       set_fpu_register_word(fs_reg(), registers_[rt_reg()]);
3666       TraceRegWr(get_fpu_register_word(fs_reg()), FLOAT);
3667       break;
3668     case MTHC1:
3669       if (IsFp64Mode()) {
3670         set_fpu_register_hi_word(fs_reg(), registers_[rt_reg()]);
3671         TraceRegWr(get_fpu_register(fs_reg()), DOUBLE);
3672       } else {
3673         set_fpu_register_word(fs_reg() + 1, registers_[rt_reg()]);
3674         if (fs_reg() % 2) {
3675           TraceRegWr(get_fpu_register_word(fs_reg() + 1), FLOAT);
3676         } else {
3677           TraceRegWr(get_fpu_register(fs_reg()), DOUBLE);
3678         }
3679       }
3680       break;
3681     case S: {
3682       DecodeTypeRegisterSRsType();
3683       break;
3684     }
3685     case D:
3686       DecodeTypeRegisterDRsType();
3687       break;
3688     case W:
3689       DecodeTypeRegisterWRsType();
3690       break;
3691     case L:
3692       DecodeTypeRegisterLRsType();
3693       break;
3694     case PS:
3695       // Not implemented.
3696       UNREACHABLE();
3697     default:
3698       UNREACHABLE();
3699   }
3700 }
3701 
DecodeTypeRegisterCOP1X()3702 void Simulator::DecodeTypeRegisterCOP1X() {
3703   switch (instr_.FunctionFieldRaw()) {
3704     case MADD_S: {
3705       DCHECK(IsMipsArchVariant(kMips32r2));
3706       float fr, ft, fs;
3707       fr = get_fpu_register_float(fr_reg());
3708       fs = get_fpu_register_float(fs_reg());
3709       ft = get_fpu_register_float(ft_reg());
3710       SetFPUFloatResult(fd_reg(), fs * ft + fr);
3711       break;
3712     }
3713     case MSUB_S: {
3714       DCHECK(IsMipsArchVariant(kMips32r2));
3715       float fr, ft, fs;
3716       fr = get_fpu_register_float(fr_reg());
3717       fs = get_fpu_register_float(fs_reg());
3718       ft = get_fpu_register_float(ft_reg());
3719       SetFPUFloatResult(fd_reg(), fs * ft - fr);
3720       break;
3721     }
3722     case MADD_D: {
3723       DCHECK(IsMipsArchVariant(kMips32r2));
3724       double fr, ft, fs;
3725       fr = get_fpu_register_double(fr_reg());
3726       fs = get_fpu_register_double(fs_reg());
3727       ft = get_fpu_register_double(ft_reg());
3728       SetFPUDoubleResult(fd_reg(), fs * ft + fr);
3729       break;
3730     }
3731     case MSUB_D: {
3732       DCHECK(IsMipsArchVariant(kMips32r2));
3733       double fr, ft, fs;
3734       fr = get_fpu_register_double(fr_reg());
3735       fs = get_fpu_register_double(fs_reg());
3736       ft = get_fpu_register_double(ft_reg());
3737       SetFPUDoubleResult(fd_reg(), fs * ft - fr);
3738       break;
3739     }
3740     default:
3741       UNREACHABLE();
3742   }
3743 }
3744 
DecodeTypeRegisterSPECIAL()3745 void Simulator::DecodeTypeRegisterSPECIAL() {
3746   int64_t alu_out = 0x12345678;
3747   int64_t i64hilo = 0;
3748   uint64_t u64hilo = 0;
3749   bool do_interrupt = false;
3750 
3751   switch (instr_.FunctionFieldRaw()) {
3752     case SELEQZ_S:
3753       DCHECK(IsMipsArchVariant(kMips32r6));
3754       SetResult(rd_reg(), rt() == 0 ? rs() : 0);
3755       break;
3756     case SELNEZ_S:
3757       DCHECK(IsMipsArchVariant(kMips32r6));
3758       SetResult(rd_reg(), rt() != 0 ? rs() : 0);
3759       break;
3760     case JR: {
3761       int32_t next_pc = rs();
3762       int32_t current_pc = get_pc();
3763       Instruction* branch_delay_instr =
3764           reinterpret_cast<Instruction*>(current_pc + kInstrSize);
3765       BranchDelayInstructionDecode(branch_delay_instr);
3766       set_pc(next_pc);
3767       pc_modified_ = true;
3768       break;
3769     }
3770     case JALR: {
3771       int32_t next_pc = rs();
3772       int32_t return_addr_reg = rd_reg();
3773       int32_t current_pc = get_pc();
3774       Instruction* branch_delay_instr =
3775           reinterpret_cast<Instruction*>(current_pc + kInstrSize);
3776       BranchDelayInstructionDecode(branch_delay_instr);
3777       set_register(return_addr_reg, current_pc + 2 * kInstrSize);
3778       set_pc(next_pc);
3779       pc_modified_ = true;
3780       break;
3781     }
3782     case SLL:
3783       alu_out = rt() << sa();
3784       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3785       break;
3786     case SRL:
3787       if (rs_reg() == 0) {
3788         // Regular logical right shift of a word by a fixed number of
3789         // bits instruction. RS field is always equal to 0.
3790         alu_out = rt_u() >> sa();
3791       } else {
3792         // Logical right-rotate of a word by a fixed number of bits. This
3793         // is special case of SRL instruction, added in MIPS32 Release 2.
3794         // RS field is equal to 00001.
3795         alu_out = base::bits::RotateRight32(rt_u(), sa());
3796       }
3797       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3798       break;
3799     case SRA:
3800       alu_out = rt() >> sa();
3801       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3802       break;
3803     case SLLV:
3804       alu_out = rt() << rs();
3805       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3806       break;
3807     case SRLV:
3808       if (sa() == 0) {
3809         // Regular logical right-shift of a word by a variable number of
3810         // bits instruction. SA field is always equal to 0.
3811         alu_out = rt_u() >> rs();
3812       } else {
3813         // Logical right-rotate of a word by a variable number of bits.
3814         // This is special case od SRLV instruction, added in MIPS32
3815         // Release 2. SA field is equal to 00001.
3816         alu_out = base::bits::RotateRight32(rt_u(), rs_u());
3817       }
3818       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3819       break;
3820     case SRAV:
3821       SetResult(rd_reg(), rt() >> rs());
3822       break;
3823     case LSA: {
3824       DCHECK(IsMipsArchVariant(kMips32r6));
3825       int8_t sa = lsa_sa() + 1;
3826       int32_t _rt = rt();
3827       int32_t _rs = rs();
3828       int32_t res = _rs << sa;
3829       res += _rt;
3830       DCHECK_EQ(res, (rs() << (lsa_sa() + 1)) + rt());
3831       SetResult(rd_reg(), (rs() << (lsa_sa() + 1)) + rt());
3832       break;
3833     }
3834     case MFHI:  // MFHI == CLZ on R6.
3835       if (!IsMipsArchVariant(kMips32r6)) {
3836         DCHECK_EQ(sa(), 0);
3837         alu_out = get_register(HI);
3838       } else {
3839         // MIPS spec: If no bits were set in GPR rs, the result written to
3840         // GPR rd is 32.
3841         DCHECK_EQ(sa(), 1);
3842         alu_out = base::bits::CountLeadingZeros32(rs_u());
3843       }
3844       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3845       break;
3846     case MFLO:
3847       alu_out = get_register(LO);
3848       SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3849       break;
3850     // Instructions using HI and LO registers.
3851     case MULT:
3852       i64hilo = static_cast<int64_t>(rs()) * static_cast<int64_t>(rt());
3853       if (!IsMipsArchVariant(kMips32r6)) {
3854         set_register(LO, static_cast<int32_t>(i64hilo & 0xFFFFFFFF));
3855         set_register(HI, static_cast<int32_t>(i64hilo >> 32));
3856       } else {
3857         switch (sa()) {
3858           case MUL_OP:
3859             SetResult(rd_reg(), static_cast<int32_t>(i64hilo & 0xFFFFFFFF));
3860             break;
3861           case MUH_OP:
3862             SetResult(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
3863             break;
3864           default:
3865             UNIMPLEMENTED_MIPS();
3866             break;
3867         }
3868       }
3869       break;
3870     case MULTU:
3871       u64hilo = static_cast<uint64_t>(rs_u()) * static_cast<uint64_t>(rt_u());
3872       if (!IsMipsArchVariant(kMips32r6)) {
3873         set_register(LO, static_cast<int32_t>(u64hilo & 0xFFFFFFFF));
3874         set_register(HI, static_cast<int32_t>(u64hilo >> 32));
3875       } else {
3876         switch (sa()) {
3877           case MUL_OP:
3878             SetResult(rd_reg(), static_cast<int32_t>(u64hilo & 0xFFFFFFFF));
3879             break;
3880           case MUH_OP:
3881             SetResult(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
3882             break;
3883           default:
3884             UNIMPLEMENTED_MIPS();
3885             break;
3886         }
3887       }
3888       break;
3889     case DIV:
3890       if (IsMipsArchVariant(kMips32r6)) {
3891         switch (sa()) {
3892           case DIV_OP:
3893             if (rs() == INT_MIN && rt() == -1) {
3894               SetResult(rd_reg(), INT_MIN);
3895             } else if (rt() != 0) {
3896               SetResult(rd_reg(), rs() / rt());
3897             }
3898             break;
3899           case MOD_OP:
3900             if (rs() == INT_MIN && rt() == -1) {
3901               SetResult(rd_reg(), 0);
3902             } else if (rt() != 0) {
3903               SetResult(rd_reg(), rs() % rt());
3904             }
3905             break;
3906           default:
3907             UNIMPLEMENTED_MIPS();
3908             break;
3909         }
3910       } else {
3911         // Divide by zero and overflow was not checked in the
3912         // configuration step - div and divu do not raise exceptions. On
3913         // division by 0 the result will be UNPREDICTABLE. On overflow
3914         // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3915         if (rs() == INT_MIN && rt() == -1) {
3916           set_register(LO, INT_MIN);
3917           set_register(HI, 0);
3918         } else if (rt() != 0) {
3919           set_register(LO, rs() / rt());
3920           set_register(HI, rs() % rt());
3921         }
3922       }
3923       break;
3924     case DIVU:
3925       if (IsMipsArchVariant(kMips32r6)) {
3926         switch (sa()) {
3927           case DIV_OP:
3928             if (rt_u() != 0) {
3929               SetResult(rd_reg(), rs_u() / rt_u());
3930             }
3931             break;
3932           case MOD_OP:
3933             if (rt_u() != 0) {
3934               SetResult(rd_reg(), rs_u() % rt_u());
3935             }
3936             break;
3937           default:
3938             UNIMPLEMENTED_MIPS();
3939             break;
3940         }
3941       } else {
3942         if (rt_u() != 0) {
3943           set_register(LO, rs_u() / rt_u());
3944           set_register(HI, rs_u() % rt_u());
3945         }
3946       }
3947       break;
3948     case ADD:
3949       if (HaveSameSign(rs(), rt())) {
3950         if (rs() > 0) {
3951           if (rs() <= (Registers::kMaxValue - rt())) {
3952             SignalException(kIntegerOverflow);
3953           }
3954         } else if (rs() < 0) {
3955           if (rs() >= (Registers::kMinValue - rt())) {
3956             SignalException(kIntegerUnderflow);
3957           }
3958         }
3959       }
3960       SetResult(rd_reg(), rs() + rt());
3961       break;
3962     case ADDU:
3963       SetResult(rd_reg(), rs() + rt());
3964       break;
3965     case SUB:
3966       if (!HaveSameSign(rs(), rt())) {
3967         if (rs() > 0) {
3968           if (rs() <= (Registers::kMaxValue + rt())) {
3969             SignalException(kIntegerOverflow);
3970           }
3971         } else if (rs() < 0) {
3972           if (rs() >= (Registers::kMinValue + rt())) {
3973             SignalException(kIntegerUnderflow);
3974           }
3975         }
3976       }
3977       SetResult(rd_reg(), rs() - rt());
3978       break;
3979     case SUBU:
3980       SetResult(rd_reg(), rs() - rt());
3981       break;
3982     case AND:
3983       SetResult(rd_reg(), rs() & rt());
3984       break;
3985     case OR:
3986       SetResult(rd_reg(), rs() | rt());
3987       break;
3988     case XOR:
3989       SetResult(rd_reg(), rs() ^ rt());
3990       break;
3991     case NOR:
3992       SetResult(rd_reg(), ~(rs() | rt()));
3993       break;
3994     case SLT:
3995       SetResult(rd_reg(), rs() < rt() ? 1 : 0);
3996       break;
3997     case SLTU:
3998       SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
3999       break;
4000     // Break and trap instructions.
4001     case BREAK:
4002       do_interrupt = true;
4003       break;
4004     case TGE:
4005       do_interrupt = rs() >= rt();
4006       break;
4007     case TGEU:
4008       do_interrupt = rs_u() >= rt_u();
4009       break;
4010     case TLT:
4011       do_interrupt = rs() < rt();
4012       break;
4013     case TLTU:
4014       do_interrupt = rs_u() < rt_u();
4015       break;
4016     case TEQ:
4017       do_interrupt = rs() == rt();
4018       break;
4019     case TNE:
4020       do_interrupt = rs() != rt();
4021       break;
4022     case SYNC:
4023       // TODO(palfia): Ignore sync instruction for now.
4024       break;
4025     // Conditional moves.
4026     case MOVN:
4027       if (rt()) {
4028         SetResult(rd_reg(), rs());
4029       }
4030       break;
4031     case MOVCI: {
4032       uint32_t cc = instr_.FBccValue();
4033       uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
4034       if (instr_.Bit(16)) {  // Read Tf bit.
4035         if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
4036       } else {
4037         if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
4038       }
4039       break;
4040     }
4041     case MOVZ:
4042       if (!rt()) {
4043         SetResult(rd_reg(), rs());
4044       }
4045       break;
4046     default:
4047       UNREACHABLE();
4048   }
4049   if (do_interrupt) {
4050     SoftwareInterrupt();
4051   }
4052 }
4053 
DecodeTypeRegisterSPECIAL2()4054 void Simulator::DecodeTypeRegisterSPECIAL2() {
4055   int32_t alu_out;
4056   switch (instr_.FunctionFieldRaw()) {
4057     case MUL:
4058       // Only the lower 32 bits are kept.
4059       alu_out = rs_u() * rt_u();
4060       // HI and LO are UNPREDICTABLE after the operation.
4061       set_register(LO, Unpredictable);
4062       set_register(HI, Unpredictable);
4063       break;
4064     case CLZ:
4065       // MIPS32 spec: If no bits were set in GPR rs, the result written to
4066       // GPR rd is 32.
4067       alu_out = base::bits::CountLeadingZeros32(rs_u());
4068       break;
4069     default:
4070       alu_out = 0x12345678;
4071       UNREACHABLE();
4072   }
4073   SetResult(rd_reg(), alu_out);
4074 }
4075 
DecodeTypeRegisterSPECIAL3()4076 void Simulator::DecodeTypeRegisterSPECIAL3() {
4077   int32_t alu_out;
4078   switch (instr_.FunctionFieldRaw()) {
4079     case INS: {  // Mips32r2 instruction.
4080       // Interpret rd field as 5-bit msb of insert.
4081       uint16_t msb = rd_reg();
4082       // Interpret sa field as 5-bit lsb of insert.
4083       uint16_t lsb = sa();
4084       uint16_t size = msb - lsb + 1;
4085       uint32_t mask;
4086       if (size < 32) {
4087         mask = (1 << size) - 1;
4088       } else {
4089         mask = std::numeric_limits<uint32_t>::max();
4090       }
4091       alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
4092       // Ins instr leaves result in Rt, rather than Rd.
4093       SetResult(rt_reg(), alu_out);
4094       break;
4095     }
4096     case EXT: {  // Mips32r2 instruction.
4097       // Interpret rd field as 5-bit msb of extract.
4098       uint16_t msb = rd_reg();
4099       // Interpret sa field as 5-bit lsb of extract.
