1 // Copyright 2019 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/heap/read-only-heap.h"
6
7 #include <cstddef>
8 #include <cstring>
9
10 #include "src/base/lazy-instance.h"
11 #include "src/base/platform/mutex.h"
12 #include "src/common/ptr-compr-inl.h"
13 #include "src/heap/basic-memory-chunk.h"
14 #include "src/heap/heap-write-barrier-inl.h"
15 #include "src/heap/memory-chunk.h"
16 #include "src/heap/read-only-spaces.h"
17 #include "src/heap/third-party/heap-api.h"
18 #include "src/objects/heap-object-inl.h"
19 #include "src/objects/objects-inl.h"
20 #include "src/objects/smi.h"
21 #include "src/snapshot/read-only-deserializer.h"
22 #include "src/utils/allocation.h"
23
24 namespace v8 {
25 namespace internal {
26
27 namespace {
28 // Mutex used to ensure that ReadOnlyArtifacts creation is only done once.
29 base::LazyMutex read_only_heap_creation_mutex_ = LAZY_MUTEX_INITIALIZER;
30
31 // Weak pointer holding ReadOnlyArtifacts. ReadOnlyHeap::SetUp creates a
32 // std::shared_ptr from this when it attempts to reuse it. Since all Isolates
33 // hold a std::shared_ptr to this, the object is destroyed when no Isolates
34 // remain.
35 base::LazyInstance<std::weak_ptr<ReadOnlyArtifacts>>::type
36 read_only_artifacts_ = LAZY_INSTANCE_INITIALIZER;
37
InitializeSharedReadOnlyArtifacts()38 std::shared_ptr<ReadOnlyArtifacts> InitializeSharedReadOnlyArtifacts() {
39 std::shared_ptr<ReadOnlyArtifacts> artifacts;
40 if (COMPRESS_POINTERS_BOOL) {
41 artifacts = std::make_shared<PointerCompressedReadOnlyArtifacts>();
42 } else {
43 artifacts = std::make_shared<SingleCopyReadOnlyArtifacts>();
44 }
45 *read_only_artifacts_.Pointer() = artifacts;
46 return artifacts;
47 }
48 } // namespace
49
IsSharedMemoryAvailable()50 bool ReadOnlyHeap::IsSharedMemoryAvailable() {
51 static bool shared_memory_allocation_supported =
52 GetPlatformPageAllocator()->CanAllocateSharedPages();
53 return shared_memory_allocation_supported;
54 }
55
56 // This ReadOnlyHeap instance will only be accessed by Isolates that are already
57 // set up. As such it doesn't need to be guarded by a mutex or shared_ptrs,
58 // since an already set up Isolate will hold a shared_ptr to
59 // read_only_artifacts_.
60 SoleReadOnlyHeap* SoleReadOnlyHeap::shared_ro_heap_ = nullptr;
61
62 // static
SetUp(Isolate * isolate,SnapshotData * read_only_snapshot_data,bool can_rehash)63 void ReadOnlyHeap::SetUp(Isolate* isolate,
64 SnapshotData* read_only_snapshot_data,
65 bool can_rehash) {
66 DCHECK_NOT_NULL(isolate);
67
68 if (IsReadOnlySpaceShared()) {
69 ReadOnlyHeap* ro_heap;
70 if (read_only_snapshot_data != nullptr) {
71 bool read_only_heap_created = false;
72 base::MutexGuard guard(read_only_heap_creation_mutex_.Pointer());
73 std::shared_ptr<ReadOnlyArtifacts> artifacts =
74 read_only_artifacts_.Get().lock();
75 if (!artifacts) {
76 artifacts = InitializeSharedReadOnlyArtifacts();
77 artifacts->InitializeChecksum(read_only_snapshot_data);
78 ro_heap = CreateInitalHeapForBootstrapping(isolate, artifacts);
79 ro_heap->DeseralizeIntoIsolate(isolate, read_only_snapshot_data,
80 can_rehash);
81 read_only_heap_created = true;
82 } else {
83 // With pointer compression, there is one ReadOnlyHeap per Isolate.
84 // Without PC, there is only one shared between all Isolates.
85 ro_heap = artifacts->GetReadOnlyHeapForIsolate(isolate);
86 isolate->SetUpFromReadOnlyArtifacts(artifacts, ro_heap);
87 }
88 artifacts->VerifyChecksum(read_only_snapshot_data,
89 read_only_heap_created);
90 ro_heap->InitializeIsolateRoots(isolate);
91 } else {
92 // This path should only be taken in mksnapshot, should only be run once
93 // before tearing down the Isolate that holds this ReadOnlyArtifacts and
94 // is not thread-safe.
