1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_STRINGS_STRING_SEARCH_H_
6 #define V8_STRINGS_STRING_SEARCH_H_
7
8 #include "src/execution/isolate.h"
9 #include "src/utils/vector.h"
10
11 namespace v8 {
12 namespace internal {
13
14 //---------------------------------------------------------------------
15 // String Search object.
16 //---------------------------------------------------------------------
17
18 // Class holding constants and methods that apply to all string search variants,
19 // independently of subject and pattern char size.
20 class StringSearchBase {
21 protected:
22 // Cap on the maximal shift in the Boyer-Moore implementation. By setting a
23 // limit, we can fix the size of tables. For a needle longer than this limit,
24 // search will not be optimal, since we only build tables for a suffix
25 // of the string, but it is a safe approximation.
26 static const int kBMMaxShift = Isolate::kBMMaxShift;
27
28 // Reduce alphabet to this size.
29 // One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
30 // proportional to the input alphabet. We reduce the alphabet size by
31 // equating input characters modulo a smaller alphabet size. This gives
32 // a potentially less efficient searching, but is a safe approximation.
33 // For needles using only characters in the same Unicode 256-code point page,
34 // there is no search speed degradation.
35 static const int kLatin1AlphabetSize = 256;
36 static const int kUC16AlphabetSize = Isolate::kUC16AlphabetSize;
37
38 // Bad-char shift table stored in the state. It's length is the alphabet size.
39 // For patterns below this length, the skip length of Boyer-Moore is too short
40 // to compensate for the algorithmic overhead compared to simple brute force.
41 static const int kBMMinPatternLength = 7;
42
IsOneByteString(Vector<const uint8_t> string)43 static inline bool IsOneByteString(Vector<const uint8_t> string) {
44 return true;
45 }
46
IsOneByteString(Vector<const uc16> string)47 static inline bool IsOneByteString(Vector<const uc16> string) {
48 return String::IsOneByte(string.begin(), string.length());
49 }
50
51 friend class Isolate;
52 };
53
54 template <typename PatternChar, typename SubjectChar>
55 class StringSearch : private StringSearchBase {
56 public:
StringSearch(Isolate * isolate,Vector<const PatternChar> pattern)57 StringSearch(Isolate* isolate, Vector<const PatternChar> pattern)
58 : isolate_(isolate),
59 pattern_(pattern),
60 start_(Max(0, pattern.length() - kBMMaxShift)) {
61 if (sizeof(PatternChar) > sizeof(SubjectChar)) {
62 if (!IsOneByteString(pattern_)) {
63 strategy_ = &FailSearch;
64 return;
65 }
66 }
67 int pattern_length = pattern_.length();
68 if (pattern_length < kBMMinPatternLength) {
69 if (pattern_length == 1) {
70 strategy_ = &SingleCharSearch;
71 return;
72 }
73 strategy_ = &LinearSearch;
74 return;
75 }
76 strategy_ = &InitialSearch;
77 }
78
Search(Vector<const SubjectChar> subject,int index)79 int Search(Vector<const SubjectChar> subject, int index) {
80 return strategy_(this, subject, index);
81 }
82
AlphabetSize()83 static inline int AlphabetSize() {
84 if (sizeof(PatternChar) == 1) {
85 // Latin1 needle.
86 return kLatin1AlphabetSize;
87 } else {
88 DCHECK_EQ(sizeof(PatternChar), 2);
89 // UC16 needle.
