• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/objects/value-serializer.h"
6 
7 #include <type_traits>
8 
9 #include "include/v8-value-serializer-version.h"
10 #include "include/v8.h"
11 #include "src/api/api-inl.h"
12 #include "src/base/logging.h"
13 #include "src/execution/isolate.h"
14 #include "src/flags/flags.h"
15 #include "src/handles/handles-inl.h"
16 #include "src/handles/maybe-handles-inl.h"
17 #include "src/heap/factory.h"
18 #include "src/numbers/conversions.h"
19 #include "src/objects/heap-number-inl.h"
20 #include "src/objects/js-array-inl.h"
21 #include "src/objects/js-collection-inl.h"
22 #include "src/objects/js-regexp-inl.h"
23 #include "src/objects/objects-inl.h"
24 #include "src/objects/objects.h"
25 #include "src/objects/oddball-inl.h"
26 #include "src/objects/ordered-hash-table-inl.h"
27 #include "src/objects/property-descriptor.h"
28 #include "src/objects/property-details.h"
29 #include "src/objects/smi.h"
30 #include "src/objects/transitions-inl.h"
31 #include "src/snapshot/code-serializer.h"
32 #include "src/wasm/wasm-engine.h"
33 #include "src/wasm/wasm-objects-inl.h"
34 #include "src/wasm/wasm-result.h"
35 #include "src/wasm/wasm-serialization.h"
36 
37 namespace v8 {
38 namespace internal {
39 
40 // Version 9: (imported from Blink)
41 // Version 10: one-byte (Latin-1) strings
42 // Version 11: properly separate undefined from the hole in arrays
43 // Version 12: regexp and string objects share normal string encoding
44 // Version 13: host objects have an explicit tag (rather than handling all
45 //             unknown tags)
46 //
47 // WARNING: Increasing this value is a change which cannot safely be rolled
48 // back without breaking compatibility with data stored on disk. It is
49 // strongly recommended that you do not make such changes near a release
50 // milestone branch point.
51 //
52 // Recent changes are routinely reverted in preparation for branch, and this
53 // has been the cause of at least one bug in the past.
54 static const uint32_t kLatestVersion = 13;
55 static_assert(kLatestVersion == v8::CurrentValueSerializerFormatVersion(),
56               "Exported format version must match latest version.");
57 
58 template <typename T>
BytesNeededForVarint(T value)59 static size_t BytesNeededForVarint(T value) {
60   static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
61                 "Only unsigned integer types can be written as varints.");
62   size_t result = 0;
63   do {
64     result++;
65     value >>= 7;
66   } while (value);
67   return result;
68 }
69 
70 enum class SerializationTag : uint8_t {
71   // version:uint32_t (if at beginning of data, sets version > 0)
72   kVersion = 0xFF,
73   // ignore
74   kPadding = '\0',
75   // refTableSize:uint32_t (previously used for sanity checks; safe to ignore)
76   kVerifyObjectCount = '?',
77   // Oddballs (no data).
78   kTheHole = '-',
79   kUndefined = '_',
80   kNull = '0',
81   kTrue = 'T',
82   kFalse = 'F',
83   // Number represented as 32-bit integer, ZigZag-encoded
84   // (like sint32 in protobuf)
85   kInt32 = 'I',
86   // Number represented as 32-bit unsigned integer, varint-encoded
87   // (like uint32 in protobuf)
88   kUint32 = 'U',
89   // Number represented as a 64-bit double.
90   // Host byte order is used (N.B. this makes the format non-portable).
91   kDouble = 'N',
92   // BigInt. Bitfield:uint32_t, then raw digits storage.
93   kBigInt = 'Z',
94   // byteLength:uint32_t, then raw data
95   kUtf8String = 'S',
96   kOneByteString = '"',
97   kTwoByteString = 'c',
98   // Reference to a serialized object. objectID:uint32_t
99   kObjectReference = '^',
100   // Beginning of a JS object.
101   kBeginJSObject = 'o',
102   // End of a JS object. numProperties:uint32_t
103   kEndJSObject = '{',
104   // Beginning of a sparse JS array. length:uint32_t
105   // Elements and properties are written as key/value pairs, like objects.
106   kBeginSparseJSArray = 'a',
107   // End of a sparse JS array. numProperties:uint32_t length:uint32_t
108   kEndSparseJSArray = '@',
109   // Beginning of a dense JS array. length:uint32_t
110   // |length| elements, followed by properties as key/value pairs
111   kBeginDenseJSArray = 'A',
112   // End of a dense JS array. numProperties:uint32_t length:uint32_t
113   kEndDenseJSArray = '$',
114   // Date. millisSinceEpoch:double
115   kDate = 'D',
116   // Boolean object. No data.
117   kTrueObject = 'y',
118   kFalseObject = 'x',
119   // Number object. value:double
120   kNumberObject = 'n',
121   // BigInt object. Bitfield:uint32_t, then raw digits storage.
122   kBigIntObject = 'z',
123   // String object, UTF-8 encoding. byteLength:uint32_t, then raw data.
124   kStringObject = 's',
125   // Regular expression, UTF-8 encoding. byteLength:uint32_t, raw data,
126   // flags:uint32_t.
127   kRegExp = 'R',
128   // Beginning of a JS map.
129   kBeginJSMap = ';',
130   // End of a JS map. length:uint32_t.
131   kEndJSMap = ':',
132   // Beginning of a JS set.
133   kBeginJSSet = '\'',
134   // End of a JS set. length:uint32_t.
135   kEndJSSet = ',',
136   // Array buffer. byteLength:uint32_t, then raw data.
137   kArrayBuffer = 'B',
138   // Array buffer (transferred). transferID:uint32_t
139   kArrayBufferTransfer = 't',
140   // View into an array buffer.
141   // subtag:ArrayBufferViewTag, byteOffset:uint32_t, byteLength:uint32_t
142   // For typed arrays, byteOffset and byteLength must be divisible by the size
143   // of the element.
144   // Note: kArrayBufferView is special, and should have an ArrayBuffer (or an
145   // ObjectReference to one) serialized just before it. This is a quirk arising
146   // from the previous stack-based implementation.
147   kArrayBufferView = 'V',
148   // Shared array buffer. transferID:uint32_t
149   kSharedArrayBuffer = 'u',
150   // A wasm module object transfer. next value is its index.
151   kWasmModuleTransfer = 'w',
152   // The delegate is responsible for processing all following data.
153   // This "escapes" to whatever wire format the delegate chooses.
154   kHostObject = '\\',
155   // A transferred WebAssembly.Memory object. maximumPages:int32_t, then by
156   // SharedArrayBuffer tag and its data.
157   kWasmMemoryTransfer = 'm',
158   // A list of (subtag: ErrorTag, [subtag dependent data]). See ErrorTag for
159   // details.
160   kError = 'r',
161 
162   // The following tags are reserved because they were in use in Chromium before
163   // the kHostObject tag was introduced in format version 13, at
164   //   v8           refs/heads/master@{#43466}
165   //   chromium/src refs/heads/master@{#453568}
166   //
167   // They must not be reused without a version check to prevent old values from
168   // starting to deserialize incorrectly. For simplicity, it's recommended to
169   // avoid them altogether.
170   //
171   // This is the set of tags that existed in SerializationTag.h at that time and
172   // still exist at the time of this writing (i.e., excluding those that were
173   // removed on the Chromium side because there should be no real user data
174   // containing them).
175   //
176   // It might be possible to also free up other tags which were never persisted
177   // (e.g. because they were used only for transfer) in the future.
178   kLegacyReservedMessagePort = 'M',
179   kLegacyReservedBlob = 'b',
180   kLegacyReservedBlobIndex = 'i',
181   kLegacyReservedFile = 'f',
182   kLegacyReservedFileIndex = 'e',
183   kLegacyReservedDOMFileSystem = 'd',
184   kLegacyReservedFileList = 'l',
185   kLegacyReservedFileListIndex = 'L',
186   kLegacyReservedImageData = '#',
187   kLegacyReservedImageBitmap = 'g',
188   kLegacyReservedImageBitmapTransfer = 'G',
189   kLegacyReservedOffscreenCanvas = 'H',
190   kLegacyReservedCryptoKey = 'K',
191   kLegacyReservedRTCCertificate = 'k',
192 };
193 
194 namespace {
195 
196 enum class ArrayBufferViewTag : uint8_t {
197   kInt8Array = 'b',
198   kUint8Array = 'B',
199   kUint8ClampedArray = 'C',
200   kInt16Array = 'w',
201   kUint16Array = 'W',
202   kInt32Array = 'd',
203   kUint32Array = 'D',
204   kFloat32Array = 'f',
205   kFloat64Array = 'F',
206   kBigInt64Array = 'q',
207   kBigUint64Array = 'Q',
208   kDataView = '?',
209 };
210 
211 // Sub-tags only meaningful for error serialization.
212 enum class ErrorTag : uint8_t {
213   // The error is a EvalError. No accompanying data.
214   kEvalErrorPrototype = 'E',
215   // The error is a RangeError. No accompanying data.
216   kRangeErrorPrototype = 'R',
217   // The error is a ReferenceError. No accompanying data.
218   kReferenceErrorPrototype = 'F',
219   // The error is a SyntaxError. No accompanying data.
220   kSyntaxErrorPrototype = 'S',
221   // The error is a TypeError. No accompanying data.
222   kTypeErrorPrototype = 'T',
223   // The error is a URIError. No accompanying data.
224   kUriErrorPrototype = 'U',
225   // Followed by message: string.
226   kMessage = 'm',
227   // Followed by stack: string.
228   kStack = 's',
229   // The end of this error information.
230   kEnd = '.',
231 };
232 
233 }  // namespace
234 
ValueSerializer(Isolate * isolate,v8::ValueSerializer::Delegate * delegate)235 ValueSerializer::ValueSerializer(Isolate* isolate,
236                                  v8::ValueSerializer::Delegate* delegate)
237     : isolate_(isolate),
238       delegate_(delegate),
239       zone_(isolate->allocator(), ZONE_NAME),
240       id_map_(isolate->heap(), ZoneAllocationPolicy(&zone_)),
241       array_buffer_transfer_map_(isolate->heap(),
242                                  ZoneAllocationPolicy(&zone_)) {}
243 
~ValueSerializer()244 ValueSerializer::~ValueSerializer() {
245   if (buffer_) {
246     if (delegate_) {
247       delegate_->FreeBufferMemory(buffer_);
248     } else {
249       free(buffer_);
250     }
251   }
252 }
253 
WriteHeader()254 void ValueSerializer::WriteHeader() {
255   WriteTag(SerializationTag::kVersion);
256   WriteVarint(kLatestVersion);
257 }
258 
SetTreatArrayBufferViewsAsHostObjects(bool mode)259 void ValueSerializer::SetTreatArrayBufferViewsAsHostObjects(bool mode) {
260   treat_array_buffer_views_as_host_objects_ = mode;
261 }
262 
WriteTag(SerializationTag tag)263 void ValueSerializer::WriteTag(SerializationTag tag) {
264   uint8_t raw_tag = static_cast<uint8_t>(tag);
265   WriteRawBytes(&raw_tag, sizeof(raw_tag));
266 }
267 
268 template <typename T>
WriteVarint(T value)269 void ValueSerializer::WriteVarint(T value) {
270   // Writes an unsigned integer as a base-128 varint.
271   // The number is written, 7 bits at a time, from the least significant to the
272   // most significant 7 bits. Each byte, except the last, has the MSB set.
273   // See also https://developers.google.com/protocol-buffers/docs/encoding
274   static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
275                 "Only unsigned integer types can be written as varints.");
276   uint8_t stack_buffer[sizeof(T) * 8 / 7 + 1];
277   uint8_t* next_byte = &stack_buffer[0];
278   do {
279     *next_byte = (value & 0x7F) | 0x80;
280     next_byte++;
281     value >>= 7;
282   } while (value);
283   *(next_byte - 1) &= 0x7F;
284   WriteRawBytes(stack_buffer, next_byte - stack_buffer);
285 }
286 
287 template <typename T>
WriteZigZag(T value)288 void ValueSerializer::WriteZigZag(T value) {
289   // Writes a signed integer as a varint using ZigZag encoding (i.e. 0 is
290   // encoded as 0, -1 as 1, 1 as 2, -2 as 3, and so on).
291   // See also https://developers.google.com/protocol-buffers/docs/encoding
292   // Note that this implementation relies on the right shift being arithmetic.
293   static_assert(std::is_integral<T>::value && std::is_signed<T>::value,
294                 "Only signed integer types can be written as zigzag.");
295   using UnsignedT = typename std::make_unsigned<T>::type;
296   WriteVarint((static_cast<UnsignedT>(value) << 1) ^
297               (value >> (8 * sizeof(T) - 1)));
298 }
299 
WriteDouble(double value)300 void ValueSerializer::WriteDouble(double value) {
301   // Warning: this uses host endianness.