95 std::shared_ptr<ReadOnlyArtifacts> artifacts =
96 read_only_artifacts_.Get().lock();
97 CHECK(!artifacts);
98 artifacts = InitializeSharedReadOnlyArtifacts();
99
100 ro_heap = CreateInitalHeapForBootstrapping(isolate, artifacts);
101 artifacts->VerifyChecksum(read_only_snapshot_data, true);
102 }
103 } else {
104 auto* ro_heap = new ReadOnlyHeap(new ReadOnlySpace(isolate->heap()));
105 isolate->SetUpFromReadOnlyArtifacts(nullptr, ro_heap);
106 if (read_only_snapshot_data != nullptr) {
107 ro_heap->DeseralizeIntoIsolate(isolate, read_only_snapshot_data,
108 can_rehash);
109 }
110 }
111 }
112
DeseralizeIntoIsolate(Isolate * isolate,SnapshotData * read_only_snapshot_data,bool can_rehash)113 void ReadOnlyHeap::DeseralizeIntoIsolate(Isolate* isolate,
114 SnapshotData* read_only_snapshot_data,
115 bool can_rehash) {
116 DCHECK_NOT_NULL(read_only_snapshot_data);
117 ReadOnlyDeserializer des(isolate, read_only_snapshot_data, can_rehash);
118 des.DeserializeIntoIsolate();
119 InitFromIsolate(isolate);
120 }
121
OnCreateHeapObjectsComplete(Isolate * isolate)122 void ReadOnlyHeap::OnCreateHeapObjectsComplete(Isolate* isolate) {
123 DCHECK_NOT_NULL(isolate);
124 InitFromIsolate(isolate);
125 }
126
127 // Only for compressed spaces
ReadOnlyHeap(ReadOnlyHeap * ro_heap,ReadOnlySpace * ro_space)128 ReadOnlyHeap::ReadOnlyHeap(ReadOnlyHeap* ro_heap, ReadOnlySpace* ro_space)
129 : read_only_space_(ro_space),
130 read_only_object_cache_(ro_heap->read_only_object_cache_) {
131 DCHECK(ReadOnlyHeap::IsReadOnlySpaceShared());
132 DCHECK(COMPRESS_POINTERS_BOOL);
133 }
134
135 // static
CreateInitalHeapForBootstrapping(Isolate * isolate,std::shared_ptr<ReadOnlyArtifacts> artifacts)136 ReadOnlyHeap* ReadOnlyHeap::CreateInitalHeapForBootstrapping(
137 Isolate* isolate, std::shared_ptr<ReadOnlyArtifacts> artifacts) {
138 DCHECK(IsReadOnlySpaceShared());
139
140 std::unique_ptr<ReadOnlyHeap> ro_heap;
141 auto* ro_space = new ReadOnlySpace(isolate->heap());
142 if (COMPRESS_POINTERS_BOOL) {
143 ro_heap.reset(new ReadOnlyHeap(ro_space));
144 } else {
145 std::unique_ptr<SoleReadOnlyHeap> sole_ro_heap(
146 new SoleReadOnlyHeap(ro_space));
147 // The global shared ReadOnlyHeap is only used without pointer compression.
148 SoleReadOnlyHeap::shared_ro_heap_ = sole_ro_heap.get();
149 ro_heap = std::move(sole_ro_heap);
150 }
151 artifacts->set_read_only_heap(std::move(ro_heap));
152 isolate->SetUpFromReadOnlyArtifacts(artifacts, artifacts->read_only_heap());
153 return artifacts->read_only_heap();
154 }
155
InitializeIsolateRoots(Isolate * isolate)156 void SoleReadOnlyHeap::InitializeIsolateRoots(Isolate* isolate) {
157 void* const isolate_ro_roots =
158 isolate->roots_table().read_only_roots_begin().location();
159 std::memcpy(isolate_ro_roots, read_only_roots_,
160 kEntriesCount * sizeof(Address));
161 }
162
InitializeFromIsolateRoots(Isolate * isolate)163 void SoleReadOnlyHeap::InitializeFromIsolateRoots(Isolate* isolate) {
164 void* const isolate_ro_roots =
165 isolate->roots_table().read_only_roots_begin().location();
166 std::memcpy(read_only_roots_, isolate_ro_roots,
167 kEntriesCount * sizeof(Address));
168 }
169
InitFromIsolate(Isolate * isolate)170 void ReadOnlyHeap::InitFromIsolate(Isolate* isolate) {
171 DCHECK(!init_complete_);
172 read_only_space_->ShrinkPages();
173 if (IsReadOnlySpaceShared()) {
174 InitializeFromIsolateRoots(isolate);
175 std::shared_ptr<ReadOnlyArtifacts> artifacts(
176 *read_only_artifacts_.Pointer());
177
178 read_only_space()->DetachPagesAndAddToArtifacts(artifacts);
179 artifacts->ReinstallReadOnlySpace(isolate);
180
181 read_only_space_ = artifacts->shared_read_only_space();
182
183 #ifdef DEBUG
184 artifacts->VerifyHeapAndSpaceRelationships(isolate);
185 #endif
186 } else {
187 read_only_space_->Seal(ReadOnlySpace::SealMode::kDoNotDetachFromHeap);
188 }
189 init_complete_ = true;
190 }
191
OnHeapTearDown(Heap * heap)192 void ReadOnlyHeap::OnHeapTearDown(Heap* heap) {
193 read_only_space_->TearDown(heap->memory_allocator());
194 delete read_only_space_;
195 }
196
OnHeapTearDown(Heap * heap)197 void SoleReadOnlyHeap::OnHeapTearDown(Heap* heap) {
198 // Do nothing as ReadOnlyHeap is shared between all Isolates.