4100       uint16_t lsb = sa();
4101       uint16_t size = msb + 1;
4102       uint32_t mask;
4103       if (size < 32) {
4104         mask = (1 << size) - 1;
4105       } else {
4106         mask = std::numeric_limits<uint32_t>::max();
4107       }
4108       alu_out = (rs_u() & (mask << lsb)) >> lsb;
4109       SetResult(rt_reg(), alu_out);
4110       break;
4111     }
4112     case BSHFL: {
4113       int sa = instr_.SaFieldRaw() >> kSaShift;
4114       switch (sa) {
4115         case BITSWAP: {
4116           uint32_t input = static_cast<uint32_t>(rt());
4117           uint32_t output = 0;
4118           uint8_t i_byte, o_byte;
4119 
4120           // Reverse the bit in byte for each individual byte
4121           for (int i = 0; i < 4; i++) {
4122             output = output >> 8;
4123             i_byte = input & 0xFF;
4124 
4125             // Fast way to reverse bits in byte
4126             // Devised by Sean Anderson, July 13, 2001
4127             o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
4128                                            (i_byte * 0x8020LU & 0x88440LU)) *
4129                                               0x10101LU >>
4130                                           16);
4131 
4132             output = output | (static_cast<uint32_t>(o_byte << 24));
4133             input = input >> 8;
4134           }
4135 
4136           alu_out = static_cast<int32_t>(output);
4137           break;
4138         }
4139         case SEB: {
4140           uint8_t input = static_cast<uint8_t>(rt());
4141           uint32_t output = input;
4142           uint32_t mask = 0x00000080;
4143 
4144           // Extending sign
4145           if (mask & input) {
4146             output |= 0xFFFFFF00;
4147           }
4148 
4149           alu_out = static_cast<int32_t>(output);
4150           break;
4151         }
4152         case SEH: {
4153           uint16_t input = static_cast<uint16_t>(rt());
4154           uint32_t output = input;
4155           uint32_t mask = 0x00008000;
4156 
4157           // Extending sign
4158           if (mask & input) {
4159             output |= 0xFFFF0000;
4160           }
4161 
4162           alu_out = static_cast<int32_t>(output);
4163           break;
4164         }
4165         case WSBH: {
4166           uint32_t input = static_cast<uint32_t>(rt());
4167           uint32_t output = 0;
4168 
4169           uint32_t mask = 0xFF000000;
4170           for (int i = 0; i < 4; i++) {
4171             uint32_t tmp = mask & input;
4172             if (i % 2 == 0) {
4173               tmp = tmp >> 8;
4174             } else {
4175               tmp = tmp << 8;
4176             }
4177             output = output | tmp;
4178             mask = mask >> 8;
4179           }
4180 
4181           alu_out = static_cast<int32_t>(output);
4182           break;
4183         }
4184         default: {
4185           const uint8_t bp = instr_.Bp2Value();
4186           sa >>= kBp2Bits;
4187           switch (sa) {
4188             case ALIGN: {
4189               if (bp == 0) {
4190                 alu_out = static_cast<int32_t>(rt());
4191               } else {
4192                 uint32_t rt_hi = rt() << (8 * bp);
4193                 uint32_t rs_lo = rs() >> (8 * (4 - bp));
4194                 alu_out = static_cast<int32_t>(rt_hi | rs_lo);
4195               }
4196               break;
4197             }
4198             default:
4199               alu_out = 0x12345678;
4200               UNREACHABLE();
4201               break;
4202           }
4203         }
4204       }
4205       SetResult(rd_reg(), alu_out);
4206       break;
4207     }
4208     default:
4209       UNREACHABLE();
4210   }
4211 }
4212 
DecodeMsaDataFormat()4213 int Simulator::DecodeMsaDataFormat() {
4214   int df = -1;
4215   if (instr_.IsMSABranchInstr()) {
4216     switch (instr_.RsFieldRaw()) {
4217       case BZ_V:
4218       case BNZ_V:
4219         df = MSA_VECT;
4220         break;
4221       case BZ_B:
4222       case BNZ_B:
4223         df = MSA_BYTE;
4224         break;
4225       case BZ_H:
4226       case BNZ_H:
4227         df = MSA_HALF;
4228         break;
4229       case BZ_W:
4230       case BNZ_W:
4231         df = MSA_WORD;
4232         break;
4233       case BZ_D:
4234       case BNZ_D:
4235         df = MSA_DWORD;
4236         break;
4237       default:
4238         UNREACHABLE();
4239         break;
4240     }
4241   } else {
4242     int DF[] = {MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD};
4243     switch (instr_.MSAMinorOpcodeField()) {
4244       case kMsaMinorI5:
4245       case kMsaMinorI10:
4246       case kMsaMinor3R:
4247         df = DF[instr_.Bits(22, 21)];
4248         break;
4249       case kMsaMinorMI10:
4250         df = DF[instr_.Bits(1, 0)];
4251         break;
4252       case kMsaMinorBIT:
4253         df = DF[instr_.MsaBitDf()];
4254         break;
4255       case kMsaMinorELM:
4256         df = DF[instr_.MsaElmDf()];
4257         break;
4258       case kMsaMinor3RF: {
4259         uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask;
4260         switch (opcode) {
4261           case FEXDO:
4262           case FTQ:
4263           case MUL_Q:
4264           case MADD_Q:
4265           case MSUB_Q:
4266           case MULR_Q:
4267           case MADDR_Q:
4268           case MSUBR_Q:
4269             df = DF[1 + instr_.Bit(21)];
4270             break;
4271           default:
4272             df = DF[2 + instr_.Bit(21)];
4273             break;
4274         }
4275       } break;
4276       case kMsaMinor2R:
4277         df = DF[instr_.Bits(17, 16)];
4278         break;
4279       case kMsaMinor2RF:
4280         df = DF[2 + instr_.Bit(16)];
4281         break;
4282       default:
4283         UNREACHABLE();
4284         break;
4285     }
4286   }
4287   return df;
4288 }
4289 
DecodeTypeMsaI8()4290 void Simulator::DecodeTypeMsaI8() {
4291   DCHECK(IsMipsArchVariant(kMips32r6));
4292   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4293   uint32_t opcode = instr_.InstructionBits() & kMsaI8Mask;
4294   int8_t i8 = instr_.MsaImm8Value();
4295   msa_reg_t ws, wd;
4296 
4297   switch (opcode) {
4298     case ANDI_B:
4299       get_msa_register(instr_.WsValue(), ws.b);
4300       for (int i = 0; i < kMSALanesByte; i++) {
4301         wd.b[i] = ws.b[i] & i8;
4302       }
4303       set_msa_register(instr_.WdValue(), wd.b);
4304       TraceMSARegWr(wd.b);
4305       break;
4306     case ORI_B:
4307       get_msa_register(instr_.WsValue(), ws.b);
4308       for (int i = 0; i < kMSALanesByte; i++) {
4309         wd.b[i] = ws.b[i] | i8;
4310       }
4311       set_msa_register(instr_.WdValue(), wd.b);
4312       TraceMSARegWr(wd.b);
4313       break;
4314     case NORI_B:
4315       get_msa_register(instr_.WsValue(), ws.b);
4316       for (int i = 0; i < kMSALanesByte; i++) {
4317         wd.b[i] = ~(ws.b[i] | i8);
4318       }
4319       set_msa_register(instr_.WdValue(), wd.b);
4320       TraceMSARegWr(wd.b);
4321       break;
4322     case XORI_B:
4323       get_msa_register(instr_.WsValue(), ws.b);
4324       for (int i = 0; i < kMSALanesByte; i++) {
4325         wd.b[i] = ws.b[i] ^ i8;
4326       }
4327       set_msa_register(instr_.WdValue(), wd.b);
4328       TraceMSARegWr(wd.b);
4329       break;
4330     case BMNZI_B:
4331       get_msa_register(instr_.WsValue(), ws.b);
4332       get_msa_register(instr_.WdValue(), wd.b);
4333       for (int i = 0; i < kMSALanesByte; i++) {
4334         wd.b[i] = (ws.b[i] & i8) | (wd.b[i] & ~i8);
4335       }
4336       set_msa_register(instr_.WdValue(), wd.b);
4337       TraceMSARegWr(wd.b);
4338       break;
4339     case BMZI_B:
4340       get_msa_register(instr_.WsValue(), ws.b);
4341       get_msa_register(instr_.WdValue(), wd.b);
4342       for (int i = 0; i < kMSALanesByte; i++) {
4343         wd.b[i] = (ws.b[i] & ~i8) | (wd.b[i] & i8);
4344       }
4345       set_msa_register(instr_.WdValue(), wd.b);
4346       TraceMSARegWr(wd.b);
4347       break;
4348     case BSELI_B:
4349       get_msa_register(instr_.WsValue(), ws.b);
4350       get_msa_register(instr_.WdValue(), wd.b);
4351       for (int i = 0; i < kMSALanesByte; i++) {
4352         wd.b[i] = (ws.b[i] & ~wd.b[i]) | (wd.b[i] & i8);
4353       }
4354       set_msa_register(instr_.WdValue(), wd.b);
4355       TraceMSARegWr(wd.b);
4356       break;
4357     case SHF_B:
4358       get_msa_register(instr_.WsValue(), ws.b);
4359       for (int i = 0; i < kMSALanesByte; i++) {
4360         int j = i % 4;
4361         int k = (i8 >> (2 * j)) & 0x3;
4362         wd.b[i] = ws.b[i - j + k];
4363       }
4364       set_msa_register(instr_.WdValue(), wd.b);
4365       TraceMSARegWr(wd.b);
4366       break;
4367     case SHF_H:
4368       get_msa_register(instr_.WsValue(), ws.h);
4369       for (int i = 0; i < kMSALanesHalf; i++) {
4370         int j = i % 4;
4371         int k = (i8 >> (2 * j)) & 0x3;
4372         wd.h[i] = ws.h[i - j + k];
4373       }
4374       set_msa_register(instr_.WdValue(), wd.h);
4375       TraceMSARegWr(wd.h);
4376       break;
4377     case SHF_W:
4378       get_msa_register(instr_.WsValue(), ws.w);
4379       for (int i = 0; i < kMSALanesWord; i++) {
4380         int j = (i8 >> (2 * i)) & 0x3;
4381         wd.w[i] = ws.w[j];
4382       }
4383       set_msa_register(instr_.WdValue(), wd.w);
4384       TraceMSARegWr(wd.w);
4385       break;
4386     default:
4387       UNREACHABLE();
4388   }
4389 }
4390 
4391 template <typename T>
MsaI5InstrHelper(uint32_t opcode,T ws,int32_t i5)4392 T Simulator::MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5) {
4393   T res;
4394   uint32_t ui5 = i5 & 0x1Fu;
4395   uint64_t ws_u64 = static_cast<uint64_t>(ws);
4396   uint64_t ui5_u64 = static_cast<uint64_t>(ui5);
4397 
4398   switch (opcode) {
4399     case ADDVI:
4400       res = static_cast<T>(ws + ui5);
4401       break;
4402     case SUBVI:
4403       res = static_cast<T>(ws - ui5);
4404       break;
4405     case MAXI_S:
4406       res = static_cast<T>(Max(ws, static_cast<T>(i5)));
4407       break;
4408     case MINI_S:
4409       res = static_cast<T>(Min(ws, static_cast<T>(i5)));
4410       break;
4411     case MAXI_U:
4412       res = static_cast<T>(Max(ws_u64, ui5_u64));
4413       break;
4414     case MINI_U:
4415       res = static_cast<T>(Min(ws_u64, ui5_u64));
4416       break;
4417     case CEQI:
4418       res = static_cast<T>(!Compare(ws, static_cast<T>(i5)) ? -1ull : 0ull);
4419       break;
4420     case CLTI_S:
4421       res = static_cast<T>((Compare(ws, static_cast<T>(i5)) == -1) ? -1ull
4422                                                                    : 0ull);
4423       break;
4424     case CLTI_U:
4425       res = static_cast<T>((Compare(ws_u64, ui5_u64) == -1) ? -1ull : 0ull);
4426       break;
4427     case CLEI_S:
4428       res =
4429           static_cast<T>((Compare(ws, static_cast<T>(i5)) != 1) ? -1ull : 0ull);
4430       break;
4431     case CLEI_U:
4432       res = static_cast<T>((Compare(ws_u64, ui5_u64) != 1) ? -1ull : 0ull);
4433       break;
4434     default:
4435       UNREACHABLE();
4436   }
4437   return res;
4438 }
4439 
DecodeTypeMsaI5()4440 void Simulator::DecodeTypeMsaI5() {
4441   DCHECK(IsMipsArchVariant(kMips32r6));
4442   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4443   uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask;
4444   msa_reg_t ws, wd;
4445 
4446   // sign extend 5bit value to int32_t
4447   int32_t i5 = static_cast<int32_t>(instr_.MsaImm5Value() << 27) >> 27;
4448 
4449 #define MSA_I5_DF(elem, num_of_lanes)                      \
4450   get_msa_register(instr_.WsValue(), ws.elem);             \
4451   for (int i = 0; i < num_of_lanes; i++) {                 \
4452     wd.elem[i] = MsaI5InstrHelper(opcode, ws.elem[i], i5); \
4453   }                                                        \
4454   set_msa_register(instr_.WdValue(), wd.elem);             \
4455   TraceMSARegWr(wd.elem)
4456 
4457   switch (DecodeMsaDataFormat()) {
4458     case MSA_BYTE:
4459       MSA_I5_DF(b, kMSALanesByte);
4460       break;
4461     case MSA_HALF:
4462       MSA_I5_DF(h, kMSALanesHalf);
4463       break;
4464     case MSA_WORD:
4465       MSA_I5_DF(w, kMSALanesWord);
4466       break;
4467     case MSA_DWORD:
4468       MSA_I5_DF(d, kMSALanesDword);
4469       break;
4470     default:
4471       UNREACHABLE();
4472   }
4473 #undef MSA_I5_DF
4474 }
4475 
DecodeTypeMsaI10()4476 void Simulator::DecodeTypeMsaI10() {
4477   DCHECK(IsMipsArchVariant(kMips32r6));
4478   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4479   uint32_t opcode = instr_.InstructionBits() & kMsaI5Mask;
4480   int64_t s10 = (static_cast<int64_t>(instr_.MsaImm10Value()) << 54) >> 54;
4481   msa_reg_t wd;
4482 
4483 #define MSA_I10_DF(elem, num_of_lanes, T)      \
4484   for (int i = 0; i < num_of_lanes; ++i) {     \
4485     wd.elem[i] = static_cast<T>(s10);          \
4486   }                                            \
4487   set_msa_register(instr_.WdValue(), wd.elem); \
4488   TraceMSARegWr(wd.elem)
4489 
4490   if (opcode == LDI) {
4491     switch (DecodeMsaDataFormat()) {
4492       case MSA_BYTE:
4493         MSA_I10_DF(b, kMSALanesByte, int8_t);
4494         break;
4495       case MSA_HALF:
4496         MSA_I10_DF(h, kMSALanesHalf, int16_t);
4497         break;
4498       case MSA_WORD:
4499         MSA_I10_DF(w, kMSALanesWord, int32_t);
4500         break;
4501       case MSA_DWORD:
4502         MSA_I10_DF(d, kMSALanesDword, int64_t);
4503         break;
4504       default:
4505         UNREACHABLE();
4506     }
4507   } else {
4508     UNREACHABLE();
4509   }
4510 #undef MSA_I10_DF
4511 }
4512 
DecodeTypeMsaELM()4513 void Simulator::DecodeTypeMsaELM() {
4514   DCHECK(IsMipsArchVariant(kMips32r6));
4515   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4516   uint32_t opcode = instr_.InstructionBits() & kMsaLongerELMMask;
4517   int32_t n = instr_.MsaElmNValue();
4518   int32_t alu_out;
4519   switch (opcode) {
4520     case CTCMSA:
4521       DCHECK_EQ(sa(), kMSACSRRegister);
4522       MSACSR_ = bit_cast<uint32_t>(registers_[rd_reg()]);
4523       TraceRegWr(static_cast<int32_t>(MSACSR_));
4524       break;
4525     case CFCMSA:
4526       DCHECK_EQ(rd_reg(), kMSACSRRegister);
4527       SetResult(sa(), bit_cast<int32_t>(MSACSR_));
4528       break;
4529     case MOVE_V: {
4530       msa_reg_t ws;
4531       get_msa_register(ws_reg(), &ws);
4532       set_msa_register(wd_reg(), &ws);
4533       TraceMSARegWr(&ws);
4534     } break;
4535     default:
4536       opcode &= kMsaELMMask;
4537       switch (opcode) {
4538         case COPY_S:
4539         case COPY_U: {
4540           msa_reg_t ws;
4541           switch (DecodeMsaDataFormat()) {
4542             case MSA_BYTE: {
4543               DCHECK_LT(n, kMSALanesByte);
4544               get_msa_register(instr_.WsValue(), ws.b);
4545               alu_out = static_cast<int32_t>(ws.b[n]);
4546               SetResult(wd_reg(),
4547                         (opcode == COPY_U) ? alu_out & 0xFFu : alu_out);
4548               break;
4549             }
4550             case MSA_HALF: {
4551               DCHECK_LT(n, kMSALanesHalf);
4552               get_msa_register(instr_.WsValue(), ws.h);
4553               alu_out = static_cast<int32_t>(ws.h[n]);
4554               SetResult(wd_reg(),
4555                         (opcode == COPY_U) ? alu_out & 0xFFFFu : alu_out);
4556               break;
4557             }
4558             case MSA_WORD: {
4559               DCHECK_LT(n, kMSALanesWord);
4560               get_msa_register(instr_.WsValue(), ws.w);
4561               alu_out = static_cast<int32_t>(ws.w[n]);
4562               SetResult(wd_reg(), alu_out);
4563               break;
4564             }
4565             default:
4566               UNREACHABLE();
4567           }
4568         } break;
4569         case INSERT: {
4570           msa_reg_t wd;
4571           switch (DecodeMsaDataFormat()) {
4572             case MSA_BYTE: {
4573               DCHECK_LT(n, kMSALanesByte);
4574               int32_t rs = get_register(instr_.WsValue());
4575               get_msa_register(instr_.WdValue(), wd.b);
4576               wd.b[n] = rs & 0xFFu;
4577               set_msa_register(instr_.WdValue(), wd.b);
4578               TraceMSARegWr(wd.b);
4579               break;
4580             }
4581             case MSA_HALF: {
4582               DCHECK_LT(n, kMSALanesHalf);
4583               int32_t rs = get_register(instr_.WsValue());
4584               get_msa_register(instr_.WdValue(), wd.h);
4585               wd.h[n] = rs & 0xFFFFu;
4586               set_msa_register(instr_.WdValue(), wd.h);
4587               TraceMSARegWr(wd.h);
4588               break;
4589             }
4590             case MSA_WORD: {
4591               DCHECK_LT(n, kMSALanesWord);
4592               int32_t rs = get_register(instr_.WsValue());