90 return kUC16AlphabetSize;
91 }
92 }
93
94 private:
95 using SearchFunction = int (*)(StringSearch<PatternChar, SubjectChar>*,
96 Vector<const SubjectChar>, int);
97
FailSearch(StringSearch<PatternChar,SubjectChar> *,Vector<const SubjectChar>,int)98 static int FailSearch(StringSearch<PatternChar, SubjectChar>*,
99 Vector<const SubjectChar>, int) {
100 return -1;
101 }
102
103 static int SingleCharSearch(StringSearch<PatternChar, SubjectChar>* search,
104 Vector<const SubjectChar> subject,
105 int start_index);
106
107 static int LinearSearch(StringSearch<PatternChar, SubjectChar>* search,
108 Vector<const SubjectChar> subject, int start_index);
109
110 static int InitialSearch(StringSearch<PatternChar, SubjectChar>* search,
111 Vector<const SubjectChar> subject, int start_index);
112
113 static int BoyerMooreHorspoolSearch(
114 StringSearch<PatternChar, SubjectChar>* search,
115 Vector<const SubjectChar> subject, int start_index);
116
117 static int BoyerMooreSearch(StringSearch<PatternChar, SubjectChar>* search,
118 Vector<const SubjectChar> subject,
119 int start_index);
120
121 void PopulateBoyerMooreHorspoolTable();
122
123 void PopulateBoyerMooreTable();
124
exceedsOneByte(uint8_t c)125 static inline bool exceedsOneByte(uint8_t c) { return false; }
126
exceedsOneByte(uint16_t c)127 static inline bool exceedsOneByte(uint16_t c) {
128 return c > String::kMaxOneByteCharCodeU;
129 }
130
CharOccurrence(int * bad_char_occurrence,SubjectChar char_code)131 static inline int CharOccurrence(int* bad_char_occurrence,
132 SubjectChar char_code) {
133 if (sizeof(SubjectChar) == 1) {
134 return bad_char_occurrence[static_cast<int>(char_code)];
135 }
136 if (sizeof(PatternChar) == 1) {
137 if (exceedsOneByte(char_code)) {
138 return -1;
139 }
140 return bad_char_occurrence[static_cast<unsigned int>(char_code)];
141 }
142 // Both pattern and subject are UC16. Reduce character to equivalence class.
143 int equiv_class = char_code % kUC16AlphabetSize;
144 return bad_char_occurrence[equiv_class];
145 }
146
147 // The following tables are shared by all searches.
148 // TODO(lrn): Introduce a way for a pattern to keep its tables
149 // between searches (e.g., for an Atom RegExp).
150
151 // Store for the BoyerMoore(Horspool) bad char shift table.
152 // Return a table covering the last kBMMaxShift+1 positions of
153 // pattern.
bad_char_table()154 int* bad_char_table() { return isolate_->bad_char_shift_table(); }
155
156 // Store for the BoyerMoore good suffix shift table.
good_suffix_shift_table()157 int* good_suffix_shift_table() {
158 // Return biased pointer that maps the range [start_..pattern_.length()
159 // to the kGoodSuffixShiftTable array.
160 return isolate_->good_suffix_shift_table() - start_;
161 }
162
163 // Table used temporarily while building the BoyerMoore good suffix
164 // shift table.
suffix_table()165 int* suffix_table() {
166 // Return biased pointer that maps the range [start_..pattern_.length()
167 // to the kSuffixTable array.
168 return isolate_->suffix_table() - start_;
169 }
170
171 Isolate* isolate_;
172 // The pattern to search for.
173 Vector<const PatternChar> pattern_;
174 // Pointer to implementation of the search.
175 SearchFunction strategy_;
176 // Cache value of Max(0, pattern_length() - kBMMaxShift)
177 int start_;
178 };
179
180 template <typename T, typename U>
AlignDown(T value,U alignment)181 inline T AlignDown(T value, U alignment) {
182 return reinterpret_cast<T>(
183 (reinterpret_cast<uintptr_t>(value) & ~(alignment - 1)));
184 }
185
GetHighestValueByte(uc16 character)186 inline uint8_t GetHighestValueByte(uc16 character) {
187 return Max(static_cast<uint8_t>(character & 0xFF),
188 static_cast<uint8_t>(character >> 8));
189 }
190
GetHighestValueByte(uint8_t character)191 inline uint8_t GetHighestValueByte(uint8_t character) { return character; }
192
193 template <typename PatternChar, typename SubjectChar>
FindFirstCharacter(Vector<const PatternChar> pattern,Vector<const SubjectChar> subject,int index)194 inline int FindFirstCharacter(Vector<const PatternChar> pattern,
195 Vector<const SubjectChar> subject, int index) {
196 const PatternChar pattern_first_char = pattern[0];
197 const int max_n = (subject.length() - pattern.length() + 1);
198
199 if (sizeof(SubjectChar) == 2 && pattern_first_char == 0) {
200 // Special-case looking for the 0 char in other than one-byte strings.