302   WriteRawBytes(&value, sizeof(value));
303 }
304 
WriteOneByteString(Vector<const uint8_t> chars)305 void ValueSerializer::WriteOneByteString(Vector<const uint8_t> chars) {
306   WriteVarint<uint32_t>(chars.length());
307   WriteRawBytes(chars.begin(), chars.length() * sizeof(uint8_t));
308 }
309 
WriteTwoByteString(Vector<const uc16> chars)310 void ValueSerializer::WriteTwoByteString(Vector<const uc16> chars) {
311   // Warning: this uses host endianness.
312   WriteVarint<uint32_t>(chars.length() * sizeof(uc16));
313   WriteRawBytes(chars.begin(), chars.length() * sizeof(uc16));
314 }
315 
WriteBigIntContents(BigInt bigint)316 void ValueSerializer::WriteBigIntContents(BigInt bigint) {
317   uint32_t bitfield = bigint.GetBitfieldForSerialization();
318   int bytelength = BigInt::DigitsByteLengthForBitfield(bitfield);
319   WriteVarint<uint32_t>(bitfield);
320   uint8_t* dest;
321   if (ReserveRawBytes(bytelength).To(&dest)) {
322     bigint.SerializeDigits(dest);
323   }
324 }
325 
WriteRawBytes(const void * source,size_t length)326 void ValueSerializer::WriteRawBytes(const void* source, size_t length) {
327   uint8_t* dest;
328   if (ReserveRawBytes(length).To(&dest) && length > 0) {
329     memcpy(dest, source, length);
330   }
331 }
332 
ReserveRawBytes(size_t bytes)333 Maybe<uint8_t*> ValueSerializer::ReserveRawBytes(size_t bytes) {
334   size_t old_size = buffer_size_;
335   size_t new_size = old_size + bytes;
336   if (V8_UNLIKELY(new_size > buffer_capacity_)) {
337     bool ok;
338     if (!ExpandBuffer(new_size).To(&ok)) {
339       return Nothing<uint8_t*>();
340     }
341   }
342   buffer_size_ = new_size;
343   return Just(&buffer_[old_size]);
344 }
345 
ExpandBuffer(size_t required_capacity)346 Maybe<bool> ValueSerializer::ExpandBuffer(size_t required_capacity) {
347   DCHECK_GT(required_capacity, buffer_capacity_);
348   size_t requested_capacity =
349       std::max(required_capacity, buffer_capacity_ * 2) + 64;
350   size_t provided_capacity = 0;
351   void* new_buffer = nullptr;
352   if (delegate_) {
353     new_buffer = delegate_->ReallocateBufferMemory(buffer_, requested_capacity,
354                                                    &provided_capacity);
355   } else {
356     new_buffer = realloc(buffer_, requested_capacity);
357     provided_capacity = requested_capacity;
358   }
359   if (new_buffer) {
360     DCHECK(provided_capacity >= requested_capacity);
361     buffer_ = reinterpret_cast<uint8_t*>(new_buffer);
362     buffer_capacity_ = provided_capacity;
363     return Just(true);
364   } else {
365     out_of_memory_ = true;
366     return Nothing<bool>();
367   }
368 }
369 
WriteUint32(uint32_t value)370 void ValueSerializer::WriteUint32(uint32_t value) {
371   WriteVarint<uint32_t>(value);
372 }
373 
WriteUint64(uint64_t value)374 void ValueSerializer::WriteUint64(uint64_t value) {
375   WriteVarint<uint64_t>(value);
376 }
377 
Release()378 std::pair<uint8_t*, size_t> ValueSerializer::Release() {
379   auto result = std::make_pair(buffer_, buffer_size_);
380   buffer_ = nullptr;
381   buffer_size_ = 0;
382   buffer_capacity_ = 0;
383   return result;
384 }
385 
TransferArrayBuffer(uint32_t transfer_id,Handle<JSArrayBuffer> array_buffer)386 void ValueSerializer::TransferArrayBuffer(uint32_t transfer_id,
387                                           Handle<JSArrayBuffer> array_buffer) {
388   DCHECK(!array_buffer_transfer_map_.Find(array_buffer));
389   DCHECK(!array_buffer->is_shared());
390   array_buffer_transfer_map_.Insert(array_buffer, transfer_id);
391 }
392 
WriteObject(Handle<Object> object)393 Maybe<bool> ValueSerializer::WriteObject(Handle<Object> object) {
394   // There is no sense in trying to proceed if we've previously run out of
395   // memory. Bail immediately, as this likely implies that some write has
396   // previously failed and so the buffer is corrupt.
397   if (V8_UNLIKELY(out_of_memory_)) return ThrowIfOutOfMemory();
398 
399   if (object->IsSmi()) {
400     WriteSmi(Smi::cast(*object));
401     return ThrowIfOutOfMemory();
402   }
403 
404   DCHECK(object->IsHeapObject());
405   switch (HeapObject::cast(*object).map().instance_type()) {
406     case ODDBALL_TYPE:
407       WriteOddball(Oddball::cast(*object));
408       return ThrowIfOutOfMemory();
409     case HEAP_NUMBER_TYPE:
410       WriteHeapNumber(HeapNumber::cast(*object));
411       return ThrowIfOutOfMemory();
412     case BIGINT_TYPE:
413       WriteBigInt(BigInt::cast(*object));
414       return ThrowIfOutOfMemory();
415     case JS_TYPED_ARRAY_TYPE:
416     case JS_DATA_VIEW_TYPE: {
417       // Despite being JSReceivers, these have their wrapped buffer serialized
418       // first. That makes this logic a little quirky, because it needs to
419       // happen before we assign object IDs.
420       // TODO(jbroman): It may be possible to avoid materializing a typed
421       // array's buffer here.
422       Handle<JSArrayBufferView> view = Handle<JSArrayBufferView>::cast(object);
423       if (!id_map_.Find(view) && !treat_array_buffer_views_as_host_objects_) {
424         Handle<JSArrayBuffer> buffer(
425             view->IsJSTypedArray()
426                 ? Handle<JSTypedArray>::cast(view)->GetBuffer()
427                 : handle(JSArrayBuffer::cast(view->buffer()), isolate_));
428         if (!WriteJSReceiver(buffer).FromMaybe(false)) return Nothing<bool>();
429       }
430       return WriteJSReceiver(view);
431     }
432     default:
433       if (object->IsString()) {
434         WriteString(Handle<String>::cast(object));
435         return ThrowIfOutOfMemory();
436       } else if (object->IsJSReceiver()) {
437         return WriteJSReceiver(Handle<JSReceiver>::cast(object));
438       } else {
439         ThrowDataCloneError(MessageTemplate::kDataCloneError, object);
440         return Nothing<bool>();
441       }
442   }
443 }
444 
WriteOddball(Oddball oddball)445 void ValueSerializer::WriteOddball(Oddball oddball) {
446   SerializationTag tag = SerializationTag::kUndefined;
447   switch (oddball.kind()) {
448     case Oddball::kUndefined:
449       tag = SerializationTag::kUndefined;
450       break;
451     case Oddball::kFalse:
452       tag = SerializationTag::kFalse;
453       break;
454     case Oddball::kTrue:
455       tag = SerializationTag::kTrue;
456       break;
457     case Oddball::kNull:
458       tag = SerializationTag::kNull;
459       break;
460     default:
461       UNREACHABLE();
462   }
463   WriteTag(tag);
464 }
465 
WriteSmi(Smi smi)466 void ValueSerializer::WriteSmi(Smi smi) {
467   static_assert(kSmiValueSize <= 32, "Expected SMI <= 32 bits.");
468   WriteTag(SerializationTag::kInt32);
469   WriteZigZag<int32_t>(smi.value());
470 }
471 
WriteHeapNumber(HeapNumber number)472 void ValueSerializer::WriteHeapNumber(HeapNumber number) {
473   WriteTag(SerializationTag::kDouble);
474   WriteDouble(number.value());
475 }
476 
WriteBigInt(BigInt bigint)477 void ValueSerializer::WriteBigInt(BigInt bigint) {
478   WriteTag(SerializationTag::kBigInt);
479   WriteBigIntContents(bigint);
480 }
481 
WriteString(Handle<String> string)482 void ValueSerializer::WriteString(Handle<String> string) {
483   string = String::Flatten(isolate_, string);
484   DisallowHeapAllocation no_gc;
485   String::FlatContent flat = string->GetFlatContent(no_gc);
486   DCHECK(flat.IsFlat());
487   if (flat.IsOneByte()) {
488     Vector<const uint8_t> chars = flat.ToOneByteVector();
489     WriteTag(SerializationTag::kOneByteString);
490     WriteOneByteString(chars);
491   } else if (flat.IsTwoByte()) {
492     Vector<const uc16> chars = flat.ToUC16Vector();
493     uint32_t byte_length = chars.length() * sizeof(uc16);
494     // The existing reading code expects 16-byte strings to be aligned.
495     if ((buffer_size_ + 1 + BytesNeededForVarint(byte_length)) & 1)
496       WriteTag(SerializationTag::kPadding);
497     WriteTag(SerializationTag::kTwoByteString);
498     WriteTwoByteString(chars);
499   } else {
500     UNREACHABLE();
501   }
502 }
503 
WriteJSReceiver(Handle<JSReceiver> receiver)504 Maybe<bool> ValueSerializer::WriteJSReceiver(Handle<JSReceiver> receiver) {
505   // If the object has already been serialized, just write its ID.
506   auto find_result = id_map_.FindOrInsert(receiver);
507   if (find_result.already_exists) {
508     WriteTag(SerializationTag::kObjectReference);
509     WriteVarint(*find_result.entry - 1);
510     return ThrowIfOutOfMemory();
511   }
512 
513   // Otherwise, allocate an ID for it.
514   uint32_t id = next_id_++;
515   *find_result.entry = id + 1;
516 
517   // Eliminate callable and exotic objects, which should not be serialized.
518   InstanceType instance_type = receiver->map().instance_type();
519   if (receiver->IsCallable() || (IsSpecialReceiverInstanceType(instance_type) &&
520                                  instance_type != JS_SPECIAL_API_OBJECT_TYPE)) {
521     ThrowDataCloneError(MessageTemplate::kDataCloneError, receiver);
522     return Nothing<bool>();
523   }
524 
525   // If we are at the end of the stack, abort. This function may recurse.
526   STACK_CHECK(isolate_, Nothing<bool>());
527 
528   HandleScope scope(isolate_);
529   switch (instance_type) {
530     case JS_ARRAY_TYPE:
531       return WriteJSArray(Handle<JSArray>::cast(receiver));
532     case JS_OBJECT_TYPE:
533     case JS_API_OBJECT_TYPE: {
534       Handle<JSObject> js_object = Handle<JSObject>::cast(receiver);
535       if (JSObject::GetEmbedderFieldCount(js_object->map())) {
536         return WriteHostObject(js_object);
537       } else {
538         return WriteJSObject(js_object);
539       }
540     }
541     case JS_SPECIAL_API_OBJECT_TYPE:
542       return WriteHostObject(Handle<JSObject>::cast(receiver));
543     case JS_DATE_TYPE:
544       WriteJSDate(JSDate::cast(*receiver));
545       return ThrowIfOutOfMemory();
546     case JS_PRIMITIVE_WRAPPER_TYPE:
547       return WriteJSPrimitiveWrapper(
548           Handle<JSPrimitiveWrapper>::cast(receiver));
549     case JS_REG_EXP_TYPE:
550       WriteJSRegExp(Handle<JSRegExp>::cast(receiver));
551       return ThrowIfOutOfMemory();
552     case JS_MAP_TYPE:
553       return WriteJSMap(Handle<JSMap>::cast(receiver));
554     case JS_SET_TYPE:
555       return WriteJSSet(Handle<JSSet>::cast(receiver));
556     case JS_ARRAY_BUFFER_TYPE:
557       return WriteJSArrayBuffer(Handle<JSArrayBuffer>::cast(receiver));
558     case JS_TYPED_ARRAY_TYPE:
559     case JS_DATA_VIEW_TYPE:
560       return WriteJSArrayBufferView(JSArrayBufferView::cast(*receiver));
561     case JS_ERROR_TYPE:
562       return WriteJSError(Handle<JSObject>::cast(receiver));
563     case WASM_MODULE_OBJECT_TYPE:
564       return WriteWasmModule(Handle<WasmModuleObject>::cast(receiver));
565     case WASM_MEMORY_OBJECT_TYPE: {
566       auto enabled_features = wasm::WasmFeatures::FromIsolate(isolate_);
567       if (enabled_features.has_threads()) {
568         return WriteWasmMemory(Handle<WasmMemoryObject>::cast(receiver));
569       }
570       break;
571     }
572     default:
573       break;
574   }
575 
576   ThrowDataCloneError(MessageTemplate::kDataCloneError, receiver);
577   return Nothing<bool>();
578 }
579 
WriteJSObject(Handle<JSObject> object)580 Maybe<bool> ValueSerializer::WriteJSObject(Handle<JSObject> object) {
581   DCHECK(!object->map().IsCustomElementsReceiverMap());
582   const bool can_serialize_fast =
583       object->HasFastProperties() && object->elements().length() == 0;
584   if (!can_serialize_fast) return WriteJSObjectSlow(object);
585 
586   Handle<Map> map(object->map(), isolate_);
587   WriteTag(SerializationTag::kBeginJSObject);
588 
589   // Write out fast properties as long as they are only data properties and the
590   // map doesn't change.