4593               get_msa_register(instr_.WdValue(), wd.w);
4594               wd.w[n] = rs;
4595               set_msa_register(instr_.WdValue(), wd.w);
4596               TraceMSARegWr(wd.w);
4597               break;
4598             }
4599             default:
4600               UNREACHABLE();
4601           }
4602         } break;
4603         case SLDI: {
4604           uint8_t v[32];
4605           msa_reg_t ws;
4606           msa_reg_t wd;
4607           get_msa_register(ws_reg(), &ws);
4608           get_msa_register(wd_reg(), &wd);
4609 #define SLDI_DF(s, k)                \
4610   for (unsigned i = 0; i < s; i++) { \
4611     v[i] = ws.b[s * k + i];          \
4612     v[i + s] = wd.b[s * k + i];      \
4613   }                                  \
4614   for (unsigned i = 0; i < s; i++) { \
4615     wd.b[s * k + i] = v[i + n];      \
4616   }
4617           switch (DecodeMsaDataFormat()) {
4618             case MSA_BYTE:
4619               DCHECK(n < kMSALanesByte);
4620               SLDI_DF(kMSARegSize / sizeof(int8_t) / kBitsPerByte, 0)
4621               break;
4622             case MSA_HALF:
4623               DCHECK(n < kMSALanesHalf);
4624               for (int k = 0; k < 2; ++k) {
4625                 SLDI_DF(kMSARegSize / sizeof(int16_t) / kBitsPerByte, k)
4626               }
4627               break;
4628             case MSA_WORD:
4629               DCHECK(n < kMSALanesWord);
4630               for (int k = 0; k < 4; ++k) {
4631                 SLDI_DF(kMSARegSize / sizeof(int32_t) / kBitsPerByte, k)
4632               }
4633               break;
4634             case MSA_DWORD:
4635               DCHECK(n < kMSALanesDword);
4636               for (int k = 0; k < 8; ++k) {
4637                 SLDI_DF(kMSARegSize / sizeof(int64_t) / kBitsPerByte, k)
4638               }
4639               break;
4640             default:
4641               UNREACHABLE();
4642           }
4643           set_msa_register(wd_reg(), &wd);
4644           TraceMSARegWr(&wd);
4645         } break;
4646 #undef SLDI_DF
4647         case SPLATI:
4648         case INSVE:
4649           UNIMPLEMENTED();
4650           break;
4651         default:
4652           UNREACHABLE();
4653       }
4654       break;
4655   }
4656 }
4657 
4658 template <typename T>
MsaBitInstrHelper(uint32_t opcode,T wd,T ws,int32_t m)4659 T Simulator::MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m) {
4660   using uT = typename std::make_unsigned<T>::type;
4661   T res;
4662   switch (opcode) {
4663     case SLLI:
4664       res = static_cast<T>(ws << m);
4665       break;
4666     case SRAI:
4667       res = static_cast<T>(ArithmeticShiftRight(ws, m));
4668       break;
4669     case SRLI:
4670       res = static_cast<T>(static_cast<uT>(ws) >> m);
4671       break;
4672     case BCLRI:
4673       res = static_cast<T>(static_cast<T>(~(1ull << m)) & ws);
4674       break;
4675     case BSETI:
4676       res = static_cast<T>(static_cast<T>(1ull << m) | ws);
4677       break;
4678     case BNEGI:
4679       res = static_cast<T>(static_cast<T>(1ull << m) ^ ws);
4680       break;
4681     case BINSLI: {
4682       int elem_size = 8 * sizeof(T);
4683       int bits = m + 1;
4684       if (bits == elem_size) {
4685         res = static_cast<T>(ws);
4686       } else {
4687         uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits);
4688         res = static_cast<T>((static_cast<T>(mask) & ws) |
4689                              (static_cast<T>(~mask) & wd));
4690       }
4691     } break;
4692     case BINSRI: {
4693       int elem_size = 8 * sizeof(T);
4694       int bits = m + 1;
4695       if (bits == elem_size) {
4696         res = static_cast<T>(ws);
4697       } else {
4698         uint64_t mask = (1ull << bits) - 1;
4699         res = static_cast<T>((static_cast<T>(mask) & ws) |
4700                              (static_cast<T>(~mask) & wd));
4701       }
4702     } break;
4703     case SAT_S: {
4704 #define M_MAX_INT(x) static_cast<int64_t>((1LL << ((x)-1)) - 1)
4705 #define M_MIN_INT(x) static_cast<int64_t>(-(1LL << ((x)-1)))
4706       int shift = 64 - 8 * sizeof(T);
4707       int64_t ws_i64 = (static_cast<int64_t>(ws) << shift) >> shift;
4708       res = static_cast<T>(ws_i64 < M_MIN_INT(m + 1)
4709                                ? M_MIN_INT(m + 1)
4710                                : ws_i64 > M_MAX_INT(m + 1) ? M_MAX_INT(m + 1)
4711                                                            : ws_i64);
4712 #undef M_MAX_INT
4713 #undef M_MIN_INT
4714     } break;
4715     case SAT_U: {
4716 #define M_MAX_UINT(x) static_cast<uint64_t>(-1ULL >> (64 - (x)))
4717       uint64_t mask = static_cast<uint64_t>(-1ULL >> (64 - 8 * sizeof(T)));
4718       uint64_t ws_u64 = static_cast<uint64_t>(ws) & mask;
4719       res = static_cast<T>(ws_u64 < M_MAX_UINT(m + 1) ? ws_u64
4720                                                       : M_MAX_UINT(m + 1));
4721 #undef M_MAX_UINT
4722     } break;
4723     case SRARI:
4724       if (!m) {
4725         res = static_cast<T>(ws);
4726       } else {
4727         res = static_cast<T>(ArithmeticShiftRight(ws, m)) +
4728               static_cast<T>((ws >> (m - 1)) & 0x1);
4729       }
4730       break;
4731     case SRLRI:
4732       if (!m) {
4733         res = static_cast<T>(ws);
4734       } else {
4735         res = static_cast<T>(static_cast<uT>(ws) >> m) +
4736               static_cast<T>((ws >> (m - 1)) & 0x1);
4737       }
4738       break;
4739     default:
4740       UNREACHABLE();
4741   }
4742   return res;
4743 }
4744 
DecodeTypeMsaBIT()4745 void Simulator::DecodeTypeMsaBIT() {
4746   DCHECK(IsMipsArchVariant(kMips32r6));
4747   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4748   uint32_t opcode = instr_.InstructionBits() & kMsaBITMask;
4749   int32_t m = instr_.MsaBitMValue();
4750   msa_reg_t wd, ws;
4751 
4752 #define MSA_BIT_DF(elem, num_of_lanes)                                 \
4753   get_msa_register(instr_.WsValue(), ws.elem);                         \
4754   if (opcode == BINSLI || opcode == BINSRI) {                          \
4755     get_msa_register(instr_.WdValue(), wd.elem);                       \
4756   }                                                                    \
4757   for (int i = 0; i < num_of_lanes; i++) {                             \
4758     wd.elem[i] = MsaBitInstrHelper(opcode, wd.elem[i], ws.elem[i], m); \
4759   }                                                                    \
4760   set_msa_register(instr_.WdValue(), wd.elem);                         \
4761   TraceMSARegWr(wd.elem)
4762 
4763   switch (DecodeMsaDataFormat()) {
4764     case MSA_BYTE:
4765       DCHECK(m < kMSARegSize / kMSALanesByte);
4766       MSA_BIT_DF(b, kMSALanesByte);
4767       break;
4768     case MSA_HALF:
4769       DCHECK(m < kMSARegSize / kMSALanesHalf);
4770       MSA_BIT_DF(h, kMSALanesHalf);
4771       break;
4772     case MSA_WORD:
4773       DCHECK(m < kMSARegSize / kMSALanesWord);
4774       MSA_BIT_DF(w, kMSALanesWord);
4775       break;
4776     case MSA_DWORD:
4777       DCHECK(m < kMSARegSize / kMSALanesDword);
4778       MSA_BIT_DF(d, kMSALanesDword);
4779       break;
4780     default:
4781       UNREACHABLE();
4782   }
4783 #undef MSA_BIT_DF
4784 }
4785 
DecodeTypeMsaMI10()4786 void Simulator::DecodeTypeMsaMI10() {
4787   DCHECK(IsMipsArchVariant(kMips32r6));
4788   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
4789   uint32_t opcode = instr_.InstructionBits() & kMsaMI10Mask;
4790   int32_t s10 = (static_cast<int32_t>(instr_.MsaImmMI10Value()) << 22) >> 22;
4791   int32_t rs = get_register(instr_.WsValue());
4792   int32_t addr;
4793   msa_reg_t wd;
4794 
4795 #define MSA_MI10_LOAD(elem, num_of_lanes, T)       \
4796   for (int i = 0; i < num_of_lanes; ++i) {         \
4797     addr = rs + (s10 + i) * sizeof(T);             \
4798     wd.elem[i] = ReadMem<T>(addr, instr_.instr()); \
4799   }                                                \
4800   set_msa_register(instr_.WdValue(), wd.elem);
4801 
4802 #define MSA_MI10_STORE(elem, num_of_lanes, T)      \
4803   get_msa_register(instr_.WdValue(), wd.elem);     \
4804   for (int i = 0; i < num_of_lanes; ++i) {         \
4805     addr = rs + (s10 + i) * sizeof(T);             \
4806     WriteMem<T>(addr, wd.elem[i], instr_.instr()); \
4807   }
4808 
4809   if (opcode == MSA_LD) {
4810     switch (DecodeMsaDataFormat()) {
4811       case MSA_BYTE:
4812         MSA_MI10_LOAD(b, kMSALanesByte, int8_t);
4813         break;
4814       case MSA_HALF:
4815         MSA_MI10_LOAD(h, kMSALanesHalf, int16_t);
4816         break;
4817       case MSA_WORD:
4818         MSA_MI10_LOAD(w, kMSALanesWord, int32_t);
4819         break;
4820       case MSA_DWORD:
4821         MSA_MI10_LOAD(d, kMSALanesDword, int64_t);
4822         break;
4823       default:
4824         UNREACHABLE();
4825     }
4826   } else if (opcode == MSA_ST) {
4827     switch (DecodeMsaDataFormat()) {
4828       case MSA_BYTE:
4829         MSA_MI10_STORE(b, kMSALanesByte, int8_t);
4830         break;
4831       case MSA_HALF:
4832         MSA_MI10_STORE(h, kMSALanesHalf, int16_t);
4833         break;
4834       case MSA_WORD:
4835         MSA_MI10_STORE(w, kMSALanesWord, int32_t);
4836         break;
4837       case MSA_DWORD:
4838         MSA_MI10_STORE(d, kMSALanesDword, int64_t);
4839         break;
4840       default:
4841         UNREACHABLE();
4842     }
4843   } else {
4844     UNREACHABLE();
4845   }
4846 
4847 #undef MSA_MI10_LOAD
4848 #undef MSA_MI10_STORE
4849 }
4850 
4851 template <typename T>
Msa3RInstrHelper(uint32_t opcode,T wd,T ws,T wt)4852 T Simulator::Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt) {
4853   using uT = typename std::make_unsigned<T>::type;
4854   T res;
4855   T wt_modulo = wt % (sizeof(T) * 8);
4856   switch (opcode) {
4857     case SLL_MSA:
4858       res = static_cast<T>(ws << wt_modulo);
4859       break;
4860     case SRA_MSA:
4861       res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo));
4862       break;
4863     case SRL_MSA:
4864       res = static_cast<T>(static_cast<uT>(ws) >> wt_modulo);
4865       break;
4866     case BCLR:
4867       res = static_cast<T>(static_cast<T>(~(1ull << wt_modulo)) & ws);
4868       break;
4869     case BSET:
4870       res = static_cast<T>(static_cast<T>(1ull << wt_modulo) | ws);
4871       break;
4872     case BNEG:
4873       res = static_cast<T>(static_cast<T>(1ull << wt_modulo) ^ ws);
4874       break;
4875     case BINSL: {
4876       int elem_size = 8 * sizeof(T);
4877       int bits = wt_modulo + 1;
4878       if (bits == elem_size) {
4879         res = static_cast<T>(ws);
4880       } else {
4881         uint64_t mask = ((1ull << bits) - 1) << (elem_size - bits);
4882         res = static_cast<T>((static_cast<T>(mask) & ws) |
4883                              (static_cast<T>(~mask) & wd));
4884       }
4885     } break;
4886     case BINSR: {
4887       int elem_size = 8 * sizeof(T);
4888       int bits = wt_modulo + 1;
4889       if (bits == elem_size) {
4890         res = static_cast<T>(ws);
4891       } else {
4892         uint64_t mask = (1ull << bits) - 1;
4893         res = static_cast<T>((static_cast<T>(mask) & ws) |
4894                              (static_cast<T>(~mask) & wd));
4895       }
4896     } break;
4897     case ADDV:
4898       res = ws + wt;
4899       break;
4900     case SUBV:
4901       res = ws - wt;
4902       break;
4903     case MAX_S:
4904       res = Max(ws, wt);
4905       break;
4906     case MAX_U:
4907       res = static_cast<T>(Max(static_cast<uT>(ws), static_cast<uT>(wt)));
4908       break;
4909     case MIN_S:
4910       res = Min(ws, wt);
4911       break;
4912     case MIN_U:
4913       res = static_cast<T>(Min(static_cast<uT>(ws), static_cast<uT>(wt)));
4914       break;
4915     case MAX_A:
4916       // We use negative abs in order to avoid problems
4917       // with corner case for MIN_INT
4918       res = Nabs(ws) < Nabs(wt) ? ws : wt;
4919       break;
4920     case MIN_A:
4921       // We use negative abs in order to avoid problems
4922       // with corner case for MIN_INT
4923       res = Nabs(ws) > Nabs(wt) ? ws : wt;
4924       break;
4925     case CEQ:
4926       res = static_cast<T>(!Compare(ws, wt) ? -1ull : 0ull);
4927       break;
4928     case CLT_S:
4929       res = static_cast<T>((Compare(ws, wt) == -1) ? -1ull : 0ull);
4930       break;
4931     case CLT_U:
4932       res = static_cast<T>(
4933           (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) == -1) ? -1ull
4934                                                                     : 0ull);
4935       break;
4936     case CLE_S:
4937       res = static_cast<T>((Compare(ws, wt) != 1) ? -1ull : 0ull);
4938       break;
4939     case CLE_U:
4940       res = static_cast<T>(
4941           (Compare(static_cast<uT>(ws), static_cast<uT>(wt)) != 1) ? -1ull
4942                                                                    : 0ull);
4943       break;
4944     case ADD_A:
4945       res = static_cast<T>(Abs(ws) + Abs(wt));
4946       break;
4947     case ADDS_A: {
4948       T ws_nabs = Nabs(ws);
4949       T wt_nabs = Nabs(wt);
4950       if (ws_nabs < -std::numeric_limits<T>::max() - wt_nabs) {
4951         res = std::numeric_limits<T>::max();
4952       } else {
4953         res = -(ws_nabs + wt_nabs);
4954       }
4955     } break;
4956     case ADDS_S:
4957       res = SaturateAdd(ws, wt);
4958       break;
4959     case ADDS_U: {
4960       uT ws_u = static_cast<uT>(ws);
4961       uT wt_u = static_cast<uT>(wt);
4962       res = static_cast<T>(SaturateAdd(ws_u, wt_u));
4963     } break;
4964     case AVE_S:
4965       res = static_cast<T>((wt & ws) + ((wt ^ ws) >> 1));
4966       break;
4967     case AVE_U: {
4968       uT ws_u = static_cast<uT>(ws);
4969       uT wt_u = static_cast<uT>(wt);
4970       res = static_cast<T>((wt_u & ws_u) + ((wt_u ^ ws_u) >> 1));
4971     } break;
4972     case AVER_S:
4973       res = static_cast<T>((wt | ws) - ((wt ^ ws) >> 1));
4974       break;
4975     case AVER_U: {
4976       uT ws_u = static_cast<uT>(ws);
4977       uT wt_u = static_cast<uT>(wt);
4978       res = static_cast<T>((wt_u | ws_u) - ((wt_u ^ ws_u) >> 1));
4979     } break;
4980     case SUBS_S:
4981       res = SaturateSub(ws, wt);
4982       break;
4983     case SUBS_U: {
4984       uT ws_u = static_cast<uT>(ws);
4985       uT wt_u = static_cast<uT>(wt);
4986       res = static_cast<T>(SaturateSub(ws_u, wt_u));
4987     } break;
4988     case SUBSUS_U: {
4989       uT wsu = static_cast<uT>(ws);
4990       if (wt > 0) {
4991         uT wtu = static_cast<uT>(wt);
4992         if (wtu > wsu) {
4993           res = 0;
4994         } else {
4995           res = static_cast<T>(wsu - wtu);
4996         }
4997       } else {
4998         if (wsu > std::numeric_limits<uT>::max() + wt) {
4999           res = static_cast<T>(std::numeric_limits<uT>::max());
5000         } else {
5001           res = static_cast<T>(wsu - wt);
5002         }
5003       }
5004     } break;
5005     case SUBSUU_S: {
5006       uT wsu = static_cast<uT>(ws);
5007       uT wtu = static_cast<uT>(wt);
5008       uT wdu;
5009       if (wsu > wtu) {
5010         wdu = wsu - wtu;
5011         if (wdu > std::numeric_limits<T>::max()) {
5012           res = std::numeric_limits<T>::max();
5013         } else {
5014           res = static_cast<T>(wdu);
5015         }
5016       } else {
5017         wdu = wtu - wsu;
5018         CHECK(-std::numeric_limits<T>::max() ==
5019               std::numeric_limits<T>::min() + 1);
5020         if (wdu <= std::numeric_limits<T>::max()) {
5021           res = -static_cast<T>(wdu);
5022         } else {
5023           res = std::numeric_limits<T>::min();
5024         }
5025       }
5026     } break;
5027     case ASUB_S:
5028       res = static_cast<T>(Abs(ws - wt));
5029       break;
5030     case ASUB_U: {
5031       uT wsu = static_cast<uT>(ws);
5032       uT wtu = static_cast<uT>(wt);
5033       res = static_cast<T>(wsu > wtu ? wsu - wtu : wtu - wsu);
5034     } break;
5035     case MULV:
5036       res = ws * wt;
5037       break;
5038     case MADDV:
5039       res = wd + ws * wt;
5040       break;
5041     case MSUBV:
5042       res = wd - ws * wt;
5043       break;
5044     case DIV_S_MSA:
5045       res = wt != 0 ? ws / wt : static_cast<T>(Unpredictable);
5046       break;
5047     case DIV_U:
5048       res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) / static_cast<uT>(wt))
5049                     : static_cast<T>(Unpredictable);
5050       break;
5051     case MOD_S:
5052       res = wt != 0 ? ws % wt : static_cast<T>(Unpredictable);
5053       break;
5054     case MOD_U:
5055       res = wt != 0 ? static_cast<T>(static_cast<uT>(ws) % static_cast<uT>(wt))
5056                     : static_cast<T>(Unpredictable);