201 // memchr mostly fails in this case due to every other byte being 0 in text
202 // that is mostly ascii characters.
203 for (int i = index; i < max_n; ++i) {
204 if (subject[i] == 0) return i;
205 }
206 return -1;
207 }
208 const uint8_t search_byte = GetHighestValueByte(pattern_first_char);
209 const SubjectChar search_char = static_cast<SubjectChar>(pattern_first_char);
210 int pos = index;
211 do {
212 DCHECK_GE(max_n - pos, 0);
213 const SubjectChar* char_pos = reinterpret_cast<const SubjectChar*>(
214 memchr(subject.begin() + pos, search_byte,
215 (max_n - pos) * sizeof(SubjectChar)));
216 if (char_pos == nullptr) return -1;
217 char_pos = AlignDown(char_pos, sizeof(SubjectChar));
218 pos = static_cast<int>(char_pos - subject.begin());
219 if (subject[pos] == search_char) return pos;
220 } while (++pos < max_n);
221
222 return -1;
223 }
224
225 //---------------------------------------------------------------------
226 // Single Character Pattern Search Strategy
227 //---------------------------------------------------------------------
228
229 template <typename PatternChar, typename SubjectChar>
SingleCharSearch(StringSearch<PatternChar,SubjectChar> * search,Vector<const SubjectChar> subject,int index)230 int StringSearch<PatternChar, SubjectChar>::SingleCharSearch(
231 StringSearch<PatternChar, SubjectChar>* search,
232 Vector<const SubjectChar> subject, int index) {
233 DCHECK_EQ(1, search->pattern_.length());
234 PatternChar pattern_first_char = search->pattern_[0];
235 if (sizeof(PatternChar) > sizeof(SubjectChar)) {
236 if (exceedsOneByte(pattern_first_char)) {
237 return -1;
238 }
239 }
240 return FindFirstCharacter(search->pattern_, subject, index);
241 }
242
243 //---------------------------------------------------------------------
244 // Linear Search Strategy
245 //---------------------------------------------------------------------
246
247 template <typename PatternChar, typename SubjectChar>
CharCompare(const PatternChar * pattern,const SubjectChar * subject,int length)248 inline bool CharCompare(const PatternChar* pattern, const SubjectChar* subject,
249 int length) {
250 DCHECK_GT(length, 0);
251 int pos = 0;
252 do {
253 if (pattern[pos] != subject[pos]) {
254 return false;
255 }
256 pos++;
257 } while (pos < length);
258 return true;
259 }
260
261 // Simple linear search for short patterns. Never bails out.
262 template <typename PatternChar, typename SubjectChar>
LinearSearch(StringSearch<PatternChar,SubjectChar> * search,Vector<const SubjectChar> subject,int index)263 int StringSearch<PatternChar, SubjectChar>::LinearSearch(
264 StringSearch<PatternChar, SubjectChar>* search,
265 Vector<const SubjectChar> subject, int index) {
266 Vector<const PatternChar> pattern = search->pattern_;
267 DCHECK_GT(pattern.length(), 1);
268 int pattern_length = pattern.length();
269 int i = index;
270 int n = subject.length() - pattern_length;
271 while (i <= n) {
272 i = FindFirstCharacter(pattern, subject, i);
273 if (i == -1) return -1;
274 DCHECK_LE(i, n);
275 i++;
276 // Loop extracted to separate function to allow using return to do
277 // a deeper break.