591   uint32_t properties_written = 0;
592   bool map_changed = false;
593   for (InternalIndex i : map->IterateOwnDescriptors()) {
594     Handle<Name> key(map->instance_descriptors(kRelaxedLoad).GetKey(i),
595                      isolate_);
596     if (!key->IsString()) continue;
597     PropertyDetails details =
598         map->instance_descriptors(kRelaxedLoad).GetDetails(i);
599     if (details.IsDontEnum()) continue;
600 
601     Handle<Object> value;
602     if (V8_LIKELY(!map_changed)) map_changed = *map != object->map();
603     if (V8_LIKELY(!map_changed && details.location() == kField)) {
604       DCHECK_EQ(kData, details.kind());
605       FieldIndex field_index = FieldIndex::ForDescriptor(*map, i);
606       value = JSObject::FastPropertyAt(object, details.representation(),
607                                        field_index);
608     } else {
609       // This logic should essentially match WriteJSObjectPropertiesSlow.
610       // If the property is no longer found, do not serialize it.
611       // This could happen if a getter deleted the property.
612       LookupIterator it(isolate_, object, key, LookupIterator::OWN);
613       if (!it.IsFound()) continue;
614       if (!Object::GetProperty(&it).ToHandle(&value)) return Nothing<bool>();
615     }
616 
617     if (!WriteObject(key).FromMaybe(false) ||
618         !WriteObject(value).FromMaybe(false)) {
619       return Nothing<bool>();
620     }
621     properties_written++;
622   }
623 
624   WriteTag(SerializationTag::kEndJSObject);
625   WriteVarint<uint32_t>(properties_written);
626   return ThrowIfOutOfMemory();
627 }
628 
WriteJSObjectSlow(Handle<JSObject> object)629 Maybe<bool> ValueSerializer::WriteJSObjectSlow(Handle<JSObject> object) {
630   WriteTag(SerializationTag::kBeginJSObject);
631   Handle<FixedArray> keys;
632   uint32_t properties_written = 0;
633   if (!KeyAccumulator::GetKeys(object, KeyCollectionMode::kOwnOnly,
634                                ENUMERABLE_STRINGS)
635            .ToHandle(&keys) ||
636       !WriteJSObjectPropertiesSlow(object, keys).To(&properties_written)) {
637     return Nothing<bool>();
638   }
639   WriteTag(SerializationTag::kEndJSObject);
640   WriteVarint<uint32_t>(properties_written);
641   return ThrowIfOutOfMemory();
642 }
643 
WriteJSArray(Handle<JSArray> array)644 Maybe<bool> ValueSerializer::WriteJSArray(Handle<JSArray> array) {
645   uint32_t length = 0;
646   bool valid_length = array->length().ToArrayLength(&length);
647   DCHECK(valid_length);
648   USE(valid_length);
649 
650   // To keep things simple, for now we decide between dense and sparse
651   // serialization based on elements kind. A more principled heuristic could
652   // count the elements, but would need to take care to note which indices
653   // existed (as only indices which were enumerable own properties at this point
654   // should be serialized).
655   const bool should_serialize_densely =
656       array->HasFastElements() && !array->HasHoleyElements();
657 
658   if (should_serialize_densely) {
659     DCHECK_LE(length, static_cast<uint32_t>(FixedArray::kMaxLength));
660     WriteTag(SerializationTag::kBeginDenseJSArray);
661     WriteVarint<uint32_t>(length);
662     uint32_t i = 0;
663 
664     // Fast paths. Note that PACKED_ELEMENTS in particular can bail due to the
665     // structure of the elements changing.
666     switch (array->GetElementsKind()) {
667       case PACKED_SMI_ELEMENTS: {
668         Handle<FixedArray> elements(FixedArray::cast(array->elements()),
669                                     isolate_);
670         for (; i < length; i++) WriteSmi(Smi::cast(elements->get(i)));
671         break;
672       }
673       case PACKED_DOUBLE_ELEMENTS: {
674         // Elements are empty_fixed_array, not a FixedDoubleArray, if the array
675         // is empty. No elements to encode in this case anyhow.
676         if (length == 0) break;
677         Handle<FixedDoubleArray> elements(
678             FixedDoubleArray::cast(array->elements()), isolate_);
679         for (; i < length; i++) {
680           WriteTag(SerializationTag::kDouble);
681           WriteDouble(elements->get_scalar(i));
682         }
683         break;
684       }
685       case PACKED_ELEMENTS: {
686         Handle<Object> old_length(array->length(), isolate_);
687         for (; i < length; i++) {
688           if (array->length() != *old_length ||
689               array->GetElementsKind() != PACKED_ELEMENTS) {
690             // Fall back to slow path.
691             break;
692           }
693           Handle<Object> element(FixedArray::cast(array->elements()).get(i),
694                                  isolate_);
695           if (!WriteObject(element).FromMaybe(false)) return Nothing<bool>();
696         }
697         break;
698       }
699       default:
700         break;
701     }
702 
703     // If there are elements remaining, serialize them slowly.
704     for (; i < length; i++) {
705       // Serializing the array's elements can have arbitrary side effects, so we
706       // cannot rely on still having fast elements, even if it did to begin
707       // with.
708       Handle<Object> element;
709       LookupIterator it(isolate_, array, i, array, LookupIterator::OWN);
710       if (!it.IsFound()) {
711         // This can happen in the case where an array that was originally dense
712         // became sparse during serialization. It's too late to switch to the
713         // sparse format, but we can mark the elements as absent.
714         WriteTag(SerializationTag::kTheHole);
715         continue;
716       }
717       if (!Object::GetProperty(&it).ToHandle(&element) ||
718           !WriteObject(element).FromMaybe(false)) {
719         return Nothing<bool>();
720       }
721     }
722 
723     Handle<FixedArray> keys;
724     if (!KeyAccumulator::GetKeys(array, KeyCollectionMode::kOwnOnly,
725                                  ENUMERABLE_STRINGS,
726                                  GetKeysConversion::kKeepNumbers, false, true)
727              .ToHandle(&keys)) {
728       return Nothing<bool>();
729     }
730 
731     uint32_t properties_written;
732     if (!WriteJSObjectPropertiesSlow(array, keys).To(&properties_written)) {
733       return Nothing<bool>();
734     }
735     WriteTag(SerializationTag::kEndDenseJSArray);
736     WriteVarint<uint32_t>(properties_written);
737     WriteVarint<uint32_t>(length);
738   } else {
739     WriteTag(SerializationTag::kBeginSparseJSArray);
740     WriteVarint<uint32_t>(length);
741     Handle<FixedArray> keys;
742     uint32_t properties_written = 0;
743     if (!KeyAccumulator::GetKeys(array, KeyCollectionMode::kOwnOnly,
744                                  ENUMERABLE_STRINGS)
745              .ToHandle(&keys) ||
746         !WriteJSObjectPropertiesSlow(array, keys).To(&properties_written)) {
747       return Nothing<bool>();
748     }
749     WriteTag(SerializationTag::kEndSparseJSArray);
750     WriteVarint<uint32_t>(properties_written);
751     WriteVarint<uint32_t>(length);
752   }
753   return ThrowIfOutOfMemory();
754 }
755 
WriteJSDate(JSDate date)756 void ValueSerializer::WriteJSDate(JSDate date) {
757   WriteTag(SerializationTag::kDate);
758   WriteDouble(date.value().Number());
759 }
760 
WriteJSPrimitiveWrapper(Handle<JSPrimitiveWrapper> value)761 Maybe<bool> ValueSerializer::WriteJSPrimitiveWrapper(
762     Handle<JSPrimitiveWrapper> value) {
763   Object inner_value = value->value();
764   if (inner_value.IsTrue(isolate_)) {
765     WriteTag(SerializationTag::kTrueObject);
766   } else if (inner_value.IsFalse(isolate_)) {
767     WriteTag(SerializationTag::kFalseObject);
768   } else if (inner_value.IsNumber()) {
769     WriteTag(SerializationTag::kNumberObject);
770     WriteDouble(inner_value.Number());
771   } else if (inner_value.IsBigInt()) {
772     WriteTag(SerializationTag::kBigIntObject);
773     WriteBigIntContents(BigInt::cast(inner_value));
774   } else if (inner_value.IsString()) {
775     WriteTag(SerializationTag::kStringObject);
776     WriteString(handle(String::cast(inner_value), isolate_));
777   } else {
778     DCHECK(inner_value.IsSymbol());
779     ThrowDataCloneError(MessageTemplate::kDataCloneError, value);
780     return Nothing<bool>();
781   }
782   return ThrowIfOutOfMemory();
783 }
784 
WriteJSRegExp(Handle<JSRegExp> regexp)785 void ValueSerializer::WriteJSRegExp(Handle<JSRegExp> regexp) {
786   WriteTag(SerializationTag::kRegExp);
787   WriteString(handle(regexp->Pattern(), isolate_));
788   WriteVarint(static_cast<uint32_t>(regexp->GetFlags()));
789 }
790 
WriteJSMap(Handle<JSMap> map)791 Maybe<bool> ValueSerializer::WriteJSMap(Handle<JSMap> map) {
792   // First copy the key-value pairs, since getters could mutate them.
793   Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()), isolate_);
794   int length = table->NumberOfElements() * 2;
795   Handle<FixedArray> entries = isolate_->factory()->NewFixedArray(length);
796   {
797     DisallowHeapAllocation no_gc;
798     Oddball the_hole = ReadOnlyRoots(isolate_).the_hole_value();
799     int result_index = 0;
800     for (InternalIndex entry : table->IterateEntries()) {
801       Object key = table->KeyAt(entry);
802       if (key == the_hole) continue;
803       entries->set(result_index++, key);
804       entries->set(result_index++, table->ValueAt(entry));
805     }
806     DCHECK_EQ(result_index, length);
807   }
808 
809   // Then write it out.
810   WriteTag(SerializationTag::kBeginJSMap);
811   for (int i = 0; i < length; i++) {
812     if (!WriteObject(handle(entries->get(i), isolate_)).FromMaybe(false)) {
813       return Nothing<bool>();
814     }
815   }
816   WriteTag(SerializationTag::kEndJSMap);
817   WriteVarint<uint32_t>(length);
818   return ThrowIfOutOfMemory();
819 }
820 
WriteJSSet(Handle<JSSet> set)821 Maybe<bool> ValueSerializer::WriteJSSet(Handle<JSSet> set) {
822   // First copy the element pointers, since getters could mutate them.
823   Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()), isolate_);
824   int length = table->NumberOfElements();
825   Handle<FixedArray> entries = isolate_->factory()->NewFixedArray(length);
826   {
827     DisallowHeapAllocation no_gc;
828     Oddball the_hole = ReadOnlyRoots(isolate_).the_hole_value();
829     int result_index = 0;
830     for (InternalIndex entry : table->IterateEntries()) {
831       Object key = table->KeyAt(entry);
832       if (key == the_hole) continue;
833       entries->set(result_index++, key);
834     }
835     DCHECK_EQ(result_index, length);
836   }
837 
838   // Then write it out.