5057       break;
5058     case DOTP_S:
5059     case DOTP_U:
5060     case DPADD_S:
5061     case DPADD_U:
5062     case DPSUB_S:
5063     case DPSUB_U:
5064     case SLD:
5065     case SPLAT:
5066       UNIMPLEMENTED();
5067       break;
5068     case SRAR: {
5069       int bit = wt_modulo == 0 ? 0 : (ws >> (wt_modulo - 1)) & 1;
5070       res = static_cast<T>(ArithmeticShiftRight(ws, wt_modulo) + bit);
5071     } break;
5072     case SRLR: {
5073       uT wsu = static_cast<uT>(ws);
5074       int bit = wt_modulo == 0 ? 0 : (wsu >> (wt_modulo - 1)) & 1;
5075       res = static_cast<T>((wsu >> wt_modulo) + bit);
5076     } break;
5077     default:
5078       UNREACHABLE();
5079   }
5080   return res;
5081 }
5082 
5083 template <typename T_int, typename T_reg>
Msa3RInstrHelper_shuffle(const uint32_t opcode,T_reg ws,T_reg wt,T_reg wd,const int i,const int num_of_lanes)5084 void Msa3RInstrHelper_shuffle(const uint32_t opcode, T_reg ws, T_reg wt,
5085                               T_reg wd, const int i, const int num_of_lanes) {
5086   T_int *ws_p, *wt_p, *wd_p;
5087   ws_p = reinterpret_cast<T_int*>(ws);
5088   wt_p = reinterpret_cast<T_int*>(wt);
5089   wd_p = reinterpret_cast<T_int*>(wd);
5090   switch (opcode) {
5091     case PCKEV:
5092       wd_p[i] = wt_p[2 * i];
5093       wd_p[i + num_of_lanes / 2] = ws_p[2 * i];
5094       break;
5095     case PCKOD:
5096       wd_p[i] = wt_p[2 * i + 1];
5097       wd_p[i + num_of_lanes / 2] = ws_p[2 * i + 1];
5098       break;
5099     case ILVL:
5100       wd_p[2 * i] = wt_p[i + num_of_lanes / 2];
5101       wd_p[2 * i + 1] = ws_p[i + num_of_lanes / 2];
5102       break;
5103     case ILVR:
5104       wd_p[2 * i] = wt_p[i];
5105       wd_p[2 * i + 1] = ws_p[i];
5106       break;
5107     case ILVEV:
5108       wd_p[2 * i] = wt_p[2 * i];
5109       wd_p[2 * i + 1] = ws_p[2 * i];
5110       break;
5111     case ILVOD:
5112       wd_p[2 * i] = wt_p[2 * i + 1];
5113       wd_p[2 * i + 1] = ws_p[2 * i + 1];
5114       break;
5115     case VSHF: {
5116       const int mask_not_valid = 0xC0;
5117       const int mask_6_bits = 0x3F;
5118       if ((wd_p[i] & mask_not_valid)) {
5119         wd_p[i] = 0;
5120       } else {
5121         int k = (wd_p[i] & mask_6_bits) % (num_of_lanes * 2);
5122         wd_p[i] = k >= num_of_lanes ? ws_p[k - num_of_lanes] : wt_p[k];
5123       }
5124     } break;
5125     default:
5126       UNREACHABLE();
5127   }
5128 }
5129 
5130 template <typename T_int, typename T_smaller_int, typename T_reg>
Msa3RInstrHelper_horizontal(const uint32_t opcode,T_reg ws,T_reg wt,T_reg wd,const int i,const int num_of_lanes)5131 void Msa3RInstrHelper_horizontal(const uint32_t opcode, T_reg ws, T_reg wt,
5132                                  T_reg wd, const int i,
5133                                  const int num_of_lanes) {
5134   using T_uint = typename std::make_unsigned<T_int>::type;
5135   using T_smaller_uint = typename std::make_unsigned<T_smaller_int>::type;
5136   T_int* wd_p;
5137   T_smaller_int *ws_p, *wt_p;
5138   ws_p = reinterpret_cast<T_smaller_int*>(ws);
5139   wt_p = reinterpret_cast<T_smaller_int*>(wt);
5140   wd_p = reinterpret_cast<T_int*>(wd);
5141   T_uint* wd_pu;
5142   T_smaller_uint *ws_pu, *wt_pu;
5143   ws_pu = reinterpret_cast<T_smaller_uint*>(ws);
5144   wt_pu = reinterpret_cast<T_smaller_uint*>(wt);
5145   wd_pu = reinterpret_cast<T_uint*>(wd);
5146   switch (opcode) {
5147     case HADD_S:
5148       wd_p[i] =
5149           static_cast<T_int>(ws_p[2 * i + 1]) + static_cast<T_int>(wt_p[2 * i]);
5150       break;
5151     case HADD_U:
5152       wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) +
5153                  static_cast<T_uint>(wt_pu[2 * i]);
5154       break;
5155     case HSUB_S:
5156       wd_p[i] =
5157           static_cast<T_int>(ws_p[2 * i + 1]) - static_cast<T_int>(wt_p[2 * i]);
5158       break;
5159     case HSUB_U:
5160       wd_pu[i] = static_cast<T_uint>(ws_pu[2 * i + 1]) -
5161                  static_cast<T_uint>(wt_pu[2 * i]);
5162       break;
5163     default:
5164       UNREACHABLE();
5165   }
5166 }
5167 
DecodeTypeMsa3R()5168 void Simulator::DecodeTypeMsa3R() {
5169   DCHECK(IsMipsArchVariant(kMips32r6));
5170   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
5171   uint32_t opcode = instr_.InstructionBits() & kMsa3RMask;
5172   msa_reg_t ws, wd, wt;
5173   get_msa_register(ws_reg(), &ws);
5174   get_msa_register(wt_reg(), &wt);
5175   get_msa_register(wd_reg(), &wd);
5176   switch (opcode) {
5177     case HADD_S:
5178     case HADD_U:
5179     case HSUB_S:
5180     case HSUB_U:
5181 #define HORIZONTAL_ARITHMETIC_DF(num_of_lanes, int_type, lesser_int_type) \
5182   for (int i = 0; i < num_of_lanes; ++i) {                                \
5183     Msa3RInstrHelper_horizontal<int_type, lesser_int_type>(               \
5184         opcode, &ws, &wt, &wd, i, num_of_lanes);                          \
5185   }
5186       switch (DecodeMsaDataFormat()) {
5187         case MSA_HALF:
5188           HORIZONTAL_ARITHMETIC_DF(kMSALanesHalf, int16_t, int8_t);
5189           break;
5190         case MSA_WORD:
5191           HORIZONTAL_ARITHMETIC_DF(kMSALanesWord, int32_t, int16_t);
5192           break;
5193         case MSA_DWORD:
5194           HORIZONTAL_ARITHMETIC_DF(kMSALanesDword, int64_t, int32_t);
5195           break;
5196         default:
5197           UNREACHABLE();
5198       }
5199       break;
5200 #undef HORIZONTAL_ARITHMETIC_DF
5201     case VSHF:
5202 #define VSHF_DF(num_of_lanes, int_type)                          \
5203   for (int i = 0; i < num_of_lanes; ++i) {                       \
5204     Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \
5205                                        num_of_lanes);            \
5206   }
5207       switch (DecodeMsaDataFormat()) {
5208         case MSA_BYTE:
5209           VSHF_DF(kMSALanesByte, int8_t);
5210           break;
5211         case MSA_HALF:
5212           VSHF_DF(kMSALanesHalf, int16_t);
5213           break;
5214         case MSA_WORD:
5215           VSHF_DF(kMSALanesWord, int32_t);
5216           break;
5217         case MSA_DWORD:
5218           VSHF_DF(kMSALanesDword, int64_t);
5219           break;
5220         default:
5221           UNREACHABLE();
5222       }
5223 #undef VSHF_DF
5224       break;
5225     case PCKEV:
5226     case PCKOD:
5227     case ILVL:
5228     case ILVR:
5229     case ILVEV:
5230     case ILVOD:
5231 #define INTERLEAVE_PACK_DF(num_of_lanes, int_type)               \
5232   for (int i = 0; i < num_of_lanes / 2; ++i) {                   \
5233     Msa3RInstrHelper_shuffle<int_type>(opcode, &ws, &wt, &wd, i, \
5234                                        num_of_lanes);            \
5235   }
5236       switch (DecodeMsaDataFormat()) {
5237         case MSA_BYTE:
5238           INTERLEAVE_PACK_DF(kMSALanesByte, int8_t);
5239           break;
5240         case MSA_HALF:
5241           INTERLEAVE_PACK_DF(kMSALanesHalf, int16_t);
5242           break;
5243         case MSA_WORD:
5244           INTERLEAVE_PACK_DF(kMSALanesWord, int32_t);
5245           break;
5246         case MSA_DWORD:
5247           INTERLEAVE_PACK_DF(kMSALanesDword, int64_t);
5248           break;
5249         default:
5250           UNREACHABLE();
5251       }
5252       break;
5253 #undef INTERLEAVE_PACK_DF
5254     default:
5255 #define MSA_3R_DF(elem, num_of_lanes)                                          \
5256   for (int i = 0; i < num_of_lanes; i++) {                                     \
5257     wd.elem[i] = Msa3RInstrHelper(opcode, wd.elem[i], ws.elem[i], wt.elem[i]); \
5258   }
5259 
5260       switch (DecodeMsaDataFormat()) {
5261         case MSA_BYTE:
5262           MSA_3R_DF(b, kMSALanesByte);
5263           break;
5264         case MSA_HALF:
5265           MSA_3R_DF(h, kMSALanesHalf);
5266           break;
5267         case MSA_WORD:
5268           MSA_3R_DF(w, kMSALanesWord);
5269           break;
5270         case MSA_DWORD:
5271           MSA_3R_DF(d, kMSALanesDword);
5272           break;
5273         default:
5274           UNREACHABLE();
5275       }
5276 #undef MSA_3R_DF
5277       break;
5278   }
5279   set_msa_register(wd_reg(), &wd);
5280   TraceMSARegWr(&wd);
5281 }
5282 
5283 template <typename T_int, typename T_fp, typename T_reg>
Msa3RFInstrHelper(uint32_t opcode,T_reg ws,T_reg wt,T_reg * wd)5284 void Msa3RFInstrHelper(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) {
5285   const T_int all_ones = static_cast<T_int>(-1);
5286   const T_fp s_element = *reinterpret_cast<T_fp*>(&ws);
5287   const T_fp t_element = *reinterpret_cast<T_fp*>(&wt);
5288   switch (opcode) {
5289     case FCUN: {
5290       if (std::isnan(s_element) || std::isnan(t_element)) {
5291         *wd = all_ones;
5292       } else {
5293         *wd = 0;
5294       }
5295     } break;
5296     case FCEQ: {
5297       if (s_element != t_element || std::isnan(s_element) ||
5298           std::isnan(t_element)) {
5299         *wd = 0;
5300       } else {
5301         *wd = all_ones;
5302       }
5303     } break;
5304     case FCUEQ: {
5305       if (s_element == t_element || std::isnan(s_element) ||
5306           std::isnan(t_element)) {
5307         *wd = all_ones;
5308       } else {
5309         *wd = 0;
5310       }
5311     } break;
5312     case FCLT: {
5313       if (s_element >= t_element || std::isnan(s_element) ||
5314           std::isnan(t_element)) {
5315         *wd = 0;
5316       } else {
5317         *wd = all_ones;
5318       }
5319     } break;
5320     case FCULT: {
5321       if (s_element < t_element || std::isnan(s_element) ||
5322           std::isnan(t_element)) {
5323         *wd = all_ones;
5324       } else {
5325         *wd = 0;
5326       }
5327     } break;
5328     case FCLE: {
5329       if (s_element > t_element || std::isnan(s_element) ||
5330           std::isnan(t_element)) {
5331         *wd = 0;
5332       } else {
5333         *wd = all_ones;
5334       }
5335     } break;
5336     case FCULE: {
5337       if (s_element <= t_element || std::isnan(s_element) ||
5338           std::isnan(t_element)) {
5339         *wd = all_ones;
5340       } else {
5341         *wd = 0;
5342       }
5343     } break;
5344     case FCOR: {
5345       if (std::isnan(s_element) || std::isnan(t_element)) {
5346         *wd = 0;
5347       } else {
5348         *wd = all_ones;
5349       }
5350     } break;
5351     case FCUNE: {
5352       if (s_element != t_element || std::isnan(s_element) ||
5353           std::isnan(t_element)) {
5354         *wd = all_ones;
5355       } else {
5356         *wd = 0;
5357       }
5358     } break;
5359     case FCNE: {
5360       if (s_element == t_element || std::isnan(s_element) ||
5361           std::isnan(t_element)) {
5362         *wd = 0;
5363       } else {
5364         *wd = all_ones;
5365       }
5366     } break;
5367     case FADD:
5368       *wd = bit_cast<T_int>(s_element + t_element);
5369       break;
5370     case FSUB:
5371       *wd = bit_cast<T_int>(s_element - t_element);
5372       break;
5373     case FMUL:
5374       *wd = bit_cast<T_int>(s_element * t_element);
5375       break;
5376     case FDIV: {
5377       if (t_element == 0) {
5378         *wd = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
5379       } else {
5380         *wd = bit_cast<T_int>(s_element / t_element);
5381       }
5382     } break;
5383     case FMADD:
5384       *wd = bit_cast<T_int>(
5385           std::fma(s_element, t_element, *reinterpret_cast<T_fp*>(wd)));
5386       break;
5387     case FMSUB:
5388       *wd = bit_cast<T_int>(
5389           std::fma(s_element, -t_element, *reinterpret_cast<T_fp*>(wd)));
5390       break;
5391     case FEXP2:
5392       *wd = bit_cast<T_int>(std::ldexp(s_element, static_cast<int>(wt)));
5393       break;
5394     case FMIN:
5395       *wd = bit_cast<T_int>(std::min(s_element, t_element));
5396       break;
5397     case FMAX:
5398       *wd = bit_cast<T_int>(std::max(s_element, t_element));
5399       break;
5400     case FMIN_A: {
5401       *wd = bit_cast<T_int>(
5402           std::fabs(s_element) < std::fabs(t_element) ? s_element : t_element);
5403     } break;
5404     case FMAX_A: {
5405       *wd = bit_cast<T_int>(
5406           std::fabs(s_element) > std::fabs(t_element) ? s_element : t_element);
5407     } break;
5408     case FSOR:
5409     case FSUNE:
5410     case FSNE:
5411     case FSAF:
5412     case FSUN:
5413     case FSEQ:
5414     case FSUEQ:
5415     case FSLT:
5416     case FSULT:
5417     case FSLE:
5418     case FSULE:
5419       UNIMPLEMENTED();
5420       break;
5421     default:
5422       UNREACHABLE();
5423   }
5424 }
5425 
5426 template <typename T_int, typename T_int_dbl, typename T_reg>
Msa3RFInstrHelper2(uint32_t opcode,T_reg ws,T_reg wt,T_reg * wd)5427 void Msa3RFInstrHelper2(uint32_t opcode, T_reg ws, T_reg wt, T_reg* wd) {
5428   //  using T_uint = typename std::make_unsigned<T_int>::type;
5429   using T_uint_dbl = typename std::make_unsigned<T_int_dbl>::type;
5430   const T_int max_int = std::numeric_limits<T_int>::max();
5431   const T_int min_int = std::numeric_limits<T_int>::min();
5432   const int shift = kBitsPerByte * sizeof(T_int) - 1;
5433   const T_int_dbl reg_s = ws;
5434   const T_int_dbl reg_t = wt;
5435   T_int_dbl product, result;
5436   product = reg_s * reg_t;
5437   switch (opcode) {
5438     case MUL_Q: {
5439       const T_int_dbl min_fix_dbl =
5440           bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U;
5441       const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U;
5442       if (product == min_fix_dbl) {
5443         product = max_fix_dbl;
5444       }
5445       *wd = static_cast<T_int>(product >> shift);
5446     } break;
5447     case MADD_Q: {
5448       result = (product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift;
5449       *wd = static_cast<T_int>(
5450           result > max_int ? max_int : result < min_int ? min_int : result);
5451     } break;
5452     case MSUB_Q: {
5453       result = (-product + (static_cast<T_int_dbl>(*wd) << shift)) >> shift;
5454       *wd = static_cast<T_int>(
5455           result > max_int ? max_int : result < min_int ? min_int : result);
5456     } break;
5457     case MULR_Q: {
5458       const T_int_dbl min_fix_dbl =
5459           bit_cast<T_uint_dbl>(std::numeric_limits<T_int_dbl>::min()) >> 1U;
5460       const T_int_dbl max_fix_dbl = std::numeric_limits<T_int_dbl>::max() >> 1U;
5461       if (product == min_fix_dbl) {
5462         *wd = static_cast<T_int>(max_fix_dbl >> shift);
5463         break;
5464       }
5465       *wd = static_cast<T_int>((product + (1 << (shift - 1))) >> shift);
5466     } break;
5467     case MADDR_Q: {
5468       result = (product + (static_cast<T_int_dbl>(*wd) << shift) +
5469                 (1 << (shift - 1))) >>
5470                shift;
5471       *wd = static_cast<T_int>(
5472           result > max_int ? max_int : result < min_int ? min_int : result);
5473     } break;
5474     case MSUBR_Q: {
5475       result = (-product + (static_cast<T_int_dbl>(*wd) << shift) +
5476                 (1 << (shift - 1))) >>
5477                shift;
5478       *wd = static_cast<T_int>(
5479           result > max_int ? max_int : result < min_int ? min_int : result);
5480     } break;
5481     default:
5482       UNREACHABLE();
5483   }
5484 }
5485 
DecodeTypeMsa3RF()5486 void Simulator::DecodeTypeMsa3RF() {
5487   DCHECK(IsMipsArchVariant(kMips32r6));
5488   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
5489   uint32_t opcode = instr_.InstructionBits() & kMsa3RFMask;
5490   msa_reg_t wd, ws, wt;
5491   if (opcode != FCAF) {
5492     get_msa_register(ws_reg(), &ws);
5493     get_msa_register(wt_reg(), &wt);
5494   }
5495   switch (opcode) {
5496     case FCAF:
5497       wd.d[0] = 0;
5498       wd.d[1] = 0;
5499       break;
5500     case FEXDO:
5501 #define PACK_FLOAT16(sign, exp, frac) \
5502   static_cast<uint16_t>(((sign) << 15) + ((exp) << 10) + (frac))
5503 #define FEXDO_DF(source, dst)                                        \
5504   do {                                                               \
5505     element = source;                                                \
5506     aSign = element >> 31;                                           \
5507     aExp = element >> 23 & 0xFF;                                     \
5508     aFrac = element & 0x007FFFFF;                                    \
5509     if (aExp == 0xFF) {                                              \
5510       if (aFrac) {                                                   \
5511         /* Input is a NaN */                                         \
5512         dst = 0x7DFFU;                                               \
5513         break;                                                       \