278 if (CharCompare(pattern.begin() + 1, subject.begin() + i,
279 pattern_length - 1)) {
280 return i - 1;
281 }
282 }
283 return -1;
284 }
285
286 //---------------------------------------------------------------------
287 // Boyer-Moore string search
288 //---------------------------------------------------------------------
289
290 template <typename PatternChar, typename SubjectChar>
BoyerMooreSearch(StringSearch<PatternChar,SubjectChar> * search,Vector<const SubjectChar> subject,int start_index)291 int StringSearch<PatternChar, SubjectChar>::BoyerMooreSearch(
292 StringSearch<PatternChar, SubjectChar>* search,
293 Vector<const SubjectChar> subject, int start_index) {
294 Vector<const PatternChar> pattern = search->pattern_;
295 int subject_length = subject.length();
296 int pattern_length = pattern.length();
297 // Only preprocess at most kBMMaxShift last characters of pattern.
298 int start = search->start_;
299
300 int* bad_char_occurence = search->bad_char_table();
301 int* good_suffix_shift = search->good_suffix_shift_table();
302
303 PatternChar last_char = pattern[pattern_length - 1];
304 int index = start_index;
305 // Continue search from i.
306 while (index <= subject_length - pattern_length) {
307 int j = pattern_length - 1;
308 int c;
309 while (last_char != (c = subject[index + j])) {
310 int shift = j - CharOccurrence(bad_char_occurence, c);
311 index += shift;
312 if (index > subject_length - pattern_length) {
313 return -1;
314 }
315 }
316 while (j >= 0 && pattern[j] == (c = subject[index + j])) j--;
317 if (j < 0) {
318 return index;
319 } else if (j < start) {
320 // we have matched more than our tables allow us to be smart about.
321 // Fall back on BMH shift.
322 index += pattern_length - 1 -
323 CharOccurrence(bad_char_occurence,
324 static_cast<SubjectChar>(last_char));
325 } else {
326 int gs_shift = good_suffix_shift[j + 1];
327 int bc_occ = CharOccurrence(bad_char_occurence, c);
328 int shift = j - bc_occ;
329 if (gs_shift > shift) {
330 shift = gs_shift;
331 }
332 index += shift;
333 }
334 }
335
336 return -1;
337 }
338
339 template <typename PatternChar, typename SubjectChar>
PopulateBoyerMooreTable()340 void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreTable() {
341 int pattern_length = pattern_.length();
342 const PatternChar* pattern = pattern_.begin();
343 // Only look at the last kBMMaxShift characters of pattern (from start_
344 // to pattern_length).
345 int start = start_;
346 int length = pattern_length - start;
347
348 // Biased tables so that we can use pattern indices as table indices,
349 // even if we only cover the part of the pattern from offset start.
350 int* shift_table = good_suffix_shift_table();
351 int* suffix_table = this->suffix_table();
352
353 // Initialize table.
354 for (int i = start; i < pattern_length; i++) {
355 shift_table[i] = length;
356 }
357 shift_table[pattern_length] = 1;
358 suffix_table[pattern_length] = pattern_length + 1;
359
360 if (pattern_length <= start) {
361 return;
362 }
363
364 // Find suffixes.
365 PatternChar last_char = pattern[pattern_length - 1];
366 int suffix = pattern_length + 1;
367 {
368 int i = pattern_length;
369 while (i > start) {
370 PatternChar c = pattern[i - 1];
371 while (suffix <= pattern_length && c != pattern[suffix - 1]) {
372 if (shift_table[suffix] == length) {
373 shift_table[suffix] = suffix - i;
374 }
375 suffix = suffix_table[suffix];
376 }
377 suffix_table[--i] = --suffix;
378 if (suffix == pattern_length) {
379 // No suffix to extend, so we check against last_char only.