839   WriteTag(SerializationTag::kBeginJSSet);
840   for (int i = 0; i < length; i++) {
841     if (!WriteObject(handle(entries->get(i), isolate_)).FromMaybe(false)) {
842       return Nothing<bool>();
843     }
844   }
845   WriteTag(SerializationTag::kEndJSSet);
846   WriteVarint<uint32_t>(length);
847   return ThrowIfOutOfMemory();
848 }
849 
WriteJSArrayBuffer(Handle<JSArrayBuffer> array_buffer)850 Maybe<bool> ValueSerializer::WriteJSArrayBuffer(
851     Handle<JSArrayBuffer> array_buffer) {
852   if (array_buffer->is_shared()) {
853     if (!delegate_) {
854       ThrowDataCloneError(MessageTemplate::kDataCloneError, array_buffer);
855       return Nothing<bool>();
856     }
857 
858     v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate_);
859     Maybe<uint32_t> index = delegate_->GetSharedArrayBufferId(
860         v8_isolate, Utils::ToLocalShared(array_buffer));
861     RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate_, Nothing<bool>());
862 
863     WriteTag(SerializationTag::kSharedArrayBuffer);
864     WriteVarint(index.FromJust());
865     return ThrowIfOutOfMemory();
866   }
867 
868   uint32_t* transfer_entry = array_buffer_transfer_map_.Find(array_buffer);
869   if (transfer_entry) {
870     WriteTag(SerializationTag::kArrayBufferTransfer);
871     WriteVarint(*transfer_entry);
872     return ThrowIfOutOfMemory();
873   }
874   if (array_buffer->was_detached()) {
875     ThrowDataCloneError(MessageTemplate::kDataCloneErrorDetachedArrayBuffer);
876     return Nothing<bool>();
877   }
878   double byte_length = array_buffer->byte_length();
879   if (byte_length > std::numeric_limits<uint32_t>::max()) {
880     ThrowDataCloneError(MessageTemplate::kDataCloneError, array_buffer);
881     return Nothing<bool>();
882   }
883   WriteTag(SerializationTag::kArrayBuffer);
884   WriteVarint<uint32_t>(byte_length);
885   WriteRawBytes(array_buffer->backing_store(), byte_length);
886   return ThrowIfOutOfMemory();
887 }
888 
WriteJSArrayBufferView(JSArrayBufferView view)889 Maybe<bool> ValueSerializer::WriteJSArrayBufferView(JSArrayBufferView view) {
890   if (treat_array_buffer_views_as_host_objects_) {
891     return WriteHostObject(handle(view, isolate_));
892   }
893   WriteTag(SerializationTag::kArrayBufferView);
894   ArrayBufferViewTag tag = ArrayBufferViewTag::kInt8Array;
895   if (view.IsJSTypedArray()) {
896     switch (JSTypedArray::cast(view).type()) {
897 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
898   case kExternal##Type##Array:                    \
899     tag = ArrayBufferViewTag::k##Type##Array;     \
900     break;
901       TYPED_ARRAYS(TYPED_ARRAY_CASE)
902 #undef TYPED_ARRAY_CASE
903     }
904   } else {
905     DCHECK(view.IsJSDataView());
906     tag = ArrayBufferViewTag::kDataView;
907   }
908   WriteVarint(static_cast<uint8_t>(tag));
909   WriteVarint(static_cast<uint32_t>(view.byte_offset()));
910   WriteVarint(static_cast<uint32_t>(view.byte_length()));
911   return ThrowIfOutOfMemory();
912 }
913 
WriteJSError(Handle<JSObject> error)914 Maybe<bool> ValueSerializer::WriteJSError(Handle<JSObject> error) {
915   Handle<Object> stack;
916   PropertyDescriptor message_desc;
917   Maybe<bool> message_found = JSReceiver::GetOwnPropertyDescriptor(
918       isolate_, error, isolate_->factory()->message_string(), &message_desc);
919   MAYBE_RETURN(message_found, Nothing<bool>());
920 
921   WriteTag(SerializationTag::kError);
922 
923   Handle<Object> name_object;
924   if (!JSObject::GetProperty(isolate_, error, "name").ToHandle(&name_object)) {
925     return Nothing<bool>();
926   }
927   Handle<String> name;
928   if (!Object::ToString(isolate_, name_object).ToHandle(&name)) {
929     return Nothing<bool>();
930   }
931 
932   if (name->IsOneByteEqualTo(CStrVector("EvalError"))) {
933     WriteVarint(static_cast<uint8_t>(ErrorTag::kEvalErrorPrototype));
934   } else if (name->IsOneByteEqualTo(CStrVector("RangeError"))) {
935     WriteVarint(static_cast<uint8_t>(ErrorTag::kRangeErrorPrototype));
936   } else if (name->IsOneByteEqualTo(CStrVector("ReferenceError"))) {
937     WriteVarint(static_cast<uint8_t>(ErrorTag::kReferenceErrorPrototype));
938   } else if (name->IsOneByteEqualTo(CStrVector("SyntaxError"))) {
939     WriteVarint(static_cast<uint8_t>(ErrorTag::kSyntaxErrorPrototype));
940   } else if (name->IsOneByteEqualTo(CStrVector("TypeError"))) {
941     WriteVarint(static_cast<uint8_t>(ErrorTag::kTypeErrorPrototype));
942   } else if (name->IsOneByteEqualTo(CStrVector("URIError"))) {
943     WriteVarint(static_cast<uint8_t>(ErrorTag::kUriErrorPrototype));
944   } else {
945     // The default prototype in the deserialization side is Error.prototype, so
946     // we don't have to do anything here.
947   }
948 
949   if (message_found.FromJust() &&
950       PropertyDescriptor::IsDataDescriptor(&message_desc)) {
951     Handle<String> message;
952     if (!Object::ToString(isolate_, message_desc.value()).ToHandle(&message)) {
953       return Nothing<bool>();
954     }
955     WriteVarint(static_cast<uint8_t>(ErrorTag::kMessage));
956     WriteString(message);
957   }
958 
959   if (!Object::GetProperty(isolate_, error, isolate_->factory()->stack_string())
960            .ToHandle(&stack)) {
961     return Nothing<bool>();
962   }
963   if (stack->IsString()) {
964     WriteVarint(static_cast<uint8_t>(ErrorTag::kStack));
965     WriteString(Handle<String>::cast(stack));
966   }
967 
968   WriteVarint(static_cast<uint8_t>(ErrorTag::kEnd));
969   return ThrowIfOutOfMemory();
970 }
971 
WriteWasmModule(Handle<WasmModuleObject> object)972 Maybe<bool> ValueSerializer::WriteWasmModule(Handle<WasmModuleObject> object) {
973   if (delegate_ == nullptr) {
974     ThrowDataCloneError(MessageTemplate::kDataCloneError, object);
975     return Nothing<bool>();
976   }
977 
978   // TODO(titzer): introduce a Utils::ToLocal for WasmModuleObject.
979   Maybe<uint32_t> transfer_id = delegate_->GetWasmModuleTransferId(
980       reinterpret_cast<v8::Isolate*>(isolate_),
981       v8::Local<v8::WasmModuleObject>::Cast(
982           Utils::ToLocal(Handle<JSObject>::cast(object))));
983   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate_, Nothing<bool>());
984   uint32_t id = 0;
985   if (transfer_id.To(&id)) {
986     WriteTag(SerializationTag::kWasmModuleTransfer);
987     WriteVarint<uint32_t>(id);
988     return Just(true);
989   }
990   return ThrowIfOutOfMemory();
991 }
992 
WriteWasmMemory(Handle<WasmMemoryObject> object)993 Maybe<bool> ValueSerializer::WriteWasmMemory(Handle<WasmMemoryObject> object) {
994   if (!object->array_buffer().is_shared()) {
995     ThrowDataCloneError(MessageTemplate::kDataCloneError, object);
996     return Nothing<bool>();
997   }
998 
999   GlobalBackingStoreRegistry::Register(
1000       object->array_buffer().GetBackingStore());
1001 
1002   WriteTag(SerializationTag::kWasmMemoryTransfer);
1003   WriteZigZag<int32_t>(object->maximum_pages());
1004   return WriteJSReceiver(Handle<JSReceiver>(object->array_buffer(), isolate_));
1005 }
1006 
WriteHostObject(Handle<JSObject> object)1007 Maybe<bool> ValueSerializer::WriteHostObject(Handle<JSObject> object) {
1008   WriteTag(SerializationTag::kHostObject);
1009   if (!delegate_) {
1010     isolate_->Throw(*isolate_->factory()->NewError(
1011         isolate_->error_function(), MessageTemplate::kDataCloneError, object));
1012     return Nothing<bool>();
1013   }
1014   v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate_);
1015   Maybe<bool> result =
1016       delegate_->WriteHostObject(v8_isolate, Utils::ToLocal(object));
1017   RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate_, Nothing<bool>());
1018   USE(result);
1019   DCHECK(!result.IsNothing());
1020   DCHECK(result.ToChecked());
1021   return ThrowIfOutOfMemory();
1022 }
1023 
WriteJSObjectPropertiesSlow(Handle<JSObject> object,Handle<FixedArray> keys)1024 Maybe<uint32_t> ValueSerializer::WriteJSObjectPropertiesSlow(
1025     Handle<JSObject> object, Handle<FixedArray> keys) {
1026   uint32_t properties_written = 0;
1027   int length = keys->length();
1028   for (int i = 0; i < length; i++) {
1029     Handle<Object> key(keys->get(i), isolate_);
1030 
1031     LookupIterator::Key lookup_key(isolate_, key);
1032     LookupIterator it(isolate_, object, lookup_key, LookupIterator::OWN);
1033     Handle<Object> value;
1034     if (!Object::GetProperty(&it).ToHandle(&value)) return Nothing<uint32_t>();
1035 
1036     // If the property is no longer found, do not serialize it.
1037     // This could happen if a getter deleted the property.
1038     if (!it.IsFound()) continue;
1039 
1040     if (!WriteObject(key).FromMaybe(false) ||
1041         !WriteObject(value).FromMaybe(false)) {
1042       return Nothing<uint32_t>();
1043     }
1044 
1045     properties_written++;
1046   }
1047   return Just(properties_written);
1048 }
1049 
ThrowDataCloneError(MessageTemplate template_index)1050 void ValueSerializer::ThrowDataCloneError(MessageTemplate template_index) {
1051   return ThrowDataCloneError(template_index,
1052                              isolate_->factory()->empty_string());
1053 }
1054 
ThrowIfOutOfMemory()1055 Maybe<bool> ValueSerializer::ThrowIfOutOfMemory() {
1056   if (out_of_memory_) {
1057     ThrowDataCloneError(MessageTemplate::kDataCloneErrorOutOfMemory);
1058     return Nothing<bool>();
1059   }
1060   return Just(true);
1061 }
1062 
ThrowDataCloneError(MessageTemplate index,Handle<Object> arg0)1063 void ValueSerializer::ThrowDataCloneError(MessageTemplate index,
1064                                           Handle<Object> arg0) {
1065   Handle<String> message = MessageFormatter::Format(isolate_, index, arg0);
1066   if (delegate_) {
1067     delegate_->ThrowDataCloneError(Utils::ToLocal(message));
1068   } else {
1069     isolate_->Throw(
1070         *isolate_->factory()->NewError(isolate_->error_function(), message));
1071   }
1072   if (isolate_->has_scheduled_exception()) {
1073     isolate_->PromoteScheduledException();
1074   }
1075 }
1076 
ValueDeserializer(Isolate * isolate,Vector<const uint8_t> data,v8::ValueDeserializer::Delegate * delegate)1077 ValueDeserializer::ValueDeserializer(Isolate* isolate,
1078                                      Vector<const uint8_t> data,
1079                                      v8::ValueDeserializer::Delegate* delegate)
1080     : isolate_(isolate),
1081       delegate_(delegate),
1082       position_(data.begin()),
1083       end_(data.begin() + data.length()),
1084       id_map_(isolate->global_handles()->Create(
1085           ReadOnlyRoots(isolate_).empty_fixed_array())) {}
1086 
~ValueDeserializer()1087 ValueDeserializer::~ValueDeserializer() {
1088   GlobalHandles::Destroy(id_map_.location());
1089 
1090   Handle<Object> transfer_map_handle;
1091   if (array_buffer_transfer_map_.ToHandle(&transfer_map_handle)) {
1092     GlobalHandles::Destroy(transfer_map_handle.location());
1093   }
1094 }
1095 
ReadHeader()1096 Maybe<bool> ValueDeserializer::ReadHeader() {
1097   if (position_ < end_ &&
1098       *position_ == static_cast<uint8_t>(SerializationTag::kVersion)) {
1099     ReadTag().ToChecked();
1100     if (!ReadVarint<uint32_t>().To(&version_) || version_ > kLatestVersion) {
1101       isolate_->Throw(*isolate_->factory()->NewError(
1102           MessageTemplate::kDataCloneDeserializationVersionError));
1103       return Nothing<bool>();
1104     }
1105   }
1106   return Just(true);
1107 }
1108 
PeekTag() const1109 Maybe<SerializationTag> ValueDeserializer::PeekTag() const {
1110   const uint8_t* peek_position = position_;
1111   SerializationTag tag;
1112   do {
1113     if (peek_position >= end_) return Nothing<SerializationTag>();
1114     tag = static_cast<SerializationTag>(*peek_position);
1115     peek_position++;
1116   } while (tag == SerializationTag::kPadding);
1117   return Just(tag);
1118 }
1119 
ConsumeTag(SerializationTag peeked_tag)1120 void ValueDeserializer::ConsumeTag(SerializationTag peeked_tag) {
1121   SerializationTag actual_tag = ReadTag().ToChecked();
1122   DCHECK(actual_tag == peeked_tag);
1123   USE(actual_tag);
1124 }
1125 
ReadTag()1126 Maybe<SerializationTag> ValueDeserializer::ReadTag() {
1127   SerializationTag tag;
1128   do {
1129     if (position_ >= end_) return Nothing<SerializationTag>();
1130     tag = static_cast<SerializationTag>(*position_);
1131     position_++;
1132   } while (tag == SerializationTag::kPadding);
1133   return Just(tag);
1134 }
1135 
1136 template <typename T>
ReadVarint()1137 Maybe<T> ValueDeserializer::ReadVarint() {
1138   // Reads an unsigned integer as a base-128 varint.
1139   // The number is written, 7 bits at a time, from the least significant to the
1140   // most significant 7 bits. Each byte, except the last, has the MSB set.
1141   // If the varint is larger than T, any more significant bits are discarded.