199 }
200
201 // static
PopulateReadOnlySpaceStatistics(SharedMemoryStatistics * statistics)202 void ReadOnlyHeap::PopulateReadOnlySpaceStatistics(
203 SharedMemoryStatistics* statistics) {
204 statistics->read_only_space_size_ = 0;
205 statistics->read_only_space_used_size_ = 0;
206 statistics->read_only_space_physical_size_ = 0;
207 if (IsReadOnlySpaceShared()) {
208 std::shared_ptr<ReadOnlyArtifacts> artifacts =
209 read_only_artifacts_.Get().lock();
210 if (artifacts) {
211 auto* ro_space = artifacts->shared_read_only_space();
212 statistics->read_only_space_size_ = ro_space->CommittedMemory();
213 statistics->read_only_space_used_size_ = ro_space->Size();
214 statistics->read_only_space_physical_size_ =
215 ro_space->CommittedPhysicalMemory();
216 }
217 }
218 }
219
220 // static
Contains(Address address)221 bool ReadOnlyHeap::Contains(Address address) {
222 if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
223 return third_party_heap::Heap::InReadOnlySpace(address);
224 } else {
225 return BasicMemoryChunk::FromAddress(address)->InReadOnlySpace();
226 }
227 }
228
229 // static
Contains(HeapObject object)230 bool ReadOnlyHeap::Contains(HeapObject object) {
231 if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
232 return third_party_heap::Heap::InReadOnlySpace(object.address());
233 } else {
234 return BasicMemoryChunk::FromHeapObject(object)->InReadOnlySpace();
235 }
236 }
237
ExtendReadOnlyObjectCache()238 Object* ReadOnlyHeap::ExtendReadOnlyObjectCache() {
239 read_only_object_cache_.push_back(Smi::zero());
240 return &read_only_object_cache_.back();
241 }
242
cached_read_only_object(size_t i) const243 Object ReadOnlyHeap::cached_read_only_object(size_t i) const {
244 DCHECK_LE(i, read_only_object_cache_.size());
245 return read_only_object_cache_[i];
246 }
247
read_only_object_cache_is_initialized() const248 bool ReadOnlyHeap::read_only_object_cache_is_initialized() const {
249 return read_only_object_cache_.size() > 0;
250 }
251
ReadOnlyHeapObjectIterator(ReadOnlyHeap * ro_heap)252 ReadOnlyHeapObjectIterator::ReadOnlyHeapObjectIterator(ReadOnlyHeap* ro_heap)
253 : ReadOnlyHeapObjectIterator(ro_heap->read_only_space()) {}
254
ReadOnlyHeapObjectIterator(ReadOnlySpace * ro_space)255 ReadOnlyHeapObjectIterator::ReadOnlyHeapObjectIterator(ReadOnlySpace* ro_space)
256 : ro_space_(ro_space),
257 current_page_(V8_ENABLE_THIRD_PARTY_HEAP_BOOL
258 ? std::vector<ReadOnlyPage*>::iterator()
259 : ro_space->pages().begin()),
260 current_addr_(V8_ENABLE_THIRD_PARTY_HEAP_BOOL
261 ? Address()
262 : (*current_page_)->GetAreaStart()) {}
263
Next()264 HeapObject ReadOnlyHeapObjectIterator::Next() {
265 if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
266 return HeapObject(); // Unsupported
267 }
268
269 if (current_page_ == ro_space_->pages().end()) {
270 return HeapObject();
271 }
272
273 ReadOnlyPage* current_page = *current_page_;
274 for (;;) {
275 Address end = current_page->address() + current_page->area_size() +
276 MemoryChunkLayout::ObjectStartOffsetInMemoryChunk(RO_SPACE);
277 DCHECK_LE(current_addr_, end);
278 if (current_addr_ == end) {
279 // Progress to the next page.
280 ++current_page_;
281 if (current_page_ == ro_space_->pages().end()) {
282 return HeapObject();
283 }
284 current_page = *current_page_;
285 current_addr_ = current_page->GetAreaStart();
286 }
287
288 if (current_addr_ == ro_space_->top() &&
289 current_addr_ != ro_space_->limit()) {
290 current_addr_ = ro_space_->limit();
291 continue;
292 }
293 HeapObject object = HeapObject::FromAddress(current_addr_);
294 const int object_size = object.Size();
295 current_addr_ += object_size;
296
297 if (object.IsFreeSpaceOrFiller()) {
298 continue;
299 }
300
301 DCHECK_OBJECT_SIZE(object_size);
302 return object;
303 }
304 }
305
306 } // namespace internal
307 } // namespace v8
308