5514       }                                                              \
5515       /* Infinity */                                                 \
5516       dst = PACK_FLOAT16(aSign, 0x1F, 0);                            \
5517       break;                                                         \
5518     } else if (aExp == 0 && aFrac == 0) {                            \
5519       dst = PACK_FLOAT16(aSign, 0, 0);                               \
5520       break;                                                         \
5521     } else {                                                         \
5522       int maxexp = 29;                                               \
5523       uint32_t mask;                                                 \
5524       uint32_t increment;                                            \
5525       bool rounding_bumps_exp;                                       \
5526       aFrac |= 0x00800000;                                           \
5527       aExp -= 0x71;                                                  \
5528       if (aExp < 1) {                                                \
5529         /* Will be denormal in halfprec */                           \
5530         mask = 0x00FFFFFF;                                           \
5531         if (aExp >= -11) {                                           \
5532           mask >>= 11 + aExp;                                        \
5533         }                                                            \
5534       } else {                                                       \
5535         /* Normal number in halfprec */                              \
5536         mask = 0x00001FFF;                                           \
5537       }                                                              \
5538       switch (MSACSR_ & 3) {                                         \
5539         case kRoundToNearest:                                        \
5540           increment = (mask + 1) >> 1;                               \
5541           if ((aFrac & mask) == increment) {                         \
5542             increment = aFrac & (increment << 1);                    \
5543           }                                                          \
5544           break;                                                     \
5545         case kRoundToPlusInf:                                        \
5546           increment = aSign ? 0 : mask;                              \
5547           break;                                                     \
5548         case kRoundToMinusInf:                                       \
5549           increment = aSign ? mask : 0;                              \
5550           break;                                                     \
5551         case kRoundToZero:                                           \
5552           increment = 0;                                             \
5553           break;                                                     \
5554       }                                                              \
5555       rounding_bumps_exp = (aFrac + increment >= 0x01000000);        \
5556       if (aExp > maxexp || (aExp == maxexp && rounding_bumps_exp)) { \
5557         dst = PACK_FLOAT16(aSign, 0x1F, 0);                          \
5558         break;                                                       \
5559       }                                                              \
5560       aFrac += increment;                                            \
5561       if (rounding_bumps_exp) {                                      \
5562         aFrac >>= 1;                                                 \
5563         aExp++;                                                      \
5564       }                                                              \
5565       if (aExp < -10) {                                              \
5566         dst = PACK_FLOAT16(aSign, 0, 0);                             \
5567         break;                                                       \
5568       }                                                              \
5569       if (aExp < 0) {                                                \
5570         aFrac >>= -aExp;                                             \
5571         aExp = 0;                                                    \
5572       }                                                              \
5573       dst = PACK_FLOAT16(aSign, aExp, aFrac >> 13);                  \
5574     }                                                                \
5575   } while (0);
5576       switch (DecodeMsaDataFormat()) {
5577         case MSA_HALF:
5578           for (int i = 0; i < kMSALanesWord; i++) {
5579             uint_fast32_t element;
5580             uint_fast32_t aSign, aFrac;
5581             int_fast32_t aExp;
5582             FEXDO_DF(ws.uw[i], wd.uh[i + kMSALanesHalf / 2])
5583             FEXDO_DF(wt.uw[i], wd.uh[i])
5584           }
5585           break;
5586         case MSA_WORD:
5587           for (int i = 0; i < kMSALanesDword; i++) {
5588             wd.w[i + kMSALanesWord / 2] = bit_cast<int32_t>(
5589                 static_cast<float>(bit_cast<double>(ws.d[i])));
5590             wd.w[i] = bit_cast<int32_t>(
5591                 static_cast<float>(bit_cast<double>(wt.d[i])));
5592           }
5593           break;
5594         default:
5595           UNREACHABLE();
5596       }
5597       break;
5598 #undef PACK_FLOAT16
5599 #undef FEXDO_DF
5600     case FTQ:
5601 #define FTQ_DF(source, dst, fp_type, int_type)                  \
5602   element = bit_cast<fp_type>(source) *                         \
5603             (1U << (sizeof(int_type) * kBitsPerByte - 1));      \
5604   if (element > std::numeric_limits<int_type>::max()) {         \
5605     dst = std::numeric_limits<int_type>::max();                 \
5606   } else if (element < std::numeric_limits<int_type>::min()) {  \
5607     dst = std::numeric_limits<int_type>::min();                 \
5608   } else if (std::isnan(element)) {                             \
5609     dst = 0;                                                    \
5610   } else {                                                      \
5611     int_type fixed_point;                                       \
5612     round_according_to_msacsr(element, &element, &fixed_point); \
5613     dst = fixed_point;                                          \
5614   }
5615 
5616       switch (DecodeMsaDataFormat()) {
5617         case MSA_HALF:
5618           for (int i = 0; i < kMSALanesWord; i++) {
5619             float element;
5620             FTQ_DF(ws.w[i], wd.h[i + kMSALanesHalf / 2], float, int16_t)
5621             FTQ_DF(wt.w[i], wd.h[i], float, int16_t)
5622           }
5623           break;
5624         case MSA_WORD:
5625           double element;
5626           for (int i = 0; i < kMSALanesDword; i++) {
5627             FTQ_DF(ws.d[i], wd.w[i + kMSALanesWord / 2], double, int32_t)
5628             FTQ_DF(wt.d[i], wd.w[i], double, int32_t)
5629           }
5630           break;
5631         default:
5632           UNREACHABLE();
5633       }
5634       break;
5635 #undef FTQ_DF
5636 #define MSA_3RF_DF(T1, T2, Lanes, ws, wt, wd)         \
5637   for (int i = 0; i < Lanes; i++) {                   \
5638     Msa3RFInstrHelper<T1, T2>(opcode, ws, wt, &(wd)); \
5639   }
5640 #define MSA_3RF_DF2(T1, T2, Lanes, ws, wt, wd)         \
5641   for (int i = 0; i < Lanes; i++) {                    \
5642     Msa3RFInstrHelper2<T1, T2>(opcode, ws, wt, &(wd)); \
5643   }
5644     case MADD_Q:
5645     case MSUB_Q:
5646     case MADDR_Q:
5647     case MSUBR_Q:
5648       get_msa_register(wd_reg(), &wd);
5649       V8_FALLTHROUGH;
5650     case MUL_Q:
5651     case MULR_Q:
5652       switch (DecodeMsaDataFormat()) {
5653         case MSA_HALF:
5654           MSA_3RF_DF2(int16_t, int32_t, kMSALanesHalf, ws.h[i], wt.h[i],
5655                       wd.h[i])
5656           break;
5657         case MSA_WORD:
5658           MSA_3RF_DF2(int32_t, int64_t, kMSALanesWord, ws.w[i], wt.w[i],
5659                       wd.w[i])
5660           break;
5661         default:
5662           UNREACHABLE();
5663       }
5664       break;
5665     default:
5666       if (opcode == FMADD || opcode == FMSUB) {
5667         get_msa_register(wd_reg(), &wd);
5668       }
5669       switch (DecodeMsaDataFormat()) {
5670         case MSA_WORD:
5671           MSA_3RF_DF(int32_t, float, kMSALanesWord, ws.w[i], wt.w[i], wd.w[i])
5672           break;
5673         case MSA_DWORD:
5674           MSA_3RF_DF(int64_t, double, kMSALanesDword, ws.d[i], wt.d[i], wd.d[i])
5675           break;
5676         default:
5677           UNREACHABLE();
5678       }
5679       break;
5680 #undef MSA_3RF_DF
5681 #undef MSA_3RF_DF2
5682   }
5683   set_msa_register(wd_reg(), &wd);
5684   TraceMSARegWr(&wd);
5685 }
5686 
DecodeTypeMsaVec()5687 void Simulator::DecodeTypeMsaVec() {
5688   DCHECK(IsMipsArchVariant(kMips32r6));
5689   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
5690   uint32_t opcode = instr_.InstructionBits() & kMsaVECMask;
5691   msa_reg_t wd, ws, wt;
5692 
5693   get_msa_register(instr_.WsValue(), ws.w);
5694   get_msa_register(instr_.WtValue(), wt.w);
5695   if (opcode == BMNZ_V || opcode == BMZ_V || opcode == BSEL_V) {
5696     get_msa_register(instr_.WdValue(), wd.w);
5697   }
5698 
5699   for (int i = 0; i < kMSALanesWord; i++) {
5700     switch (opcode) {
5701       case AND_V:
5702         wd.w[i] = ws.w[i] & wt.w[i];
5703         break;
5704       case OR_V:
5705         wd.w[i] = ws.w[i] | wt.w[i];
5706         break;
5707       case NOR_V:
5708         wd.w[i] = ~(ws.w[i] | wt.w[i]);
5709         break;
5710       case XOR_V:
5711         wd.w[i] = ws.w[i] ^ wt.w[i];
5712         break;
5713       case BMNZ_V:
5714         wd.w[i] = (wt.w[i] & ws.w[i]) | (~wt.w[i] & wd.w[i]);
5715         break;
5716       case BMZ_V:
5717         wd.w[i] = (~wt.w[i] & ws.w[i]) | (wt.w[i] & wd.w[i]);
5718         break;
5719       case BSEL_V:
5720         wd.w[i] = (~wd.w[i] & ws.w[i]) | (wd.w[i] & wt.w[i]);
5721         break;
5722       default:
5723         UNREACHABLE();
5724     }
5725   }
5726   set_msa_register(instr_.WdValue(), wd.w);
5727   TraceMSARegWr(wd.d);
5728 }
5729 
DecodeTypeMsa2R()5730 void Simulator::DecodeTypeMsa2R() {
5731   DCHECK(IsMipsArchVariant(kMips32r6));
5732   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
5733   uint32_t opcode = instr_.InstructionBits() & kMsa2RMask;
5734   msa_reg_t wd, ws;
5735   switch (opcode) {
5736     case FILL:
5737       switch (DecodeMsaDataFormat()) {
5738         case MSA_BYTE: {
5739           int32_t rs = get_register(instr_.WsValue());
5740           for (int i = 0; i < kMSALanesByte; i++) {
5741             wd.b[i] = rs & 0xFFu;
5742           }
5743           set_msa_register(instr_.WdValue(), wd.b);
5744           TraceMSARegWr(wd.b);
5745           break;
5746         }
5747         case MSA_HALF: {
5748           int32_t rs = get_register(instr_.WsValue());
5749           for (int i = 0; i < kMSALanesHalf; i++) {
5750             wd.h[i] = rs & 0xFFFFu;
5751           }
5752           set_msa_register(instr_.WdValue(), wd.h);
5753           TraceMSARegWr(wd.h);
5754           break;
5755         }
5756         case MSA_WORD: {
5757           int32_t rs = get_register(instr_.WsValue());
5758           for (int i = 0; i < kMSALanesWord; i++) {
5759             wd.w[i] = rs;
5760           }
5761           set_msa_register(instr_.WdValue(), wd.w);
5762           TraceMSARegWr(wd.w);
5763           break;
5764         }
5765         default:
5766           UNREACHABLE();
5767       }
5768       break;
5769     case PCNT:
5770 #define PCNT_DF(elem, num_of_lanes)                       \
5771   get_msa_register(instr_.WsValue(), ws.elem);            \
5772   for (int i = 0; i < num_of_lanes; i++) {                \
5773     uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]); \
5774     wd.elem[i] = base::bits::CountPopulation(u64elem);    \
5775   }                                                       \
5776   set_msa_register(instr_.WdValue(), wd.elem);            \
5777   TraceMSARegWr(wd.elem)
5778 
5779       switch (DecodeMsaDataFormat()) {
5780         case MSA_BYTE:
5781           PCNT_DF(ub, kMSALanesByte);
5782           break;
5783         case MSA_HALF:
5784           PCNT_DF(uh, kMSALanesHalf);
5785           break;
5786         case MSA_WORD:
5787           PCNT_DF(uw, kMSALanesWord);
5788           break;
5789         case MSA_DWORD:
5790           PCNT_DF(ud, kMSALanesDword);
5791           break;
5792         default:
5793           UNREACHABLE();
5794       }
5795 #undef PCNT_DF
5796       break;
5797     case NLOC:
5798 #define NLOC_DF(elem, num_of_lanes)                                         \
5799   get_msa_register(instr_.WsValue(), ws.elem);                              \
5800   for (int i = 0; i < num_of_lanes; i++) {                                  \
5801     const uint64_t mask = (num_of_lanes == kMSALanesDword)                  \
5802                               ? UINT64_MAX                                  \
5803                               : (1ULL << (kMSARegSize / num_of_lanes)) - 1; \
5804     uint64_t u64elem = static_cast<uint64_t>(~ws.elem[i]) & mask;           \
5805     wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) -                 \
5806                  (64 - kMSARegSize / num_of_lanes);                         \
5807   }                                                                         \
5808   set_msa_register(instr_.WdValue(), wd.elem);                              \
5809   TraceMSARegWr(wd.elem)
5810 
5811       switch (DecodeMsaDataFormat()) {
5812         case MSA_BYTE:
5813           NLOC_DF(ub, kMSALanesByte);
5814           break;
5815         case MSA_HALF:
5816           NLOC_DF(uh, kMSALanesHalf);
5817           break;
5818         case MSA_WORD:
5819           NLOC_DF(uw, kMSALanesWord);
5820           break;
5821         case MSA_DWORD:
5822           NLOC_DF(ud, kMSALanesDword);
5823           break;
5824         default:
5825           UNREACHABLE();
5826       }
5827 #undef NLOC_DF
5828       break;
5829     case NLZC:
5830 #define NLZC_DF(elem, num_of_lanes)                         \
5831   get_msa_register(instr_.WsValue(), ws.elem);              \
5832   for (int i = 0; i < num_of_lanes; i++) {                  \
5833     uint64_t u64elem = static_cast<uint64_t>(ws.elem[i]);   \
5834     wd.elem[i] = base::bits::CountLeadingZeros64(u64elem) - \
5835                  (64 - kMSARegSize / num_of_lanes);         \
5836   }                                                         \
5837   set_msa_register(instr_.WdValue(), wd.elem);              \
5838   TraceMSARegWr(wd.elem)
5839 
5840       switch (DecodeMsaDataFormat()) {
5841         case MSA_BYTE:
5842           NLZC_DF(ub, kMSALanesByte);
5843           break;
5844         case MSA_HALF:
5845           NLZC_DF(uh, kMSALanesHalf);
5846           break;
5847         case MSA_WORD:
5848           NLZC_DF(uw, kMSALanesWord);
5849           break;
5850         case MSA_DWORD:
5851           NLZC_DF(ud, kMSALanesDword);
5852           break;
5853         default:
5854           UNREACHABLE();
5855       }
5856 #undef NLZC_DF
5857       break;
5858     default:
5859       UNREACHABLE();
5860   }
5861 }
5862 
5863 #define BIT(n) (0x1LL << n)
5864 #define QUIET_BIT_S(nan) (bit_cast<int32_t>(nan) & BIT(22))
5865 #define QUIET_BIT_D(nan) (bit_cast<int64_t>(nan) & BIT(51))
isSnan(float fp)5866 static inline bool isSnan(float fp) { return !QUIET_BIT_S(fp); }
isSnan(double fp)5867 static inline bool isSnan(double fp) { return !QUIET_BIT_D(fp); }
5868 #undef QUIET_BIT_S
5869 #undef QUIET_BIT_D
5870 
5871 template <typename T_int, typename T_fp, typename T_src, typename T_dst>
Msa2RFInstrHelper(uint32_t opcode,T_src src,T_dst * dst,Simulator * sim)5872 T_int Msa2RFInstrHelper(uint32_t opcode, T_src src, T_dst* dst,
5873                         Simulator* sim) {
5874   using T_uint = typename std::make_unsigned<T_int>::type;
5875   switch (opcode) {
5876     case FCLASS: {
5877 #define SNAN_BIT BIT(0)
5878 #define QNAN_BIT BIT(1)
5879 #define NEG_INFINITY_BIT BIT(2)
5880 #define NEG_NORMAL_BIT BIT(3)
5881 #define NEG_SUBNORMAL_BIT BIT(4)
5882 #define NEG_ZERO_BIT BIT(5)
5883 #define POS_INFINITY_BIT BIT(6)
5884 #define POS_NORMAL_BIT BIT(7)
5885 #define POS_SUBNORMAL_BIT BIT(8)
5886 #define POS_ZERO_BIT BIT(9)
5887       T_fp element = *reinterpret_cast<T_fp*>(&src);
5888       switch (std::fpclassify(element)) {
5889         case FP_INFINITE:
5890           if (std::signbit(element)) {
5891             *dst = NEG_INFINITY_BIT;
5892           } else {
5893             *dst = POS_INFINITY_BIT;
5894           }