1142   // See also https://developers.google.com/protocol-buffers/docs/encoding
1143   static_assert(std::is_integral<T>::value && std::is_unsigned<T>::value,
1144                 "Only unsigned integer types can be read as varints.");
1145   T value = 0;
1146   unsigned shift = 0;
1147   bool has_another_byte;
1148   do {
1149     if (position_ >= end_) return Nothing<T>();
1150     uint8_t byte = *position_;
1151     if (V8_LIKELY(shift < sizeof(T) * 8)) {
1152       value |= static_cast<T>(byte & 0x7F) << shift;
1153       shift += 7;
1154     }
1155     has_another_byte = byte & 0x80;
1156     position_++;
1157   } while (has_another_byte);
1158   return Just(value);
1159 }
1160 
1161 template <typename T>
ReadZigZag()1162 Maybe<T> ValueDeserializer::ReadZigZag() {
1163   // Writes a signed integer as a varint using ZigZag encoding (i.e. 0 is
1164   // encoded as 0, -1 as 1, 1 as 2, -2 as 3, and so on).
1165   // See also https://developers.google.com/protocol-buffers/docs/encoding
1166   static_assert(std::is_integral<T>::value && std::is_signed<T>::value,
1167                 "Only signed integer types can be read as zigzag.");
1168   using UnsignedT = typename std::make_unsigned<T>::type;
1169   UnsignedT unsigned_value;
1170   if (!ReadVarint<UnsignedT>().To(&unsigned_value)) return Nothing<T>();
1171   return Just(static_cast<T>((unsigned_value >> 1) ^
1172                              -static_cast<T>(unsigned_value & 1)));
1173 }
1174 
ReadDouble()1175 Maybe<double> ValueDeserializer::ReadDouble() {
1176   // Warning: this uses host endianness.
1177   if (position_ > end_ - sizeof(double)) return Nothing<double>();
1178   double value;
1179   memcpy(&value, position_, sizeof(double));
1180   position_ += sizeof(double);
1181   if (std::isnan(value)) value = std::numeric_limits<double>::quiet_NaN();
1182   return Just(value);
1183 }
1184 
ReadRawBytes(int size)1185 Maybe<Vector<const uint8_t>> ValueDeserializer::ReadRawBytes(int size) {
1186   if (size > end_ - position_) return Nothing<Vector<const uint8_t>>();
1187   const uint8_t* start = position_;
1188   position_ += size;
1189   return Just(Vector<const uint8_t>(start, size));
1190 }
1191 
ReadUint32(uint32_t * value)1192 bool ValueDeserializer::ReadUint32(uint32_t* value) {
1193   return ReadVarint<uint32_t>().To(value);
1194 }
1195 
ReadUint64(uint64_t * value)1196 bool ValueDeserializer::ReadUint64(uint64_t* value) {
1197   return ReadVarint<uint64_t>().To(value);
1198 }
1199 
ReadDouble(double * value)1200 bool ValueDeserializer::ReadDouble(double* value) {
1201   return ReadDouble().To(value);
1202 }
1203 
ReadRawBytes(size_t length,const void ** data)1204 bool ValueDeserializer::ReadRawBytes(size_t length, const void** data) {
1205   if (length > static_cast<size_t>(end_ - position_)) return false;
1206   *data = position_;
1207   position_ += length;
1208   return true;
1209 }
1210 
TransferArrayBuffer(uint32_t transfer_id,Handle<JSArrayBuffer> array_buffer)1211 void ValueDeserializer::TransferArrayBuffer(
1212     uint32_t transfer_id, Handle<JSArrayBuffer> array_buffer) {
1213   if (array_buffer_transfer_map_.is_null()) {
1214     array_buffer_transfer_map_ = isolate_->global_handles()->Create(
1215         *SimpleNumberDictionary::New(isolate_, 0));
1216   }
1217   Handle<SimpleNumberDictionary> dictionary =
1218       array_buffer_transfer_map_.ToHandleChecked();
1219   Handle<SimpleNumberDictionary> new_dictionary = SimpleNumberDictionary::Set(
1220       isolate_, dictionary, transfer_id, array_buffer);
1221   if (!new_dictionary.is_identical_to(dictionary)) {
1222     GlobalHandles::Destroy(dictionary.location());
1223     array_buffer_transfer_map_ =
1224         isolate_->global_handles()->Create(*new_dictionary);
1225   }
1226 }
1227 
ReadObject()1228 MaybeHandle<Object> ValueDeserializer::ReadObject() {
1229   DisallowJavascriptExecution no_js(isolate_);
1230   // If we are at the end of the stack, abort. This function may recurse.
1231   STACK_CHECK(isolate_, MaybeHandle<Object>());
1232 
1233   MaybeHandle<Object> result = ReadObjectInternal();
1234 
1235   // ArrayBufferView is special in that it consumes the value before it, even
1236   // after format version 0.
1237   Handle<Object> object;
1238   SerializationTag tag;
1239   if (result.ToHandle(&object) && V8_UNLIKELY(object->IsJSArrayBuffer()) &&
1240       PeekTag().To(&tag) && tag == SerializationTag::kArrayBufferView) {
1241     ConsumeTag(SerializationTag::kArrayBufferView);
1242     result = ReadJSArrayBufferView(Handle<JSArrayBuffer>::cast(object));
1243   }
1244 
1245   if (result.is_null() && !isolate_->has_pending_exception()) {
1246     isolate_->Throw(*isolate_->factory()->NewError(
1247         MessageTemplate::kDataCloneDeserializationError));
1248   }
1249 
1250   return result;
1251 }
1252 
ReadObjectInternal()1253 MaybeHandle<Object> ValueDeserializer::ReadObjectInternal() {
1254   SerializationTag tag;
1255   if (!ReadTag().To(&tag)) return MaybeHandle<Object>();
1256   switch (tag) {
1257     case SerializationTag::kVerifyObjectCount:
1258       // Read the count and ignore it.
1259       if (ReadVarint<uint32_t>().IsNothing()) return MaybeHandle<Object>();
1260       return ReadObject();
1261     case SerializationTag::kUndefined:
1262       return isolate_->factory()->undefined_value();
1263     case SerializationTag::kNull:
1264       return isolate_->factory()->null_value();
1265     case SerializationTag::kTrue:
1266       return isolate_->factory()->true_value();
1267     case SerializationTag::kFalse:
1268       return isolate_->factory()->false_value();
1269     case SerializationTag::kInt32: {
1270       Maybe<int32_t> number = ReadZigZag<int32_t>();
1271       if (number.IsNothing()) return MaybeHandle<Object>();
1272       return isolate_->factory()->NewNumberFromInt(number.FromJust());
1273     }
1274     case SerializationTag::kUint32: {
1275       Maybe<uint32_t> number = ReadVarint<uint32_t>();
1276       if (number.IsNothing()) return MaybeHandle<Object>();
1277       return isolate_->factory()->NewNumberFromUint(number.FromJust());
1278     }
1279     case SerializationTag::kDouble: {
1280       Maybe<double> number = ReadDouble();
1281       if (number.IsNothing()) return MaybeHandle<Object>();
1282       return isolate_->factory()->NewNumber(number.FromJust());
1283     }
1284     case SerializationTag::kBigInt:
1285       return ReadBigInt();
1286     case SerializationTag::kUtf8String:
1287       return ReadUtf8String();
1288     case SerializationTag::kOneByteString:
1289       return ReadOneByteString();
1290     case SerializationTag::kTwoByteString:
1291       return ReadTwoByteString();
1292     case SerializationTag::kObjectReference: {
1293       uint32_t id;
1294       if (!ReadVarint<uint32_t>().To(&id)) return MaybeHandle<Object>();
1295       return GetObjectWithID(id);
1296     }
1297     case SerializationTag::kBeginJSObject:
1298       return ReadJSObject();
1299     case SerializationTag::kBeginSparseJSArray:
1300       return ReadSparseJSArray();
1301     case SerializationTag::kBeginDenseJSArray:
1302       return ReadDenseJSArray();
1303     case SerializationTag::kDate:
1304       return ReadJSDate();
1305     case SerializationTag::kTrueObject:
1306     case SerializationTag::kFalseObject:
1307     case SerializationTag::kNumberObject:
1308     case SerializationTag::kBigIntObject:
1309     case SerializationTag::kStringObject:
1310       return ReadJSPrimitiveWrapper(tag);
1311     case SerializationTag::kRegExp:
1312       return ReadJSRegExp();
1313     case SerializationTag::kBeginJSMap:
1314       return ReadJSMap();
1315     case SerializationTag::kBeginJSSet:
1316       return ReadJSSet();
1317     case SerializationTag::kArrayBuffer: {
1318       const bool is_shared = false;
1319       return ReadJSArrayBuffer(is_shared);
1320     }
1321     case SerializationTag::kArrayBufferTransfer: {
1322       return ReadTransferredJSArrayBuffer();
1323     }
1324     case SerializationTag::kSharedArrayBuffer: {
1325       const bool is_shared = true;
1326       return ReadJSArrayBuffer(is_shared);
1327     }
1328     case SerializationTag::kError:
1329       return ReadJSError();
1330     case SerializationTag::kWasmModuleTransfer:
1331       return ReadWasmModuleTransfer();
1332     case SerializationTag::kWasmMemoryTransfer:
1333       return ReadWasmMemory();
1334     case SerializationTag::kHostObject:
1335       return ReadHostObject();
1336     default:
1337       // Before there was an explicit tag for host objects, all unknown tags
1338       // were delegated to the host.
1339       if (version_ < 13) {
1340         position_--;
1341         return ReadHostObject();
1342       }
1343       return MaybeHandle<Object>();
1344   }
1345 }
1346 
ReadString()1347 MaybeHandle<String> ValueDeserializer::ReadString() {
1348   if (version_ < 12) return ReadUtf8String();
1349   Handle<Object> object;
1350   if (!ReadObject().ToHandle(&object) || !object->IsString()) {
1351     return MaybeHandle<String>();
1352   }
1353   return Handle<String>::cast(object);
1354 }
1355 
ReadBigInt()1356 MaybeHandle<BigInt> ValueDeserializer::ReadBigInt() {
1357   uint32_t bitfield;
1358   if (!ReadVarint<uint32_t>().To(&bitfield)) return MaybeHandle<BigInt>();
1359   int bytelength = BigInt::DigitsByteLengthForBitfield(bitfield);
1360   Vector<const uint8_t> digits_storage;
1361   if (!ReadRawBytes(bytelength).To(&digits_storage)) {
1362     return MaybeHandle<BigInt>();
1363   }
1364   return BigInt::FromSerializedDigits(isolate_, bitfield, digits_storage);
1365 }
1366 
ReadUtf8String()1367 MaybeHandle<String> ValueDeserializer::ReadUtf8String() {
1368   uint32_t utf8_length;
1369   Vector<const uint8_t> utf8_bytes;
1370   if (!ReadVarint<uint32_t>().To(&utf8_length) ||
1371       utf8_length >
1372           static_cast<uint32_t>(std::numeric_limits<int32_t>::max()) ||
1373       !ReadRawBytes(utf8_length).To(&utf8_bytes)) {
1374     return MaybeHandle<String>();
1375   }
1376   return isolate_->factory()->NewStringFromUtf8(
1377       Vector<const char>::cast(utf8_bytes));
1378 }
1379 
ReadOneByteString()1380 MaybeHandle<String> ValueDeserializer::ReadOneByteString() {
1381   uint32_t byte_length;
1382   Vector<const uint8_t> bytes;
1383   if (!ReadVarint<uint32_t>().To(&byte_length) ||
1384       byte_length >
1385           static_cast<uint32_t>(std::numeric_limits<int32_t>::max()) ||
1386       !ReadRawBytes(byte_length).To(&bytes)) {
1387     return MaybeHandle<String>();
1388   }
1389   return isolate_->factory()->NewStringFromOneByte(bytes);
1390 }
1391 
ReadTwoByteString()1392 MaybeHandle<String> ValueDeserializer::ReadTwoByteString() {
1393   uint32_t byte_length;
1394   Vector<const uint8_t> bytes;
1395   if (!ReadVarint<uint32_t>().To(&byte_length) ||
1396       byte_length >
1397           static_cast<uint32_t>(std::numeric_limits<int32_t>::max()) ||
1398       byte_length % sizeof(uc16) != 0 ||
1399       !ReadRawBytes(byte_length).To(&bytes)) {
1400     return MaybeHandle<String>();
1401   }
1402 
1403   // Allocate an uninitialized string so that we can do a raw memcpy into the
1404   // string on the heap (regardless of alignment).
1405   if (byte_length == 0) return isolate_->factory()->empty_string();
1406   Handle<SeqTwoByteString> string;
1407   if (!isolate_->factory()
1408            ->NewRawTwoByteString(byte_length / sizeof(uc16))
1409            .ToHandle(&string)) {
1410     return MaybeHandle<String>();
1411   }
1412 
1413   // Copy the bytes directly into the new string.
1414   // Warning: this uses host endianness.
1415   DisallowHeapAllocation no_gc;
1416   memcpy(string->GetChars(no_gc), bytes.begin(), bytes.length());
1417   return string;
1418 }
1419 
ReadExpectedString(Handle<String> expected)1420 bool ValueDeserializer::ReadExpectedString(Handle<String> expected) {
1421   DisallowHeapAllocation no_gc;
1422   // In the case of failure, the position in the stream is reset.
1423   const uint8_t* original_position = position_;
1424 
1425   SerializationTag tag;
1426   uint32_t byte_length;
1427   Vector<const uint8_t> bytes;
1428   if (!ReadTag().To(&tag) || !ReadVarint<uint32_t>().To(&byte_length) ||
1429       byte_length >
1430           static_cast<uint32_t>(std::numeric_limits<int32_t>::max()) ||
1431       !ReadRawBytes(byte_length).To(&bytes)) {
1432     position_ = original_position;
1433     return false;
1434   }
1435 
1436   String::FlatContent flat = expected->GetFlatContent(no_gc);
1437 
1438   // If the bytes are verbatim what is in the flattened string, then the string
1439   // is successfully consumed.
1440   if (tag == SerializationTag::kOneByteString && flat.IsOneByte()) {
1441     Vector<const uint8_t> chars = flat.ToOneByteVector();
1442     if (byte_length == static_cast<size_t>(chars.length()) &&
1443         memcmp(bytes.begin(), chars.begin(), byte_length) == 0) {
1444       return true;
1445     }
1446   } else if (tag == SerializationTag::kTwoByteString && flat.IsTwoByte()) {
1447     Vector<const uc16> chars = flat.ToUC16Vector();
1448     if (byte_length == static_cast<unsigned>(chars.length()) * sizeof(uc16) &&
1449         memcmp(bytes.begin(), chars.begin(), byte_length) == 0) {
1450       return true;
1451     }
1452   } else if (tag == SerializationTag::kUtf8String && flat.IsOneByte()) {
1453     Vector<const uint8_t> chars = flat.ToOneByteVector();
1454     if (byte_length == static_cast<size_t>(chars.length()) &&
1455         String::IsAscii(chars.begin(), chars.length()) &&
1456         memcmp(bytes.begin(), chars.begin(), byte_length) == 0) {
1457       return true;
1458     }
1459   }
1460 
1461   position_ = original_position;
1462   return false;
1463 }
1464 
ReadJSObject()1465 MaybeHandle<JSObject> ValueDeserializer::ReadJSObject() {
1466   // If we are at the end of the stack, abort. This function may recurse.
1467   STACK_CHECK(isolate_, MaybeHandle<JSObject>());
1468 
1469   uint32_t id = next_id_++;
1470   HandleScope scope(isolate_);
1471   Handle<JSObject> object =
1472       isolate_->factory()->NewJSObject(isolate_->object_function());
1473   AddObjectWithID(id, object);
1474 
1475   uint32_t num_properties;
1476   uint32_t expected_num_properties;
1477   if (!ReadJSObjectProperties(object, SerializationTag::kEndJSObject, true)
1478            .To(&num_properties) ||
1479       !ReadVarint<uint32_t>().To(&expected_num_properties) ||
1480       num_properties != expected_num_properties) {
1481     return MaybeHandle<JSObject>();
1482   }
1483 
1484   DCHECK(HasObjectWithID(id));
1485   return scope.CloseAndEscape(object);
1486 }
1487 
ReadSparseJSArray()1488 MaybeHandle<JSArray> ValueDeserializer::ReadSparseJSArray() {
1489   // If we are at the end of the stack, abort. This function may recurse.
1490   STACK_CHECK(isolate_, MaybeHandle<JSArray>());
1491 
1492   uint32_t length;
1493   if (!ReadVarint<uint32_t>().To(&length)) return MaybeHandle<JSArray>();
1494 
1495   uint32_t id = next_id_++;
1496   HandleScope scope(isolate_);
1497   Handle<JSArray> array =
1498       isolate_->factory()->NewJSArray(0, TERMINAL_FAST_ELEMENTS_KIND);
1499   JSArray::SetLength(array, length);
1500   AddObjectWithID(id, array);
1501 
1502   uint32_t num_properties;
1503   uint32_t expected_num_properties;
1504   uint32_t expected_length;
1505   if (!ReadJSObjectProperties(array, SerializationTag::kEndSparseJSArray, false)
1506            .To(&num_properties) ||
1507       !ReadVarint<uint32_t>().To(&expected_num_properties) ||
1508       !ReadVarint<uint32_t>().To(&expected_length) ||
1509       num_properties != expected_num_properties || length != expected_length) {
1510     return MaybeHandle<JSArray>();
1511   }
1512 
1513   DCHECK(HasObjectWithID(id));
1514   return scope.CloseAndEscape(array);
1515 }
1516 
ReadDenseJSArray()1517 MaybeHandle<JSArray> ValueDeserializer::ReadDenseJSArray() {
1518   // If we are at the end of the stack, abort. This function may recurse.
1519   STACK_CHECK(isolate_, MaybeHandle<JSArray>());
1520 
1521   // We shouldn't permit an array larger than the biggest we can request from
1522   // V8. As an additional sanity check, since each entry will take at least one
1523   // byte to encode, if there are fewer bytes than that we can also fail fast.
1524   uint32_t length;
1525   if (!ReadVarint<uint32_t>().To(&length) ||
1526       length > static_cast<uint32_t>(FixedArray::kMaxLength) ||
1527       length > static_cast<size_t>(end_ - position_)) {
1528     return MaybeHandle<JSArray>();
1529   }
1530 
1531   uint32_t id = next_id_++;
1532   HandleScope scope(isolate_);
1533   Handle<JSArray> array = isolate_->factory()->NewJSArray(
1534       HOLEY_ELEMENTS, length, length, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1535   AddObjectWithID(id, array);
1536 
1537   Handle<FixedArray> elements(FixedArray::cast(array->elements()), isolate_);
1538   for (uint32_t i = 0; i < length; i++) {
1539     SerializationTag tag;
1540     if (PeekTag().To(&tag) && tag == SerializationTag::kTheHole) {
1541       ConsumeTag(SerializationTag::kTheHole);
1542       continue;
1543     }
1544 
1545     Handle<Object> element;
1546     if (!ReadObject().ToHandle(&element)) return MaybeHandle<JSArray>();
1547 
1548     // Serialization versions less than 11 encode the hole the same as
1549     // undefined. For consistency with previous behavior, store these as the
1550     // hole. Past version 11, undefined means undefined.
1551     if (version_ < 11 && element->IsUndefined(isolate_)) continue;
1552 
1553     // Safety check.
1554     if (i >= static_cast<uint32_t>(elements->length())) {
1555       return MaybeHandle<JSArray>();
1556     }
1557 
1558     elements->set(i, *element);
1559   }
1560 
1561   uint32_t num_properties;
1562   uint32_t expected_num_properties;
1563   uint32_t expected_length;
1564   if (!ReadJSObjectProperties(array, SerializationTag::kEndDenseJSArray, false)
1565            .To(&num_properties) ||
1566       !ReadVarint<uint32_t>().To(&expected_num_properties) ||
1567       !ReadVarint<uint32_t>().To(&expected_length) ||
1568       num_properties != expected_num_properties || length != expected_length) {
1569     return MaybeHandle<JSArray>();
1570   }
1571 
1572   DCHECK(HasObjectWithID(id));
1573   return scope.CloseAndEscape(array);
1574 }
1575 
ReadJSDate()1576 MaybeHandle<JSDate> ValueDeserializer::ReadJSDate() {
1577   double value;
1578   if (!ReadDouble().To(&value)) return MaybeHandle<JSDate>();
1579   uint32_t id = next_id_++;
1580   Handle<JSDate> date;
1581   if (!JSDate::New(isolate_->date_function(), isolate_->date_function(), value)
1582            .ToHandle(&date)) {
1583     return MaybeHandle<JSDate>();
1584   }
1585   AddObjectWithID(id, date);
1586   return date;
1587 }
1588 
ReadJSPrimitiveWrapper(SerializationTag tag)1589 MaybeHandle<JSPrimitiveWrapper> ValueDeserializer::ReadJSPrimitiveWrapper(
1590     SerializationTag tag) {
1591   uint32_t id = next_id_++;
1592   Handle<JSPrimitiveWrapper> value;
1593   switch (tag) {
1594     case SerializationTag::kTrueObject:
1595       value = Handle<JSPrimitiveWrapper>::cast(
1596           isolate_->factory()->NewJSObject(isolate_->boolean_function()));
1597       value->set_value(ReadOnlyRoots(isolate_).true_value());
1598       break;
1599     case SerializationTag::kFalseObject:
1600       value = Handle<JSPrimitiveWrapper>::cast(
1601           isolate_->factory()->NewJSObject(isolate_->boolean_function()));
1602       value->set_value(ReadOnlyRoots(isolate_).false_value());
1603       break;
1604     case SerializationTag::kNumberObject: {
1605       double number;
1606       if (!ReadDouble().To(&number)) return MaybeHandle<JSPrimitiveWrapper>();
1607       value = Handle<JSPrimitiveWrapper>::cast(
1608           isolate_->factory()->NewJSObject(isolate_->number_function()));
1609       Handle<Object> number_object = isolate_->factory()->NewNumber(number);
1610       value->set_value(*number_object);
1611       break;
1612     }
1613     case SerializationTag::kBigIntObject: {
1614       Handle<BigInt> bigint;
1615       if (!ReadBigInt().ToHandle(&bigint))
1616         return MaybeHandle<JSPrimitiveWrapper>();
1617       value = Handle<JSPrimitiveWrapper>::cast(
1618           isolate_->factory()->NewJSObject(isolate_->bigint_function()));
1619       value->set_value(*bigint);
1620       break;
1621     }
1622     case SerializationTag::kStringObject: {
1623       Handle<String> string;
1624       if (!ReadString().ToHandle(&string))
1625         return MaybeHandle<JSPrimitiveWrapper>();
1626       value = Handle<JSPrimitiveWrapper>::cast(
1627           isolate_->factory()->NewJSObject(isolate_->string_function()));
1628       value->set_value(*string);
1629       break;
1630     }
1631     default:
1632       UNREACHABLE();
1633   }
1634   AddObjectWithID(id, value);
1635   return value;
1636 }
1637 
ReadJSRegExp()1638 MaybeHandle<JSRegExp> ValueDeserializer::ReadJSRegExp() {
1639   uint32_t id = next_id_++;
1640   Handle<String> pattern;
1641   uint32_t raw_flags;
1642   Handle<JSRegExp> regexp;
1643   if (!ReadString().ToHandle(&pattern) ||
1644       !ReadVarint<uint32_t>().To(&raw_flags)) {
1645     return MaybeHandle<JSRegExp>();
1646   }
1647 
1648   // Ensure the deserialized flags are valid.
1649   uint32_t bad_flags_mask = static_cast<uint32_t>(-1) << JSRegExp::kFlagCount;
1650   // kLinear is accepted only with the appropriate flag.
1651   if (!FLAG_enable_experimental_regexp_engine) {
1652     bad_flags_mask |= JSRegExp::kLinear;
1653   }
1654   if ((raw_flags & bad_flags_mask) ||
1655       !JSRegExp::New(isolate_, pattern, static_cast<JSRegExp::Flags>(raw_flags))
1656            .ToHandle(&regexp)) {
1657     return MaybeHandle<JSRegExp>();
1658   }
1659 
1660   AddObjectWithID(id, regexp);
1661   return regexp;
1662 }
1663 
ReadJSMap()1664 MaybeHandle<JSMap> ValueDeserializer::ReadJSMap() {
1665   // If we are at the end of the stack, abort. This function may recurse.
1666   STACK_CHECK(isolate_, MaybeHandle<JSMap>());
1667 
1668   HandleScope scope(isolate_);
1669   uint32_t id = next_id_++;
1670   Handle<JSMap> map = isolate_->factory()->NewJSMap();
1671   AddObjectWithID(id, map);
1672 
1673   Handle<JSFunction> map_set = isolate_->map_set();
1674   uint32_t length = 0;
1675   while (true) {
1676     SerializationTag tag;
1677     if (!PeekTag().To(&tag)) return MaybeHandle<JSMap>();
1678     if (tag == SerializationTag::kEndJSMap) {
1679       ConsumeTag(SerializationTag::kEndJSMap);
1680       break;
1681     }
1682 
1683     Handle<Object> argv[2];
1684     if (!ReadObject().ToHandle(&argv[0]) || !ReadObject().ToHandle(&argv[1])) {
1685       return MaybeHandle<JSMap>();
1686     }
1687 
1688     AllowJavascriptExecution allow_js(isolate_);
1689     if (Execution::Call(isolate_, map_set, map, arraysize(argv), argv)
1690             .is_null()) {
1691       return MaybeHandle<JSMap>();
1692     }
1693     length += 2;
1694   }
1695 
1696   uint32_t expected_length;
1697   if (!ReadVarint<uint32_t>().To(&expected_length) ||
1698       length != expected_length) {
1699     return MaybeHandle<JSMap>();
1700   }
1701   DCHECK(HasObjectWithID(id));
1702   return scope.CloseAndEscape(map);
1703 }
1704 
ReadJSSet()1705 MaybeHandle<JSSet> ValueDeserializer::ReadJSSet() {
1706   // If we are at the end of the stack, abort. This function may recurse.