5895           break;
5896         case FP_NAN:
5897           if (isSnan(element)) {
5898             *dst = SNAN_BIT;
5899           } else {
5900             *dst = QNAN_BIT;
5901           }
5902           break;
5903         case FP_NORMAL:
5904           if (std::signbit(element)) {
5905             *dst = NEG_NORMAL_BIT;
5906           } else {
5907             *dst = POS_NORMAL_BIT;
5908           }
5909           break;
5910         case FP_SUBNORMAL:
5911           if (std::signbit(element)) {
5912             *dst = NEG_SUBNORMAL_BIT;
5913           } else {
5914             *dst = POS_SUBNORMAL_BIT;
5915           }
5916           break;
5917         case FP_ZERO:
5918           if (std::signbit(element)) {
5919             *dst = NEG_ZERO_BIT;
5920           } else {
5921             *dst = POS_ZERO_BIT;
5922           }
5923           break;
5924         default:
5925           UNREACHABLE();
5926       }
5927       break;
5928     }
5929 #undef BIT
5930 #undef SNAN_BIT
5931 #undef QNAN_BIT
5932 #undef NEG_INFINITY_BIT
5933 #undef NEG_NORMAL_BIT
5934 #undef NEG_SUBNORMAL_BIT
5935 #undef NEG_ZERO_BIT
5936 #undef POS_INFINITY_BIT
5937 #undef POS_NORMAL_BIT
5938 #undef POS_SUBNORMAL_BIT
5939 #undef POS_ZERO_BIT
5940     case FTRUNC_S: {
5941       T_fp element = bit_cast<T_fp>(src);
5942       const T_int max_int = std::numeric_limits<T_int>::max();
5943       const T_int min_int = std::numeric_limits<T_int>::min();
5944       if (std::isnan(element)) {
5945         *dst = 0;
5946       } else if (element >= max_int || element <= min_int) {
5947         *dst = element >= max_int ? max_int : min_int;
5948       } else {
5949         *dst = static_cast<T_int>(std::trunc(element));
5950       }
5951       break;
5952     }
5953     case FTRUNC_U: {
5954       T_fp element = bit_cast<T_fp>(src);
5955       const T_uint max_int = std::numeric_limits<T_uint>::max();
5956       if (std::isnan(element)) {
5957         *dst = 0;
5958       } else if (element >= max_int || element <= 0) {
5959         *dst = element >= max_int ? max_int : 0;
5960       } else {
5961         *dst = static_cast<T_uint>(std::trunc(element));
5962       }
5963       break;
5964     }
5965     case FSQRT: {
5966       T_fp element = bit_cast<T_fp>(src);
5967       if (element < 0 || std::isnan(element)) {
5968         *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
5969       } else {
5970         *dst = bit_cast<T_int>(std::sqrt(element));
5971       }
5972       break;
5973     }
5974     case FRSQRT: {
5975       T_fp element = bit_cast<T_fp>(src);
5976       if (element < 0 || std::isnan(element)) {
5977         *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
5978       } else {
5979         *dst = bit_cast<T_int>(1 / std::sqrt(element));
5980       }
5981       break;
5982     }
5983     case FRCP: {
5984       T_fp element = bit_cast<T_fp>(src);
5985       if (std::isnan(element)) {
5986         *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
5987       } else {
5988         *dst = bit_cast<T_int>(1 / element);
5989       }
5990       break;
5991     }
5992     case FRINT: {
5993       T_fp element = bit_cast<T_fp>(src);
5994       if (std::isnan(element)) {
5995         *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
5996       } else {
5997         T_int dummy;
5998         sim->round_according_to_msacsr<T_fp, T_int>(element, &element, &dummy);
5999         *dst = bit_cast<T_int>(element);
6000       }
6001       break;
6002     }
6003     case FLOG2: {
6004       T_fp element = bit_cast<T_fp>(src);
6005       switch (std::fpclassify(element)) {
6006         case FP_NORMAL:
6007         case FP_SUBNORMAL:
6008           *dst = bit_cast<T_int>(std::logb(element));
6009           break;
6010         case FP_ZERO:
6011           *dst = bit_cast<T_int>(-std::numeric_limits<T_fp>::infinity());
6012           break;
6013         case FP_NAN:
6014           *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
6015           break;
6016         case FP_INFINITE:
6017           if (element < 0) {
6018             *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::quiet_NaN());
6019           } else {
6020             *dst = bit_cast<T_int>(std::numeric_limits<T_fp>::infinity());
6021           }
6022           break;
6023         default:
6024           UNREACHABLE();
6025       }
6026       break;
6027     }
6028     case FTINT_S: {
6029       T_fp element = bit_cast<T_fp>(src);
6030       const T_int max_int = std::numeric_limits<T_int>::max();
6031       const T_int min_int = std::numeric_limits<T_int>::min();
6032       if (std::isnan(element)) {
6033         *dst = 0;
6034       } else if (element < min_int || element > max_int) {
6035         *dst = element > max_int ? max_int : min_int;
6036       } else {
6037         sim->round_according_to_msacsr<T_fp, T_int>(element, &element, dst);
6038       }
6039       break;
6040     }
6041     case FTINT_U: {
6042       T_fp element = bit_cast<T_fp>(src);
6043       const T_uint max_uint = std::numeric_limits<T_uint>::max();
6044       if (std::isnan(element)) {
6045         *dst = 0;
6046       } else if (element < 0 || element > max_uint) {
6047         *dst = element > max_uint ? max_uint : 0;
6048       } else {
6049         T_uint res;
6050         sim->round_according_to_msacsr<T_fp, T_uint>(element, &element, &res);
6051         *dst = *reinterpret_cast<T_int*>(&res);
6052       }
6053       break;
6054     }
6055     case FFINT_S:
6056       *dst = bit_cast<T_int>(static_cast<T_fp>(src));
6057       break;
6058     case FFINT_U:
6059       using uT_src = typename std::make_unsigned<T_src>::type;
6060       *dst = bit_cast<T_int>(static_cast<T_fp>(bit_cast<uT_src>(src)));
6061       break;
6062     default:
6063       UNREACHABLE();
6064   }
6065   return 0;
6066 }
6067 
6068 template <typename T_int, typename T_fp, typename T_reg>
Msa2RFInstrHelper2(uint32_t opcode,T_reg ws,int i)6069 T_int Msa2RFInstrHelper2(uint32_t opcode, T_reg ws, int i) {
6070   switch (opcode) {
6071 #define EXTRACT_FLOAT16_SIGN(fp16) (fp16 >> 15)
6072 #define EXTRACT_FLOAT16_EXP(fp16) (fp16 >> 10 & 0x1F)
6073 #define EXTRACT_FLOAT16_FRAC(fp16) (fp16 & 0x3FF)
6074 #define PACK_FLOAT32(sign, exp, frac) \
6075   static_cast<uint32_t>(((sign) << 31) + ((exp) << 23) + (frac))
6076 #define FEXUP_DF(src_index)                                                   \
6077   uint_fast16_t element = ws.uh[src_index];                                   \
6078   uint_fast32_t aSign, aFrac;                                                 \
6079   int_fast32_t aExp;                                                          \
6080   aSign = EXTRACT_FLOAT16_SIGN(element);                                      \
6081   aExp = EXTRACT_FLOAT16_EXP(element);                                        \
6082   aFrac = EXTRACT_FLOAT16_FRAC(element);                                      \
6083   if (V8_LIKELY(aExp && aExp != 0x1F)) {                                      \
6084     return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13);                     \
6085   } else if (aExp == 0x1F) {                                                  \
6086     if (aFrac) {                                                              \
6087       return bit_cast<int32_t>(std::numeric_limits<float>::quiet_NaN());      \
6088     } else {                                                                  \
6089       return bit_cast<uint32_t>(std::numeric_limits<float>::infinity()) |     \
6090              static_cast<uint32_t>(aSign) << 31;                              \
6091     }                                                                         \
6092   } else {                                                                    \
6093     if (aFrac == 0) {                                                         \
6094       return PACK_FLOAT32(aSign, 0, 0);                                       \
6095     } else {                                                                  \
6096       int_fast16_t shiftCount =                                               \
6097           base::bits::CountLeadingZeros32(static_cast<uint32_t>(aFrac)) - 21; \
6098       aFrac <<= shiftCount;                                                   \
6099       aExp = -shiftCount;                                                     \
6100       return PACK_FLOAT32(aSign, aExp + 0x70, aFrac << 13);                   \
6101     }                                                                         \
6102   }
6103     case FEXUPL:
6104       if (std::is_same<int32_t, T_int>::value) {
6105         FEXUP_DF(i + kMSALanesWord)
6106       } else {
6107         return bit_cast<int64_t>(
6108             static_cast<double>(bit_cast<float>(ws.w[i + kMSALanesDword])));
6109       }
6110     case FEXUPR:
6111       if (std::is_same<int32_t, T_int>::value) {
6112         FEXUP_DF(i)
6113       } else {
6114         return bit_cast<int64_t>(static_cast<double>(bit_cast<float>(ws.w[i])));
6115       }
6116     case FFQL: {
6117       if (std::is_same<int32_t, T_int>::value) {
6118         return bit_cast<int32_t>(static_cast<float>(ws.h[i + kMSALanesWord]) /
6119                                  (1U << 15));
6120       } else {
6121         return bit_cast<int64_t>(static_cast<double>(ws.w[i + kMSALanesDword]) /
6122                                  (1U << 31));
6123       }
6124       break;
6125     }
6126     case FFQR: {
6127       if (std::is_same<int32_t, T_int>::value) {
6128         return bit_cast<int32_t>(static_cast<float>(ws.h[i]) / (1U << 15));
6129       } else {
6130         return bit_cast<int64_t>(static_cast<double>(ws.w[i]) / (1U << 31));
6131       }
6132       break;
6133       default:
6134         UNREACHABLE();
6135     }
6136   }
6137 #undef EXTRACT_FLOAT16_SIGN
6138 #undef EXTRACT_FLOAT16_EXP
6139 #undef EXTRACT_FLOAT16_FRAC
6140 #undef PACK_FLOAT32
6141 #undef FEXUP_DF
6142 }
6143 
DecodeTypeMsa2RF()6144 void Simulator::DecodeTypeMsa2RF() {
6145   DCHECK(IsMipsArchVariant(kMips32r6));
6146   DCHECK(CpuFeatures::IsSupported(MIPS_SIMD));
6147   uint32_t opcode = instr_.InstructionBits() & kMsa2RFMask;
6148   msa_reg_t wd, ws;
6149   get_msa_register(ws_reg(), &ws);
6150   if (opcode == FEXUPL || opcode == FEXUPR || opcode == FFQL ||
6151       opcode == FFQR) {
6152     switch (DecodeMsaDataFormat()) {
6153       case MSA_WORD:
6154         for (int i = 0; i < kMSALanesWord; i++) {
6155           wd.w[i] = Msa2RFInstrHelper2<int32_t, float>(opcode, ws, i);
6156         }
6157         break;
6158       case MSA_DWORD:
6159         for (int i = 0; i < kMSALanesDword; i++) {
6160           wd.d[i] = Msa2RFInstrHelper2<int64_t, double>(opcode, ws, i);
6161         }
6162         break;
6163       default:
6164         UNREACHABLE();
6165     }
6166   } else {
6167     switch (DecodeMsaDataFormat()) {
6168       case MSA_WORD:
6169         for (int i = 0; i < kMSALanesWord; i++) {
6170           Msa2RFInstrHelper<int32_t, float>(opcode, ws.w[i], &wd.w[i], this);
6171         }
6172         break;
6173       case MSA_DWORD:
6174         for (int i = 0; i < kMSALanesDword; i++) {
6175           Msa2RFInstrHelper<int64_t, double>(opcode, ws.d[i], &wd.d[i], this);
6176         }
6177         break;
6178       default:
6179         UNREACHABLE();
6180     }
6181   }
6182   set_msa_register(wd_reg(), &wd);
6183   TraceMSARegWr(&wd);
6184 }
6185 
DecodeTypeRegister()6186 void Simulator::DecodeTypeRegister() {
6187   // ---------- Execution.
6188   switch (instr_.OpcodeFieldRaw()) {
6189     case COP1:
6190       DecodeTypeRegisterCOP1();
6191       break;
6192     case COP1X:
6193       DecodeTypeRegisterCOP1X();
6194       break;
6195     case SPECIAL:
6196       DecodeTypeRegisterSPECIAL();
6197       break;
6198     case SPECIAL2:
6199       DecodeTypeRegisterSPECIAL2();
6200       break;
6201     case SPECIAL3:
6202       DecodeTypeRegisterSPECIAL3();
6203       break;
6204     case MSA:
6205       switch (instr_.MSAMinorOpcodeField()) {
6206         case kMsaMinor3R:
6207           DecodeTypeMsa3R();
6208           break;
6209         case kMsaMinor3RF:
6210           DecodeTypeMsa3RF();
6211           break;
6212         case kMsaMinorVEC:
6213           DecodeTypeMsaVec();
6214           break;
6215         case kMsaMinor2R:
6216           DecodeTypeMsa2R();
6217           break;
6218         case kMsaMinor2RF:
6219           DecodeTypeMsa2RF();
6220           break;
6221         case kMsaMinorELM:
6222           DecodeTypeMsaELM();
6223           break;
6224         default:
6225           UNREACHABLE();
6226       }
6227       break;
6228     default:
6229       UNREACHABLE();
6230   }
6231 }
6232 
6233 // Type 2: instructions using a 16, 21 or 26 bits immediate. (e.g. beq, beqc).
DecodeTypeImmediate()6234 void Simulator::DecodeTypeImmediate() {
6235   // Instruction fields.
6236   Opcode op = instr_.OpcodeFieldRaw();
6237   int32_t rs_reg = instr_.RsValue();
6238   int32_t rs = get_register(instr_.RsValue());
6239   uint32_t rs_u = static_cast<uint32_t>(rs);
6240   int32_t rt_reg = instr_.RtValue();  // Destination register.
6241   int32_t rt = get_register(rt_reg);
6242   int16_t imm16 = instr_.Imm16Value();
6243 
6244   int32_t ft_reg = instr_.FtValue();  // Destination register.
6245 
6246   // Zero extended immediate.
6247   uint32_t oe_imm16 = 0xFFFF & imm16;
6248   // Sign extended immediate.
6249   int32_t se_imm16 = imm16;
6250 
6251   // Next pc.
6252   int32_t next_pc = bad_ra;
6253 
6254   // Used for conditional branch instructions.
6255   bool execute_branch_delay_instruction = false;
6256 
6257   // Used for arithmetic instructions.
6258   int32_t alu_out = 0;
6259 
6260   // Used for memory instructions.
6261   int32_t addr = 0x0;
6262 
6263   // Branch instructions common part.
6264   auto BranchAndLinkHelper =
6265       [this, &next_pc, &execute_branch_delay_instruction](bool do_branch) {
6266         execute_branch_delay_instruction = true;
6267         int32_t current_pc = get_pc();
6268         set_register(31, current_pc + 2 * kInstrSize);
6269         if (do_branch) {
6270           int16_t imm16 = this->instr_.Imm16Value();
6271           next_pc = current_pc + (imm16 << 2) + kInstrSize;
6272         } else {
6273           next_pc = current_pc + 2 * kInstrSize;
6274         }
6275       };
6276 
6277   auto BranchHelper = [this, &next_pc,
6278                        &execute_branch_delay_instruction](bool do_branch) {
6279     execute_branch_delay_instruction = true;
6280     int32_t current_pc = get_pc();
6281     if (do_branch) {
6282       int16_t imm16 = this->instr_.Imm16Value();
6283       next_pc = current_pc + (imm16 << 2) + kInstrSize;
6284     } else {
6285       next_pc = current_pc + 2 * kInstrSize;
6286     }
6287   };
6288 
6289   auto BranchHelper_MSA = [this, &next_pc, imm16,
6290                            &execute_branch_delay_instruction](bool do_branch) {
6291     execute_branch_delay_instruction = true;
6292     int32_t current_pc = get_pc();
6293     const int32_t bitsIn16Int = sizeof(int16_t) * kBitsPerByte;
6294     if (do_branch) {
6295       if (FLAG_debug_code) {
6296         int16_t bits = imm16 & 0xFC;
6297         if (imm16 >= 0) {
6298           CHECK_EQ(bits, 0);
6299         } else {
6300           CHECK_EQ(bits ^ 0xFC, 0);
6301         }
6302       }
6303       // jump range :[pc + kInstrSize - 512 * kInstrSize,
6304       //              pc + kInstrSize + 511 * kInstrSize]
6305       int16_t offset = static_cast<int16_t>(imm16 << (bitsIn16Int - 10)) >>
6306                        (bitsIn16Int - 12);
6307       next_pc = current_pc + offset + kInstrSize;
6308     } else {
6309       next_pc = current_pc + 2 * kInstrSize;
6310     }
6311   };
6312 
6313   auto BranchAndLinkCompactHelper = [this, &next_pc](bool do_branch, int bits) {
6314     int32_t current_pc = get_pc();
6315     CheckForbiddenSlot(current_pc);
6316     if (do_branch) {
6317       int32_t imm = this->instr_.ImmValue(bits);
6318       imm <<= 32 - bits;
6319       imm >>= 32 - bits;
6320       next_pc = current_pc + (imm << 2) + kInstrSize;
6321       set_register(31, current_pc + kInstrSize);
6322     }
6323   };
6324 
6325   auto BranchCompactHelper = [this, &next_pc](bool do_branch, int bits) {
6326     int32_t current_pc = get_pc();
6327     CheckForbiddenSlot(current_pc);
6328     if (do_branch) {
6329       int32_t imm = this->instr_.ImmValue(bits);
6330       imm <<= 32 - bits;
6331       imm >>= 32 - bits;
6332       next_pc = get_pc() + (imm << 2) + kInstrSize;
6333     }
6334   };
6335 
6336   switch (op) {
6337     // ------------- COP1. Coprocessor instructions.
6338     case COP1:
6339       switch (instr_.RsFieldRaw()) {
6340         case BC1: {  // Branch on coprocessor condition.
6341           // Floating point.