1707   STACK_CHECK(isolate_, MaybeHandle<JSSet>());
1708 
1709   HandleScope scope(isolate_);
1710   uint32_t id = next_id_++;
1711   Handle<JSSet> set = isolate_->factory()->NewJSSet();
1712   AddObjectWithID(id, set);
1713   Handle<JSFunction> set_add = isolate_->set_add();
1714   uint32_t length = 0;
1715   while (true) {
1716     SerializationTag tag;
1717     if (!PeekTag().To(&tag)) return MaybeHandle<JSSet>();
1718     if (tag == SerializationTag::kEndJSSet) {
1719       ConsumeTag(SerializationTag::kEndJSSet);
1720       break;
1721     }
1722 
1723     Handle<Object> argv[1];
1724     if (!ReadObject().ToHandle(&argv[0])) return MaybeHandle<JSSet>();
1725 
1726     AllowJavascriptExecution allow_js(isolate_);
1727     if (Execution::Call(isolate_, set_add, set, arraysize(argv), argv)
1728             .is_null()) {
1729       return MaybeHandle<JSSet>();
1730     }
1731     length++;
1732   }
1733 
1734   uint32_t expected_length;
1735   if (!ReadVarint<uint32_t>().To(&expected_length) ||
1736       length != expected_length) {
1737     return MaybeHandle<JSSet>();
1738   }
1739   DCHECK(HasObjectWithID(id));
1740   return scope.CloseAndEscape(set);
1741 }
1742 
ReadJSArrayBuffer(bool is_shared)1743 MaybeHandle<JSArrayBuffer> ValueDeserializer::ReadJSArrayBuffer(
1744     bool is_shared) {
1745   uint32_t id = next_id_++;
1746   if (is_shared) {
1747     uint32_t clone_id;
1748     Local<SharedArrayBuffer> sab_value;
1749     if (!ReadVarint<uint32_t>().To(&clone_id) || delegate_ == nullptr ||
1750         !delegate_
1751              ->GetSharedArrayBufferFromId(
1752                  reinterpret_cast<v8::Isolate*>(isolate_), clone_id)
1753              .ToLocal(&sab_value)) {
1754       RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate_, JSArrayBuffer);
1755       return MaybeHandle<JSArrayBuffer>();
1756     }
1757     Handle<JSArrayBuffer> array_buffer = Utils::OpenHandle(*sab_value);
1758     DCHECK_EQ(is_shared, array_buffer->is_shared());
1759     AddObjectWithID(id, array_buffer);
1760     return array_buffer;
1761   }
1762   uint32_t byte_length;
1763   if (!ReadVarint<uint32_t>().To(&byte_length) ||
1764       byte_length > static_cast<size_t>(end_ - position_)) {
1765     return MaybeHandle<JSArrayBuffer>();
1766   }
1767   MaybeHandle<JSArrayBuffer> result =
1768       isolate_->factory()->NewJSArrayBufferAndBackingStore(
1769           byte_length, InitializedFlag::kUninitialized);
1770   Handle<JSArrayBuffer> array_buffer;
1771   if (!result.ToHandle(&array_buffer)) return result;
1772 
1773   if (byte_length > 0) {
1774     memcpy(array_buffer->backing_store(), position_, byte_length);
1775   }
1776   position_ += byte_length;
1777   AddObjectWithID(id, array_buffer);
1778   return array_buffer;
1779 }
1780 
ReadTransferredJSArrayBuffer()1781 MaybeHandle<JSArrayBuffer> ValueDeserializer::ReadTransferredJSArrayBuffer() {
1782   uint32_t id = next_id_++;
1783   uint32_t transfer_id;
1784   Handle<SimpleNumberDictionary> transfer_map;
1785   if (!ReadVarint<uint32_t>().To(&transfer_id) ||
1786       !array_buffer_transfer_map_.ToHandle(&transfer_map)) {
1787     return MaybeHandle<JSArrayBuffer>();
1788   }
1789   InternalIndex index = transfer_map->FindEntry(isolate_, transfer_id);
1790   if (index.is_not_found()) {
1791     return MaybeHandle<JSArrayBuffer>();
1792   }
1793   Handle<JSArrayBuffer> array_buffer(
1794       JSArrayBuffer::cast(transfer_map->ValueAt(index)), isolate_);
1795   AddObjectWithID(id, array_buffer);
1796   return array_buffer;
1797 }
1798 
ReadJSArrayBufferView(Handle<JSArrayBuffer> buffer)1799 MaybeHandle<JSArrayBufferView> ValueDeserializer::ReadJSArrayBufferView(
1800     Handle<JSArrayBuffer> buffer) {
1801   uint32_t buffer_byte_length = static_cast<uint32_t>(buffer->byte_length());
1802   uint8_t tag = 0;
1803   uint32_t byte_offset = 0;
1804   uint32_t byte_length = 0;
1805   if (!ReadVarint<uint8_t>().To(&tag) ||
1806       !ReadVarint<uint32_t>().To(&byte_offset) ||
1807       !ReadVarint<uint32_t>().To(&byte_length) ||
1808       byte_offset > buffer_byte_length ||
1809       byte_length > buffer_byte_length - byte_offset) {
1810     return MaybeHandle<JSArrayBufferView>();
1811   }
1812   uint32_t id = next_id_++;
1813   ExternalArrayType external_array_type = kExternalInt8Array;
1814   unsigned element_size = 0;
1815 
1816   switch (static_cast<ArrayBufferViewTag>(tag)) {
1817     case ArrayBufferViewTag::kDataView: {
1818       Handle<JSDataView> data_view =
1819           isolate_->factory()->NewJSDataView(buffer, byte_offset, byte_length);
1820       AddObjectWithID(id, data_view);
1821       return data_view;
1822     }
1823 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
1824   case ArrayBufferViewTag::k##Type##Array:        \
1825     external_array_type = kExternal##Type##Array; \
1826     element_size = sizeof(ctype);                 \
1827     break;
1828       TYPED_ARRAYS(TYPED_ARRAY_CASE)
1829 #undef TYPED_ARRAY_CASE
1830   }
1831   if (element_size == 0 || byte_offset % element_size != 0 ||
1832       byte_length % element_size != 0) {
1833     return MaybeHandle<JSArrayBufferView>();
1834   }
1835   Handle<JSTypedArray> typed_array = isolate_->factory()->NewJSTypedArray(
1836       external_array_type, buffer, byte_offset, byte_length / element_size);
1837   AddObjectWithID(id, typed_array);
1838   return typed_array;
1839 }
1840 
ReadJSError()1841 MaybeHandle<Object> ValueDeserializer::ReadJSError() {
1842   Handle<Object> message = isolate_->factory()->undefined_value();
1843   Handle<Object> stack = isolate_->factory()->undefined_value();
1844   Handle<Object> no_caller;
1845   auto constructor = isolate_->error_function();
1846   bool done = false;
1847 
1848   while (!done) {
1849     uint8_t tag;
1850     if (!ReadVarint<uint8_t>().To(&tag)) {
1851       return MaybeHandle<JSObject>();
1852     }
1853     switch (static_cast<ErrorTag>(tag)) {
1854       case ErrorTag::kEvalErrorPrototype:
1855         constructor = isolate_->eval_error_function();
1856         break;
1857       case ErrorTag::kRangeErrorPrototype:
1858         constructor = isolate_->range_error_function();
1859         break;
1860       case ErrorTag::kReferenceErrorPrototype:
1861         constructor = isolate_->reference_error_function();
1862         break;
1863       case ErrorTag::kSyntaxErrorPrototype:
1864         constructor = isolate_->syntax_error_function();
1865         break;
1866       case ErrorTag::kTypeErrorPrototype:
1867         constructor = isolate_->type_error_function();
1868         break;
1869       case ErrorTag::kUriErrorPrototype:
1870         constructor = isolate_->uri_error_function();
1871         break;
1872       case ErrorTag::kMessage: {
1873         Handle<String> message_string;
1874         if (!ReadString().ToHandle(&message_string)) {
1875           return MaybeHandle<JSObject>();
1876         }
1877         message = message_string;
1878         break;
1879       }
1880       case ErrorTag::kStack: {
1881         Handle<String> stack_string;
1882         if (!ReadString().ToHandle(&stack_string)) {
1883           return MaybeHandle<JSObject>();
1884         }
1885         stack = stack_string;
1886         break;
1887       }
1888       case ErrorTag::kEnd:
1889         done = true;
1890         break;
1891       default:
1892         return MaybeHandle<JSObject>();
1893     }
1894   }
1895 
1896   Handle<Object> error;
1897   if (!ErrorUtils::Construct(isolate_, constructor, constructor, message,
1898                              SKIP_NONE, no_caller,
1899                              ErrorUtils::StackTraceCollection::kNone)
1900            .ToHandle(&error)) {
1901     return MaybeHandle<Object>();
1902   }
1903 
1904   if (Object::SetProperty(
1905           isolate_, error, isolate_->factory()->stack_trace_symbol(), stack,
1906           StoreOrigin::kMaybeKeyed, Just(ShouldThrow::kThrowOnError))
1907           .is_null()) {
1908     return MaybeHandle<Object>();
1909   }
1910   return error;
1911 }
1912 
ReadWasmModuleTransfer()1913 MaybeHandle<JSObject> ValueDeserializer::ReadWasmModuleTransfer() {
1914   uint32_t transfer_id = 0;
1915   Local<Value> module_value;
1916   if (!ReadVarint<uint32_t>().To(&transfer_id) || delegate_ == nullptr ||
1917       !delegate_
1918            ->GetWasmModuleFromId(reinterpret_cast<v8::Isolate*>(isolate_),
1919                                  transfer_id)
1920            .ToLocal(&module_value)) {
1921     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate_, JSObject);
1922     return MaybeHandle<JSObject>();
1923   }
1924   uint32_t id = next_id_++;
1925   Handle<JSObject> module =
1926       Handle<JSObject>::cast(Utils::OpenHandle(*module_value));
1927   AddObjectWithID(id, module);
1928   return module;
1929 }
1930 
ReadWasmMemory()1931 MaybeHandle<WasmMemoryObject> ValueDeserializer::ReadWasmMemory() {
1932   uint32_t id = next_id_++;
1933 
1934   auto enabled_features = wasm::WasmFeatures::FromIsolate(isolate_);
1935   if (!enabled_features.has_threads()) {
1936     return MaybeHandle<WasmMemoryObject>();
1937   }
1938 
1939   int32_t maximum_pages;
1940   if (!ReadZigZag<int32_t>().To(&maximum_pages)) {
1941     return MaybeHandle<WasmMemoryObject>();
1942   }
1943 
1944   SerializationTag tag;
1945   if (!ReadTag().To(&tag) || tag != SerializationTag::kSharedArrayBuffer) {
1946     return MaybeHandle<WasmMemoryObject>();
1947   }
1948 
1949   const bool is_shared = true;
1950   Handle<JSArrayBuffer> buffer;
1951   if (!ReadJSArrayBuffer(is_shared).ToHandle(&buffer)) {
1952     return MaybeHandle<WasmMemoryObject>();
1953   }
1954 
1955   Handle<WasmMemoryObject> result =
1956       WasmMemoryObject::New(isolate_, buffer, maximum_pages);
1957 
1958   AddObjectWithID(id, result);
1959   return result;
1960 }
1961 
ReadHostObject()1962 MaybeHandle<JSObject> ValueDeserializer::ReadHostObject() {
1963   if (!delegate_) return MaybeHandle<JSObject>();
1964   STACK_CHECK(isolate_, MaybeHandle<JSObject>());
1965   uint32_t id = next_id_++;
1966   v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate_);
1967   v8::Local<v8::Object> object;
1968   if (!delegate_->ReadHostObject(v8_isolate).ToLocal(&object)) {
1969     RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate_, JSObject);
1970     return MaybeHandle<JSObject>();
1971   }
1972   Handle<JSObject> js_object =
1973       Handle<JSObject>::cast(Utils::OpenHandle(*object));
1974   AddObjectWithID(id, js_object);
1975   return js_object;
1976 }
1977 
1978 // Copies a vector of property values into an object, given the map that should
1979 // be used.
CommitProperties(Handle<JSObject> object,Handle<Map> map,const std::vector<Handle<Object>> & properties)1980 static void CommitProperties(Handle<JSObject> object, Handle<Map> map,
1981                              const std::vector<Handle<Object>>& properties) {
1982   JSObject::AllocateStorageForMap(object, map);
1983   DCHECK(!object->map().is_dictionary_map());
1984 
1985   DisallowHeapAllocation no_gc;
1986   DescriptorArray descriptors =
1987       object->map().instance_descriptors(kRelaxedLoad);
1988   for (InternalIndex i : InternalIndex::Range(properties.size())) {
1989     // Initializing store.
1990     object->WriteToField(i, descriptors.GetDetails(i),
1991                          *properties[i.raw_value()]);
1992   }
1993 }
1994 
IsValidObjectKey(Handle<Object> value)1995 static bool IsValidObjectKey(Handle<Object> value) {
1996   return value->IsName() || value->IsNumber();
1997 }
1998 
ReadJSObjectProperties(Handle<JSObject> object,SerializationTag end_tag,bool can_use_transitions)1999 Maybe<uint32_t> ValueDeserializer::ReadJSObjectProperties(
2000     Handle<JSObject> object, SerializationTag end_tag,
2001     bool can_use_transitions) {
2002   uint32_t num_properties = 0;
2003 
2004   // Fast path (following map transitions).
2005   if (can_use_transitions) {
2006     bool transitioning = true;
2007     Handle<Map> map(object->map(), isolate_);
2008     DCHECK(!map->is_dictionary_map());
2009     DCHECK_EQ(0,
2010               map->instance_descriptors(kRelaxedLoad).number_of_descriptors());
2011     std::vector<Handle<Object>> properties;
2012     properties.reserve(8);
2013 
2014     while (transitioning) {
2015       // If there are no more properties, finish.
2016       SerializationTag tag;
2017       if (!PeekTag().To(&tag)) return Nothing<uint32_t>();
2018       if (tag == end_tag) {
2019         ConsumeTag(end_tag);
2020         CommitProperties(object, map, properties);
2021         CHECK_LT(properties.size(), std::numeric_limits<uint32_t>::max());
2022         return Just(static_cast<uint32_t>(properties.size()));
2023       }
2024 
2025       // Determine the key to be used and the target map to transition to, if
2026       // possible. Transitioning may abort if the key is not a string, or if no
2027       // transition was found.
2028       Handle<Object> key;
2029       Handle<Map> target;
2030       TransitionsAccessor transitions(isolate_, map);
2031       Handle<String> expected_key = transitions.ExpectedTransitionKey();
2032       if (!expected_key.is_null() && ReadExpectedString(expected_key)) {
2033         key = expected_key;
2034         target = transitions.ExpectedTransitionTarget();
2035       } else {
2036         if (!ReadObject().ToHandle(&key) || !IsValidObjectKey(key)) {
2037           return Nothing<uint32_t>();
2038         }
2039         if (key->IsString()) {
2040           key =
2041               isolate_->factory()->InternalizeString(Handle<String>::cast(key));
2042           // Don't reuse |transitions| because it could be stale.
2043           transitioning = TransitionsAccessor(isolate_, map)
2044                               .FindTransitionToField(Handle<String>::cast(key))
2045                               .ToHandle(&target);
2046         } else {
2047           transitioning = false;
2048         }
2049       }
2050 
2051       // Read the value that corresponds to it.
2052       Handle<Object> value;
2053       if (!ReadObject().ToHandle(&value)) return Nothing<uint32_t>();
2054 
2055       // If still transitioning and the value fits the field representation
2056       // (though generalization may be required), store the property value so
2057       // that we can copy them all at once. Otherwise, stop transitioning.
2058       if (transitioning) {
2059         InternalIndex descriptor(properties.size());
2060         PropertyDetails details =
2061             target->instance_descriptors(kRelaxedLoad).GetDetails(descriptor);
2062         Representation expected_representation = details.representation();
2063         if (value->FitsRepresentation(expected_representation)) {
2064           if (expected_representation.IsHeapObject() &&
2065               !target->instance_descriptors(kRelaxedLoad)
2066                    .GetFieldType(descriptor)
2067                    .NowContains(value)) {
2068             Handle<FieldType> value_type =
2069                 value->OptimalType(isolate_, expected_representation);
2070             Map::GeneralizeField(isolate_, target, descriptor,
2071                                  details.constness(), expected_representation,
2072                                  value_type);
2073           }
2074           DCHECK(target->instance_descriptors(kRelaxedLoad)
2075                      .GetFieldType(descriptor)
2076                      .NowContains(value));
2077           properties.push_back(value);
2078           map = target;
2079           continue;
2080         } else {
2081           transitioning = false;
2082         }
2083       }
2084 
2085       // Fell out of transitioning fast path. Commit the properties gathered so
2086       // far, and then start setting properties slowly instead.
2087       DCHECK(!transitioning);
2088       CHECK_LT(properties.size(), std::numeric_limits<uint32_t>::max());
2089       CommitProperties(object, map, properties);
2090       num_properties = static_cast<uint32_t>(properties.size());
2091 
2092       // We checked earlier that IsValidObjectKey(key).
2093       LookupIterator::Key lookup_key(isolate_, key);
2094       LookupIterator it(isolate_, object, lookup_key, LookupIterator::OWN);
2095       if (it.state() != LookupIterator::NOT_FOUND ||
2096           JSObject::DefineOwnPropertyIgnoreAttributes(&it, value, NONE)
2097               .is_null()) {
2098         return Nothing<uint32_t>();
2099       }
2100       num_properties++;
2101     }
2102 
2103     // At this point, transitioning should be done, but at least one property
2104     // should have been written (in the zero-property case, there is an early
2105     // return).
2106     DCHECK(!transitioning);
2107     DCHECK_GE(num_properties, 1u);
2108   }
2109 
2110   // Slow path.
2111   for (;; num_properties++) {
2112     SerializationTag tag;
2113     if (!PeekTag().To(&tag)) return Nothing<uint32_t>();
2114     if (tag == end_tag) {
2115       ConsumeTag(end_tag);
2116       return Just(num_properties);
2117     }
2118 
2119     Handle<Object> key;
2120     if (!ReadObject().ToHandle(&key) || !IsValidObjectKey(key)) {
2121       return Nothing<uint32_t>();
2122     }
2123     Handle<Object> value;
2124     if (!ReadObject().ToHandle(&value)) return Nothing<uint32_t>();
2125 
2126     // We checked earlier that IsValidObjectKey(key).
2127     LookupIterator::Key lookup_key(isolate_, key);
2128     LookupIterator it(isolate_, object, lookup_key, LookupIterator::OWN);
2129     if (it.state() != LookupIterator::NOT_FOUND ||
2130         JSObject::DefineOwnPropertyIgnoreAttributes(&it, value, NONE)
2131             .is_null()) {
2132       return Nothing<uint32_t>();
2133     }
2134   }
2135 }
2136 
HasObjectWithID(uint32_t id)2137 bool ValueDeserializer::HasObjectWithID(uint32_t id) {
2138   return id < static_cast<unsigned>(id_map_->length()) &&
2139          !id_map_->get(id).IsTheHole(isolate_);
2140 }
2141 
GetObjectWithID(uint32_t id)2142 MaybeHandle<JSReceiver> ValueDeserializer::GetObjectWithID(uint32_t id) {
2143   if (id >= static_cast<unsigned>(id_map_->length())) {
2144     return MaybeHandle<JSReceiver>();
2145   }
2146   Object value = id_map_->get(id);
2147   if (value.IsTheHole(isolate_)) return MaybeHandle<JSReceiver>();
2148   DCHECK(value.IsJSReceiver());
2149   return Handle<JSReceiver>(JSReceiver::cast(value), isolate_);
2150 }
2151 
AddObjectWithID(uint32_t id,Handle<JSReceiver> object)2152 void ValueDeserializer::AddObjectWithID(uint32_t id,
2153                                         Handle<JSReceiver> object) {
2154   DCHECK(!HasObjectWithID(id));
2155   Handle<FixedArray> new_array =
2156       FixedArray::SetAndGrow(isolate_, id_map_, id, object);
2157 
2158   // If the dictionary was reallocated, update the global handle.
2159   if (!new_array.is_identical_to(id_map_)) {
2160     GlobalHandles::Destroy(id_map_.location());
2161     id_map_ = isolate_->global_handles()->Create(*new_array);
2162   }
2163 }
2164 
SetPropertiesFromKeyValuePairs(Isolate * isolate,Handle<JSObject> object,Handle<Object> * data,uint32_t num_properties)2165 static Maybe<bool> SetPropertiesFromKeyValuePairs(Isolate* isolate,
2166                                                   Handle<JSObject> object,
2167                                                   Handle<Object>* data,
2168                                                   uint32_t num_properties) {
2169   for (unsigned i = 0; i < 2 * num_properties; i += 2) {
2170     Handle<Object> key = data[i];
2171     if (!IsValidObjectKey(key)) return Nothing<bool>();
2172     Handle<Object> value = data[i + 1];
2173     LookupIterator::Key lookup_key(isolate, key);
2174     LookupIterator it(isolate, object, lookup_key, LookupIterator::OWN);
2175     if (it.state() != LookupIterator::NOT_FOUND ||
2176         JSObject::DefineOwnPropertyIgnoreAttributes(&it, value, NONE)
2177             .is_null()) {
2178       return Nothing<bool>();
2179     }
2180   }
2181   return Just(true);
2182 }
2183 
2184 namespace {
2185 
2186 // Throws a generic "deserialization failed" exception by default, unless a more
2187 // specific exception has already been thrown.
ThrowDeserializationExceptionIfNonePending(Isolate * isolate)2188 void ThrowDeserializationExceptionIfNonePending(Isolate* isolate) {
2189   if (!isolate->has_pending_exception()) {
2190     isolate->Throw(*isolate->factory()->NewError(
2191         MessageTemplate::kDataCloneDeserializationError));
2192   }
2193   DCHECK(isolate->has_pending_exception());
2194 }
2195 
2196 }  // namespace
2197 
2198 MaybeHandle<Object>
ReadObjectUsingEntireBufferForLegacyFormat()2199 ValueDeserializer::ReadObjectUsingEntireBufferForLegacyFormat() {
2200   DCHECK_EQ(version_, 0u);
2201   HandleScope scope(isolate_);
2202   std::vector<Handle<Object>> stack;
2203   while (position_ < end_) {
2204     SerializationTag tag;
2205     if (!PeekTag().To(&tag)) break;
2206 
2207     Handle<Object> new_object;
2208     switch (tag) {
2209       case SerializationTag::kEndJSObject: {
2210         ConsumeTag(SerializationTag::kEndJSObject);
2211 
2212         // JS Object: Read the last 2*n values from the stack and use them as
2213         // key-value pairs.
2214         uint32_t num_properties;
2215         if (!ReadVarint<uint32_t>().To(&num_properties) ||
2216             stack.size() / 2 < num_properties) {
2217           isolate_->Throw(*isolate_->factory()->NewError(
2218               MessageTemplate::kDataCloneDeserializationError));
2219           return MaybeHandle<Object>();
2220         }
2221 
2222         size_t begin_properties =
2223             stack.size() - 2 * static_cast<size_t>(num_properties);
2224         Handle<JSObject> js_object =
2225             isolate_->factory()->NewJSObject(isolate_->object_function());
2226         if (num_properties &&
2227             !SetPropertiesFromKeyValuePairs(
2228                  isolate_, js_object, &stack[begin_properties], num_properties)
2229                  .FromMaybe(false)) {
2230           ThrowDeserializationExceptionIfNonePending(isolate_);
2231           return MaybeHandle<Object>();
2232         }
2233 
2234         stack.resize(begin_properties);
2235         new_object = js_object;
2236         break;
2237       }
2238       case SerializationTag::kEndSparseJSArray: {
2239         ConsumeTag(SerializationTag::kEndSparseJSArray);
2240 
2241         // Sparse JS Array: Read the last 2*|num_properties| from the stack.
2242         uint32_t num_properties;
2243         uint32_t length;
2244         if (!ReadVarint<uint32_t>().To(&num_properties) ||
2245             !ReadVarint<uint32_t>().To(&length) ||
2246             stack.size() / 2 < num_properties) {
2247           isolate_->Throw(*isolate_->factory()->NewError(
2248               MessageTemplate::kDataCloneDeserializationError));
2249           return MaybeHandle<Object>();
2250         }
2251 
2252         Handle<JSArray> js_array =
2253             isolate_->factory()->NewJSArray(0, TERMINAL_FAST_ELEMENTS_KIND);
2254         JSArray::SetLength(js_array, length);
2255         size_t begin_properties =
2256             stack.size() - 2 * static_cast<size_t>(num_properties);
2257         if (num_properties &&
2258             !SetPropertiesFromKeyValuePairs(
2259                  isolate_, js_array, &stack[begin_properties], num_properties)
2260                  .FromMaybe(false)) {
2261           ThrowDeserializationExceptionIfNonePending(isolate_);
2262           return MaybeHandle<Object>();
2263         }
2264 
2265         stack.resize(begin_properties);
2266         new_object = js_array;
2267         break;
2268       }
2269       case SerializationTag::kEndDenseJSArray: {
2270         // This was already broken in Chromium, and apparently wasn't missed.
2271         isolate_->Throw(*isolate_->factory()->NewError(
2272             MessageTemplate::kDataCloneDeserializationError));
2273         return MaybeHandle<Object>();
2274       }
2275       default:
2276         if (!ReadObject().ToHandle(&new_object)) return MaybeHandle<Object>();
2277         break;
2278     }
2279     stack.push_back(new_object);
2280   }
2281 
2282 // Nothing remains but padding.
2283 #ifdef DEBUG
2284   while (position_ < end_) {
2285     DCHECK(*position_++ == static_cast<uint8_t>(SerializationTag::kPadding));
2286   }
2287 #endif
2288   position_ = end_;
2289 
2290   if (stack.size() != 1) {
2291     isolate_->Throw(*isolate_->factory()->NewError(
2292         MessageTemplate::kDataCloneDeserializationError));
2293     return MaybeHandle<Object>();
2294   }
2295   return scope.CloseAndEscape(stack[0]);
2296 }
2297 
2298 }  // namespace internal
2299 }  // namespace v8
2300