6342           uint32_t cc = instr_.FBccValue();
6343           uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
6344           uint32_t cc_value = test_fcsr_bit(fcsr_cc);
6345           bool do_branch = (instr_.FBtrueValue()) ? cc_value : !cc_value;
6346           BranchHelper(do_branch);
6347           break;
6348         }
6349         case BC1EQZ:
6350           BranchHelper(!(get_fpu_register(ft_reg) & 0x1));
6351           break;
6352         case BC1NEZ:
6353           BranchHelper(get_fpu_register(ft_reg) & 0x1);
6354           break;
6355         case BZ_V: {
6356           msa_reg_t wt;
6357           get_msa_register(wt_reg(), &wt);
6358           BranchHelper_MSA(wt.d[0] == 0 && wt.d[1] == 0);
6359         } break;
6360 #define BZ_DF(witdh, lanes)          \
6361   {                                  \
6362     msa_reg_t wt;                    \
6363     get_msa_register(wt_reg(), &wt); \
6364     int i;                           \
6365     for (i = 0; i < lanes; ++i) {    \
6366       if (wt.witdh[i] == 0) {        \
6367         break;                       \
6368       }                              \
6369     }                                \
6370     BranchHelper_MSA(i != lanes);    \
6371   }
6372         case BZ_B:
6373           BZ_DF(b, kMSALanesByte)
6374           break;
6375         case BZ_H:
6376           BZ_DF(h, kMSALanesHalf)
6377           break;
6378         case BZ_W:
6379           BZ_DF(w, kMSALanesWord)
6380           break;
6381         case BZ_D:
6382           BZ_DF(d, kMSALanesDword)
6383           break;
6384 #undef BZ_DF
6385         case BNZ_V: {
6386           msa_reg_t wt;
6387           get_msa_register(wt_reg(), &wt);
6388           BranchHelper_MSA(wt.d[0] != 0 || wt.d[1] != 0);
6389         } break;
6390 #define BNZ_DF(witdh, lanes)         \
6391   {                                  \
6392     msa_reg_t wt;                    \
6393     get_msa_register(wt_reg(), &wt); \
6394     int i;                           \
6395     for (i = 0; i < lanes; ++i) {    \
6396       if (wt.witdh[i] == 0) {        \
6397         break;                       \
6398       }                              \
6399     }                                \
6400     BranchHelper_MSA(i == lanes);    \
6401   }
6402         case BNZ_B:
6403           BNZ_DF(b, kMSALanesByte)
6404           break;
6405         case BNZ_H:
6406           BNZ_DF(h, kMSALanesHalf)
6407           break;
6408         case BNZ_W:
6409           BNZ_DF(w, kMSALanesWord)
6410           break;
6411         case BNZ_D:
6412           BNZ_DF(d, kMSALanesDword)
6413           break;
6414 #undef BNZ_DF
6415         default:
6416           UNREACHABLE();
6417       }
6418       break;
6419     // ------------- REGIMM class.
6420     case REGIMM:
6421       switch (instr_.RtFieldRaw()) {
6422         case BLTZ:
6423           BranchHelper(rs < 0);
6424           break;
6425         case BGEZ:
6426           BranchHelper(rs >= 0);
6427           break;
6428         case BLTZAL:
6429           BranchAndLinkHelper(rs < 0);
6430           break;
6431         case BGEZAL:
6432           BranchAndLinkHelper(rs >= 0);
6433           break;
6434         default:
6435           UNREACHABLE();
6436       }
6437       break;  // case REGIMM.
6438     // ------------- Branch instructions.
6439     // When comparing to zero, the encoding of rt field is always 0, so we don't
6440     // need to replace rt with zero.
6441     case BEQ:
6442       BranchHelper(rs == rt);
6443       break;
6444     case BNE:
6445       BranchHelper(rs != rt);
6446       break;
6447     case POP06:  // BLEZALC, BGEZALC, BGEUC, BLEZ (pre-r6)
6448       if (IsMipsArchVariant(kMips32r6)) {
6449         if (rt_reg != 0) {
6450           if (rs_reg == 0) {  // BLEZALC
6451             BranchAndLinkCompactHelper(rt <= 0, 16);
6452           } else {
6453             if (rs_reg == rt_reg) {  // BGEZALC
6454               BranchAndLinkCompactHelper(rt >= 0, 16);
6455             } else {  // BGEUC
6456               BranchCompactHelper(
6457                   static_cast<uint32_t>(rs) >= static_cast<uint32_t>(rt), 16);
6458             }
6459           }
6460         } else {  // BLEZ
6461           BranchHelper(rs <= 0);
6462         }
6463       } else {  // BLEZ
6464         BranchHelper(rs <= 0);
6465       }
6466       break;
6467     case POP07:  // BGTZALC, BLTZALC, BLTUC, BGTZ (pre-r6)
6468       if (IsMipsArchVariant(kMips32r6)) {
6469         if (rt_reg != 0) {
6470           if (rs_reg == 0) {  // BGTZALC
6471             BranchAndLinkCompactHelper(rt > 0, 16);
6472           } else {
6473             if (rt_reg == rs_reg) {  // BLTZALC
6474               BranchAndLinkCompactHelper(rt < 0, 16);
6475             } else {  // BLTUC
6476               BranchCompactHelper(
6477                   static_cast<uint32_t>(rs) < static_cast<uint32_t>(rt), 16);
6478             }
6479           }
6480         } else {  // BGTZ
6481           BranchHelper(rs > 0);
6482         }
6483       } else {  // BGTZ
6484         BranchHelper(rs > 0);
6485       }
6486       break;
6487     case POP26:  // BLEZC, BGEZC, BGEC/BLEC / BLEZL (pre-r6)
6488       if (IsMipsArchVariant(kMips32r6)) {
6489         if (rt_reg != 0) {
6490           if (rs_reg == 0) {  // BLEZC
6491             BranchCompactHelper(rt <= 0, 16);
6492           } else {
6493             if (rs_reg == rt_reg) {  // BGEZC
6494               BranchCompactHelper(rt >= 0, 16);
6495             } else {  // BGEC/BLEC
6496               BranchCompactHelper(rs >= rt, 16);
6497             }
6498           }
6499         }
6500       } else {  // BLEZL
6501         BranchAndLinkHelper(rs <= 0);
6502       }
6503       break;
6504     case POP27:  // BGTZC, BLTZC, BLTC/BGTC / BGTZL (pre-r6)
6505       if (IsMipsArchVariant(kMips32r6)) {
6506         if (rt_reg != 0) {
6507           if (rs_reg == 0) {  // BGTZC
6508             BranchCompactHelper(rt > 0, 16);
6509           } else {
6510             if (rs_reg == rt_reg) {  // BLTZC
6511               BranchCompactHelper(rt < 0, 16);
6512             } else {  // BLTC/BGTC
6513               BranchCompactHelper(rs < rt, 16);
6514             }
6515           }
6516         }
6517       } else {  // BGTZL
6518         BranchAndLinkHelper(rs > 0);
6519       }
6520       break;
6521     case POP66:           // BEQZC, JIC
6522       if (rs_reg != 0) {  // BEQZC
6523         BranchCompactHelper(rs == 0, 21);
6524       } else {  // JIC
6525         next_pc = rt + imm16;
6526       }
6527       break;
6528     case POP76:           // BNEZC, JIALC
6529       if (rs_reg != 0) {  // BNEZC
6530         BranchCompactHelper(rs != 0, 21);
6531       } else {  // JIALC
6532         set_register(31, get_pc() + kInstrSize);
6533         next_pc = rt + imm16;
6534       }
6535       break;
6536     case BC:
6537       BranchCompactHelper(true, 26);
6538       break;
6539     case BALC:
6540       BranchAndLinkCompactHelper(true, 26);
6541       break;
6542     case POP10:  // BOVC, BEQZALC, BEQC / ADDI (pre-r6)
6543       if (IsMipsArchVariant(kMips32r6)) {
6544         if (rs_reg >= rt_reg) {  // BOVC
6545           if (HaveSameSign(rs, rt)) {
6546             if (rs > 0) {
6547               BranchCompactHelper(rs > Registers::kMaxValue - rt, 16);
6548             } else if (rs < 0) {
6549               BranchCompactHelper(rs < Registers::kMinValue - rt, 16);
6550             }
6551           }
6552         } else {
6553           if (rs_reg == 0) {  // BEQZALC
6554             BranchAndLinkCompactHelper(rt == 0, 16);
6555           } else {  // BEQC
6556             BranchCompactHelper(rt == rs, 16);
6557           }
6558         }
6559       } else {  // ADDI
6560         if (HaveSameSign(rs, se_imm16)) {
6561           if (rs > 0) {
6562             if (rs <= Registers::kMaxValue - se_imm16) {
6563               SignalException(kIntegerOverflow);
6564             }
6565           } else if (rs < 0) {
6566             if (rs >= Registers::kMinValue - se_imm16) {
6567               SignalException(kIntegerUnderflow);
6568             }
6569           }
6570         }
6571         SetResult(rt_reg, rs + se_imm16);
6572       }
6573       break;
6574     case POP30:  // BNVC, BNEZALC, BNEC / DADDI (pre-r6)
6575       if (IsMipsArchVariant(kMips32r6)) {
6576         if (rs_reg >= rt_reg) {  // BNVC
6577           if (!HaveSameSign(rs, rt) || rs == 0 || rt == 0) {
6578             BranchCompactHelper(true, 16);
6579           } else {
6580             if (rs > 0) {
6581               BranchCompactHelper(rs <= Registers::kMaxValue - rt, 16);
6582             } else if (rs < 0) {
6583               BranchCompactHelper(rs >= Registers::kMinValue - rt, 16);
6584             }
6585           }
6586         } else {
6587           if (rs_reg == 0) {  // BNEZALC
6588             BranchAndLinkCompactHelper(rt != 0, 16);
6589           } else {  // BNEC
6590             BranchCompactHelper(rt != rs, 16);
6591           }
6592         }
6593       }
6594       break;
6595     // ------------- Arithmetic instructions.
6596     case ADDIU:
6597       SetResult(rt_reg, rs + se_imm16);
6598       break;
6599     case SLTI:
6600       SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
6601       break;
6602     case SLTIU:
6603       SetResult(rt_reg, rs_u < static_cast<uint32_t>(se_imm16) ? 1 : 0);
6604       break;
6605     case ANDI:
6606       SetResult(rt_reg, rs & oe_imm16);
6607       break;
6608     case ORI:
6609       SetResult(rt_reg, rs | oe_imm16);
6610       break;
6611     case XORI:
6612       SetResult(rt_reg, rs ^ oe_imm16);
6613       break;
6614     case LUI:
6615       if (rs_reg != 0) {
6616         // AUI
6617         DCHECK(IsMipsArchVariant(kMips32r6));
6618         SetResult(rt_reg, rs + (se_imm16 << 16));
6619       } else {
6620         // LUI
6621         SetResult(rt_reg, oe_imm16 << 16);
6622       }
6623       break;
6624     // ------------- Memory instructions.
6625     case LB:
6626       set_register(rt_reg, ReadB(rs + se_imm16));
6627       break;
6628     case LH:
6629       set_register(rt_reg, ReadH(rs + se_imm16, instr_.instr()));
6630       break;
6631     case LWL: {
6632       // al_offset is offset of the effective address within an aligned word.
6633       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
6634       uint8_t byte_shift = kPointerAlignmentMask - al_offset;
6635       uint32_t mask = (1 << byte_shift * 8) - 1;
6636       addr = rs + se_imm16 - al_offset;
6637       alu_out = ReadW(addr, instr_.instr());
6638       alu_out <<= byte_shift * 8;
6639       alu_out |= rt & mask;
6640       set_register(rt_reg, alu_out);
6641       break;
6642     }
6643     case LW:
6644       set_register(rt_reg, ReadW(rs + se_imm16, instr_.instr()));
6645       break;
6646     case LBU:
6647       set_register(rt_reg, ReadBU(rs + se_imm16));
6648       break;
6649     case LHU:
6650       set_register(rt_reg, ReadHU(rs + se_imm16, instr_.instr()));
6651       break;
6652     case LWR: {
6653       // al_offset is offset of the effective address within an aligned word.
6654       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
6655       uint8_t byte_shift = kPointerAlignmentMask - al_offset;
6656       uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
6657       addr = rs + se_imm16 - al_offset;
6658       alu_out = ReadW(addr, instr_.instr());
6659       alu_out = static_cast<uint32_t>(alu_out) >> al_offset * 8;
6660       alu_out |= rt & mask;
6661       set_register(rt_reg, alu_out);
6662       break;
6663     }
6664     case SB:
6665       WriteB(rs + se_imm16, static_cast<int8_t>(rt));
6666       break;
6667     case SH:
6668       WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr_.instr());
6669       break;
6670     case SWL: {
6671       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
6672       uint8_t byte_shift = kPointerAlignmentMask - al_offset;
6673       uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
6674       addr = rs + se_imm16 - al_offset;
6675       // Value to be written in memory.
6676       uint32_t mem_value = ReadW(addr, instr_.instr()) & mask;
6677       mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
6678       WriteW(addr, mem_value, instr_.instr());
6679       break;
6680     }
6681     case SW:
6682       WriteW(rs + se_imm16, rt, instr_.instr());
6683       break;
6684     case SWR: {
6685       uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
6686       uint32_t mask = (1 << al_offset * 8) - 1;
6687       addr = rs + se_imm16 - al_offset;
6688       uint32_t mem_value = ReadW(addr, instr_.instr());
6689       mem_value = (rt << al_offset * 8) | (mem_value & mask);
6690       WriteW(addr, mem_value, instr_.instr());
6691       break;
6692     }
6693     case LL: {
6694       DCHECK(!IsMipsArchVariant(kMips32r6));
6695       base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
6696       addr = rs + se_imm16;
6697       set_register(rt_reg, ReadW(addr, instr_.instr()));
6698       local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word);
6699       GlobalMonitor::Get()->NotifyLoadLinked_Locked(addr,
6700                                                     &global_monitor_thread_);
6701       break;
6702     }
6703     case SC: {
6704       DCHECK(!IsMipsArchVariant(kMips32r6));
6705       addr = rs + se_imm16;
6706       WriteConditionalW(addr, rt, instr_.instr(), rt_reg);
6707       break;
6708     }
6709     case LWC1:
6710       set_fpu_register_hi_word(ft_reg, 0);
6711       set_fpu_register_word(ft_reg,
6712                             ReadW(rs + se_imm16, instr_.instr(), FLOAT));
6713       if (ft_reg % 2) {
6714         TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg - 1), FLOAT_DOUBLE);
6715       } else {
6716         TraceMemRd(rs + se_imm16, get_fpu_register_word(ft_reg), FLOAT);
6717       }
6718       break;
6719     case LDC1:
6720       set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr_.instr()));
6721       TraceMemRd(rs + se_imm16, get_fpu_register(ft_reg), DOUBLE);
6722       break;
6723     case SWC1:
6724       WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr_.instr());
6725       TraceMemWr(rs + se_imm16, get_fpu_register_word(ft_reg));
6726       break;
6727     case SDC1:
6728       WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr_.instr());
6729       TraceMemWr(rs + se_imm16, get_fpu_register(ft_reg));
6730       break;
6731     // ------------- PC-Relative instructions.
6732     case PCREL: {
6733       // rt field: checking 5-bits.
6734       int32_t imm21 = instr_.Imm21Value();
6735       int32_t current_pc = get_pc();
6736       uint8_t rt = (imm21 >> kImm16Bits);
6737       switch (rt) {
6738         case ALUIPC:
6739           addr = current_pc + (se_imm16 << 16);
6740           alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
6741           break;
6742         case AUIPC:
6743           alu_out = current_pc + (se_imm16 << 16);
6744           break;
6745         default: {
6746           int32_t imm19 = instr_.Imm19Value();
6747           // rt field: checking the most significant 2-bits.
6748           rt = (imm21 >> kImm19Bits);
6749           switch (rt) {
6750             case LWPC: {
6751               // Set sign.
6752               imm19 <<= (kOpcodeBits + kRsBits + 2);
6753               imm19 >>= (kOpcodeBits + kRsBits + 2);
6754               addr = current_pc + (imm19 << 2);
6755               uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
6756               alu_out = *ptr;
6757               break;
6758             }
6759             case ADDIUPC: {
6760               int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xFFF80000 : 0);
6761               alu_out = current_pc + (se_imm19 << 2);
6762               break;
6763             }
6764             default:
6765               UNREACHABLE();
6766               break;
6767           }
6768         }
6769       }
6770       SetResult(rs_reg, alu_out);
6771       break;
6772     }
6773     case SPECIAL3: {
6774       switch (instr_.FunctionFieldRaw()) {
6775         case LL_R6: {
6776           DCHECK(IsMipsArchVariant(kMips32r6));
6777           base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
6778           int32_t base = get_register(instr_.BaseValue());
6779           int32_t offset9 = instr_.Imm9Value();
6780           addr = base + offset9;
6781           DCHECK_EQ(addr & kPointerAlignmentMask, 0);
6782           set_register(rt_reg, ReadW(base + offset9, instr_.instr()));
6783           local_monitor_.NotifyLoadLinked(addr, TransactionSize::Word);
6784           GlobalMonitor::Get()->NotifyLoadLinked_Locked(
6785               addr, &global_monitor_thread_);
6786           break;
6787         }
6788         case SC_R6: {
6789           DCHECK(IsMipsArchVariant(kMips32r6));
6790           int32_t base = get_register(instr_.BaseValue());
6791           int32_t offset9 = instr_.Imm9Value();
6792           addr = base + offset9;
6793           DCHECK_EQ(addr & kPointerAlignmentMask, 0);
6794           WriteConditionalW(addr, rt, instr_.instr(), rt_reg);
6795           break;
6796         }
6797         default:
6798           UNREACHABLE();
6799       }
6800       break;
6801     }
6802     case MSA:
6803       switch (instr_.MSAMinorOpcodeField()) {
6804         case kMsaMinorI8:
6805           DecodeTypeMsaI8();
6806           break;
6807         case kMsaMinorI5:
6808           DecodeTypeMsaI5();
6809           break;
6810         case kMsaMinorI10:
6811           DecodeTypeMsaI10();
6812           break;
6813         case kMsaMinorELM:
6814           DecodeTypeMsaELM();
6815           break;
6816         case kMsaMinorBIT:
6817           DecodeTypeMsaBIT();
6818           break;
6819         case kMsaMinorMI10:
6820           DecodeTypeMsaMI10();
6821           break;
6822         default:
6823           UNREACHABLE();
6824           break;
6825       }
6826       break;
6827     default:
6828       UNREACHABLE();
6829   }
6830 
6831   if (execute_branch_delay_instruction) {
6832     // Execute branch delay slot
6833     // We don't check for end_sim_pc. First it should not be met as the current
6834     // pc is valid. Secondly a jump should always execute its branch delay slot.
6835     Instruction* branch_delay_instr =
6836         reinterpret_cast<Instruction*>(get_pc() + kInstrSize);
6837     BranchDelayInstructionDecode(branch_delay_instr);
6838   }
6839 
6840   // If needed update pc after the branch delay execution.
6841   if (next_pc != bad_ra) {
6842     set_pc(next_pc);
6843   }
6844 }
6845 
6846 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
DecodeTypeJump()6847 void Simulator::DecodeTypeJump() {
6848   SimInstruction simInstr = instr_;
6849   // Get current pc.
6850   int32_t current_pc = get_pc();
6851   // Get unchanged bits of pc.
6852   int32_t pc_high_bits = current_pc & 0xF0000000;
6853   // Next pc.
6854 
6855   int32_t next_pc = pc_high_bits | (simInstr.Imm26Value() << 2);
6856 
6857   // Execute branch delay slot.
6858   // We don't check for end_sim_pc. First it should not be met as the current pc
6859   // is valid. Secondly a jump should always execute its branch delay slot.
6860   Instruction* branch_delay_instr =
6861       reinterpret_cast<Instruction*>(current_pc + kInstrSize);
6862   BranchDelayInstructionDecode(branch_delay_instr);
6863 
6864   // Update pc and ra if necessary.
6865   // Do this after the branch delay execution.
6866   if (simInstr.IsLinkingInstruction()) {
6867     set_register(31, current_pc + 2 * kInstrSize);
6868   }
6869   set_pc(next_pc);
6870   pc_modified_ = true;
6871 }
6872 
6873 // Executes the current instruction.
InstructionDecode(Instruction * instr)6874 void Simulator::InstructionDecode(Instruction* instr) {
6875   if (v8::internal::FLAG_check_icache) {
6876     CheckICache(i_cache(), instr);
6877   }
6878   pc_modified_ = false;
6879   v8::internal::EmbeddedVector<char, 256> buffer;
6880   if (::v8::internal::FLAG_trace_sim) {
6881     SNPrintF(trace_buf_, "%s", "");
6882     disasm::NameConverter converter;
6883     disasm::Disassembler dasm(converter);
6884     dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
6885   }
6886 
6887   instr_ = instr;
6888   switch (instr_.InstructionType()) {
6889     case Instruction::kRegisterType:
6890       DecodeTypeRegister();
6891       break;
6892     case Instruction::kImmediateType:
6893       DecodeTypeImmediate();
6894       break;
6895     case Instruction::kJumpType:
6896       DecodeTypeJump();
6897       break;
6898     default:
6899       UNSUPPORTED();
6900   }
6901   if (::v8::internal::FLAG_trace_sim) {
6902     PrintF("  0x%08" PRIxPTR "  %-44s   %s\n",
6903            reinterpret_cast<intptr_t>(instr), buffer.begin(),
6904            trace_buf_.begin());
6905   }
6906   if (!pc_modified_) {
6907     set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize);
6908   }
6909 }
6910 
Execute()6911 void Simulator::Execute() {
6912   // Get the PC to simulate. Cannot use the accessor here as we need the
6913   // raw PC value and not the one used as input to arithmetic instructions.
6914   int program_counter = get_pc();
6915   if (::v8::internal::FLAG_stop_sim_at == 0) {
6916     // Fast version of the dispatch loop without checking whether the simulator
6917     // should be stopping at a particular executed instruction.
6918     while (program_counter != end_sim_pc) {
6919       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
6920       icount_++;
6921       InstructionDecode(instr);
6922       program_counter = get_pc();
6923     }
6924   } else {
6925     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
6926     // we reach the particular instruction count.
6927     while (program_counter != end_sim_pc) {
6928       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
6929       icount_++;
6930       if (icount_ == static_cast<uint64_t>(::v8::internal::FLAG_stop_sim_at)) {
6931         MipsDebugger dbg(this);
6932         dbg.Debug();
6933       } else {
6934         InstructionDecode(instr);
6935       }
6936       program_counter = get_pc();
6937     }
6938   }
6939 }
6940 
CallInternal(Address entry)6941 void Simulator::CallInternal(Address entry) {
6942   // Adjust JS-based stack limit to C-based stack limit.
6943   isolate_->stack_guard()->AdjustStackLimitForSimulator();
6944 
6945   // Prepare to execute the code at entry.
6946   set_register(pc, static_cast<int32_t>(entry));
6947   // Put down marker for end of simulation. The simulator will stop simulation
6948   // when the PC reaches this value. By saving the "end simulation" value into
6949   // the LR the simulation stops when returning to this call point.
6950   set_register(ra, end_sim_pc);
6951 
6952   // Remember the values of callee-saved registers.
6953   // The code below assumes that r9 is not used as sb (static base) in
6954   // simulator code and therefore is regarded as a callee-saved register.
6955   int32_t s0_val = get_register(s0);
6956   int32_t s1_val = get_register(s1);
6957   int32_t s2_val = get_register(s2);
6958   int32_t s3_val = get_register(s3);
6959   int32_t s4_val = get_register(s4);
6960   int32_t s5_val = get_register(s5);
6961   int32_t s6_val = get_register(s6);
6962   int32_t s7_val = get_register(s7);
6963   int32_t gp_val = get_register(gp);
6964   int32_t sp_val = get_register(sp);
6965   int32_t fp_val = get_register(fp);
6966 
6967   // Set up the callee-saved registers with a known value. To be able to check
6968   // that they are preserved properly across JS execution.
6969   int32_t callee_saved_value = static_cast<int32_t>(icount_);
6970   set_register(s0, callee_saved_value);
6971   set_register(s1, callee_saved_value);
6972   set_register(s2, callee_saved_value);
6973   set_register(s3, callee_saved_value);
6974   set_register(s4, callee_saved_value);
6975   set_register(s5, callee_saved_value);
6976   set_register(s6, callee_saved_value);
6977   set_register(s7, callee_saved_value);
6978   set_register(gp, callee_saved_value);
6979   set_register(fp, callee_saved_value);
6980 
6981   // Start the simulation.
6982   Execute();
6983 
6984   // Check that the callee-saved registers have been preserved.
6985   CHECK_EQ(callee_saved_value, get_register(s0));
6986   CHECK_EQ(callee_saved_value, get_register(s1));
6987   CHECK_EQ(callee_saved_value, get_register(s2));
6988   CHECK_EQ(callee_saved_value, get_register(s3));
6989   CHECK_EQ(callee_saved_value, get_register(s4));
6990   CHECK_EQ(callee_saved_value, get_register(s5));
6991   CHECK_EQ(callee_saved_value, get_register(s6));
6992   CHECK_EQ(callee_saved_value, get_register(s7));
6993   CHECK_EQ(callee_saved_value, get_register(gp));
6994   CHECK_EQ(callee_saved_value, get_register(fp));
6995 
6996   // Restore callee-saved registers with the original value.
6997   set_register(s0, s0_val);
6998   set_register(s1, s1_val);
6999   set_register(s2, s2_val);
7000   set_register(s3, s3_val);
7001   set_register(s4, s4_val);
7002   set_register(s5, s5_val);
7003   set_register(s6, s6_val);
7004   set_register(s7, s7_val);
7005   set_register(gp, gp_val);
7006   set_register(sp, sp_val);
7007   set_register(fp, fp_val);
7008 }
7009 
CallImpl(Address entry,int argument_count,const intptr_t * arguments)7010 intptr_t Simulator::CallImpl(Address entry, int argument_count,
7011                              const intptr_t* arguments) {
7012   // Set up arguments.
7013 
7014   // First four arguments passed in registers.
7015   int reg_arg_count = std::min(4, argument_count);
7016   if (reg_arg_count > 0) set_register(a0, arguments[0]);
7017   if (reg_arg_count > 1) set_register(a1, arguments[1]);
7018   if (reg_arg_count > 2) set_register(a2, arguments[2]);
7019   if (reg_arg_count > 3) set_register(a3, arguments[3]);
7020 
7021   // Remaining arguments passed on stack.
7022   int original_stack = get_register(sp);
7023   // Compute position of stack on entry to generated code.
7024   int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) -
7025                      kCArgsSlotsSize);
7026   if (base::OS::ActivationFrameAlignment() != 0) {
7027     entry_stack &= -base::OS::ActivationFrameAlignment();
7028   }
7029   // Store remaining arguments on stack, from low to high memory.
7030   intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
7031   memcpy(stack_argument + kCArgSlotCount, arguments + reg_arg_count,
7032          (argument_count - reg_arg_count) * sizeof(*arguments));
7033   set_register(sp, entry_stack);
7034 
7035   CallInternal(entry);
7036 
7037   // Pop stack passed arguments.
7038   CHECK_EQ(entry_stack, get_register(sp));
7039   set_register(sp, original_stack);
7040 
7041   return get_register(v0);
7042 }
7043 
CallFP(Address entry,double d0,double d1)7044 double Simulator::CallFP(Address entry, double d0, double d1) {
7045   if (!IsMipsSoftFloatABI) {
7046     set_fpu_register_double(f12, d0);
7047     set_fpu_register_double(f14, d1);
7048   } else {
7049     int buffer[2];
7050     DCHECK(sizeof(buffer[0]) * 2 == sizeof(d0));
7051     memcpy(buffer, &d0, sizeof(d0));
7052     set_dw_register(a0, buffer);
7053     memcpy(buffer, &d1, sizeof(d1));
7054     set_dw_register(a2, buffer);
7055   }
7056   CallInternal(entry);
7057   if (!IsMipsSoftFloatABI) {
7058     return get_fpu_register_double(f0);
7059   } else {
7060     return get_double_from_register_pair(v0);
7061   }
7062 }
7063 
PushAddress(uintptr_t address)7064 uintptr_t Simulator::PushAddress(uintptr_t address) {
7065   int new_sp = get_register(sp) - sizeof(uintptr_t);
7066   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
7067   *stack_slot = address;
7068   set_register(sp, new_sp);
7069   return new_sp;
7070 }
7071 
PopAddress()7072 uintptr_t Simulator::PopAddress() {
7073   int current_sp = get_register(sp);
7074   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
7075   uintptr_t address = *stack_slot;
7076   set_register(sp, current_sp + sizeof(uintptr_t));
7077   return address;
7078 }
7079 
LocalMonitor()7080 Simulator::LocalMonitor::LocalMonitor()
7081     : access_state_(MonitorAccess::Open),
7082       tagged_addr_(0),
7083       size_(TransactionSize::None) {}
7084 
Clear()7085 void Simulator::LocalMonitor::Clear() {
7086   access_state_ = MonitorAccess::Open;
7087   tagged_addr_ = 0;
7088   size_ = TransactionSize::None;
7089 }
7090 
NotifyLoad()7091 void Simulator::LocalMonitor::NotifyLoad() {
7092   if (access_state_ == MonitorAccess::RMW) {
7093     // A non linked load could clear the local monitor. As a result, it's
7094     // most strict to unconditionally clear the local monitor on load.
7095     Clear();
7096   }
7097 }
7098 
NotifyLoadLinked(uintptr_t addr,TransactionSize size)7099 void Simulator::LocalMonitor::NotifyLoadLinked(uintptr_t addr,
7100                                                TransactionSize size) {
7101   access_state_ = MonitorAccess::RMW;
7102   tagged_addr_ = addr;
7103   size_ = size;
7104 }
7105 
NotifyStore()7106 void Simulator::LocalMonitor::NotifyStore() {
7107   if (access_state_ == MonitorAccess::RMW) {
7108     // A non exclusive store could clear the local monitor. As a result, it's
7109     // most strict to unconditionally clear the local monitor on store.
7110     Clear();
7111   }
7112 }
7113 
NotifyStoreConditional(uintptr_t addr,TransactionSize size)7114 bool Simulator::LocalMonitor::NotifyStoreConditional(uintptr_t addr,
7115                                                      TransactionSize size) {
7116   if (access_state_ == MonitorAccess::RMW) {
7117     if (addr == tagged_addr_ && size_ == size) {
7118       Clear();
7119       return true;
7120     } else {
7121       return false;
7122     }
7123   } else {
7124     DCHECK(access_state_ == MonitorAccess::Open);
7125     return false;
7126   }
7127 }
7128 
LinkedAddress()7129 Simulator::GlobalMonitor::LinkedAddress::LinkedAddress()
7130     : access_state_(MonitorAccess::Open),
7131       tagged_addr_(0),
7132       next_(nullptr),
7133       prev_(nullptr),
7134       failure_counter_(0) {}
7135 
Clear_Locked()7136 void Simulator::GlobalMonitor::LinkedAddress::Clear_Locked() {
7137   access_state_ = MonitorAccess::Open;
7138   tagged_addr_ = 0;
7139 }
7140 
NotifyLoadLinked_Locked(uintptr_t addr)7141 void Simulator::GlobalMonitor::LinkedAddress::NotifyLoadLinked_Locked(
7142     uintptr_t addr) {
7143   access_state_ = MonitorAccess::RMW;
7144   tagged_addr_ = addr;
7145 }
7146 
NotifyStore_Locked()7147 void Simulator::GlobalMonitor::LinkedAddress::NotifyStore_Locked() {
7148   if (access_state_ == MonitorAccess::RMW) {
7149     // A non exclusive store could clear the global monitor. As a result, it's
7150     // most strict to unconditionally clear global monitors on store.
7151     Clear_Locked();
7152   }
7153 }
7154 
NotifyStoreConditional_Locked(uintptr_t addr,bool is_requesting_processor)7155 bool Simulator::GlobalMonitor::LinkedAddress::NotifyStoreConditional_Locked(
7156     uintptr_t addr, bool is_requesting_processor) {
7157   if (access_state_ == MonitorAccess::RMW) {
7158     if (is_requesting_processor) {
7159       if (addr == tagged_addr_) {
7160         Clear_Locked();
7161         // Introduce occasional sc/scd failures. This is to simulate the
7162         // behavior of hardware, which can randomly fail due to background
7163         // cache evictions.
7164         if (failure_counter_++ >= kMaxFailureCounter) {
7165           failure_counter_ = 0;
7166           return false;
7167         } else {
7168           return true;
7169         }
7170       }
7171     } else if ((addr & kExclusiveTaggedAddrMask) ==
7172                (tagged_addr_ & kExclusiveTaggedAddrMask)) {
7173       // Check the masked addresses when responding to a successful lock by
7174       // another thread so the implementation is more conservative (i.e. the
7175       // granularity of locking is as large as possible.)
7176       Clear_Locked();
7177       return false;
7178     }
7179   }
7180   return false;
7181 }
7182 
NotifyLoadLinked_Locked(uintptr_t addr,LinkedAddress * linked_address)7183 void Simulator::GlobalMonitor::NotifyLoadLinked_Locked(
7184     uintptr_t addr, LinkedAddress* linked_address) {
7185   linked_address->NotifyLoadLinked_Locked(addr);
7186   PrependProcessor_Locked(linked_address);
7187 }
7188 
NotifyStore_Locked(LinkedAddress * linked_address)7189 void Simulator::GlobalMonitor::NotifyStore_Locked(
7190     LinkedAddress* linked_address) {
7191   // Notify each thread of the store operation.
7192   for (LinkedAddress* iter = head_; iter; iter = iter->next_) {
7193     iter->NotifyStore_Locked();
7194   }
7195 }
7196 
NotifyStoreConditional_Locked(uintptr_t addr,LinkedAddress * linked_address)7197 bool Simulator::GlobalMonitor::NotifyStoreConditional_Locked(
7198     uintptr_t addr, LinkedAddress* linked_address) {
7199   DCHECK(IsProcessorInLinkedList_Locked(linked_address));
7200   if (linked_address->NotifyStoreConditional_Locked(addr, true)) {
7201     // Notify the other processors that this StoreConditional succeeded.
7202     for (LinkedAddress* iter = head_; iter; iter = iter->next_) {
7203       if (iter != linked_address) {
7204         iter->NotifyStoreConditional_Locked(addr, false);
7205       }
7206     }
7207     return true;
7208   } else {
7209     return false;
7210   }
7211 }
7212 
IsProcessorInLinkedList_Locked(LinkedAddress * linked_address) const7213 bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked(
7214     LinkedAddress* linked_address) const {
7215   return head_ == linked_address || linked_address->next_ ||
7216          linked_address->prev_;
7217 }
7218 
PrependProcessor_Locked(LinkedAddress * linked_address)7219 void Simulator::GlobalMonitor::PrependProcessor_Locked(
7220     LinkedAddress* linked_address) {
7221   if (IsProcessorInLinkedList_Locked(linked_address)) {
7222     return;
7223   }
7224 
7225   if (head_) {
7226     head_->prev_ = linked_address;
7227   }
7228   linked_address->prev_ = nullptr;
7229   linked_address->next_ = head_;
7230   head_ = linked_address;
7231 }
7232 
RemoveLinkedAddress(LinkedAddress * linked_address)7233 void Simulator::GlobalMonitor::RemoveLinkedAddress(
7234     LinkedAddress* linked_address) {
7235   base::MutexGuard lock_guard(&mutex);
7236   if (!IsProcessorInLinkedList_Locked(linked_address)) {
7237     return;
7238   }
7239 
7240   if (linked_address->prev_) {
7241     linked_address->prev_->next_ = linked_address->next_;
7242   } else {
7243     head_ = linked_address->next_;
7244   }
7245   if (linked_address->next_) {
7246     linked_address->next_->prev_ = linked_address->prev_;
7247   }
7248   linked_address->prev_ = nullptr;
7249   linked_address->next_ = nullptr;
7250 }
7251 
7252 #undef UNSUPPORTED
7253 #undef SScanF
7254 
7255 }  // namespace internal
7256 }  // namespace v8
7257 
7258 #endif  // USE_SIMULATOR
7259