380 while ((i > start) && (pattern[i - 1] != last_char)) {
381 if (shift_table[pattern_length] == length) {
382 shift_table[pattern_length] = pattern_length - i;
383 }
384 suffix_table[--i] = pattern_length;
385 }
386 if (i > start) {
387 suffix_table[--i] = --suffix;
388 }
389 }
390 }
391 }
392 // Build shift table using suffixes.
393 if (suffix < pattern_length) {
394 for (int i = start; i <= pattern_length; i++) {
395 if (shift_table[i] == length) {
396 shift_table[i] = suffix - start;
397 }
398 if (i == suffix) {
399 suffix = suffix_table[suffix];
400 }
401 }
402 }
403 }
404
405 //---------------------------------------------------------------------
406 // Boyer-Moore-Horspool string search.
407 //---------------------------------------------------------------------
408
409 template <typename PatternChar, typename SubjectChar>
BoyerMooreHorspoolSearch(StringSearch<PatternChar,SubjectChar> * search,Vector<const SubjectChar> subject,int start_index)410 int StringSearch<PatternChar, SubjectChar>::BoyerMooreHorspoolSearch(
411 StringSearch<PatternChar, SubjectChar>* search,
412 Vector<const SubjectChar> subject, int start_index) {
413 Vector<const PatternChar> pattern = search->pattern_;
414 int subject_length = subject.length();
415 int pattern_length = pattern.length();
416 int* char_occurrences = search->bad_char_table();
417 int badness = -pattern_length;
418
419 // How bad we are doing without a good-suffix table.
420 PatternChar last_char = pattern[pattern_length - 1];
421 int last_char_shift =
422 pattern_length - 1 -
423 CharOccurrence(char_occurrences, static_cast<SubjectChar>(last_char));
424 // Perform search
425 int index = start_index; // No matches found prior to this index.
426 while (index <= subject_length - pattern_length) {
427 int j = pattern_length - 1;
428 int subject_char;
429 while (last_char != (subject_char = subject[index + j])) {
430 int bc_occ = CharOccurrence(char_occurrences, subject_char);
431 int shift = j - bc_occ;
432 index += shift;
433 badness += 1 - shift; // at most zero, so badness cannot increase.
434 if (index > subject_length - pattern_length) {
435 return -1;
436 }
437 }
438 j--;
439 while (j >= 0 && pattern[j] == (subject[index + j])) j--;
440 if (j < 0) {
441 return index;
442 } else {
443 index += last_char_shift;
444 // Badness increases by the number of characters we have
445 // checked, and decreases by the number of characters we
446 // can skip by shifting. It's a measure of how we are doing
447 // compared to reading each character exactly once.
448 badness += (pattern_length - j) - last_char_shift;
449 if (badness > 0) {
450 search->PopulateBoyerMooreTable();
451 search->strategy_ = &BoyerMooreSearch;
452 return BoyerMooreSearch(search, subject, index);
453 }
454 }
455 }
456 return -1;
457 }
458
459 template <typename PatternChar, typename SubjectChar>
PopulateBoyerMooreHorspoolTable()460 void StringSearch<PatternChar, SubjectChar>::PopulateBoyerMooreHorspoolTable() {
461 int pattern_length = pattern_.length();
462
463 int* bad_char_occurrence = bad_char_table();
464
465 // Only preprocess at most kBMMaxShift last characters of pattern.
466 int start = start_;
467 // Run forwards to populate bad_char_table, so that *last* instance
468 // of character equivalence class is the one registered.
469 // Notice: Doesn't include the last character.
470 int table_size = AlphabetSize();
471 if (start == 0) { // All patterns less than kBMMaxShift in length.
472 memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
473 } else {
474 for (int i = 0; i < table_size; i++) {
475 bad_char_occurrence[i] = start - 1;
476 }
477 }
478 for (int i = start; i < pattern_length - 1; i++) {
479 PatternChar c = pattern_[i];
480 int bucket = (sizeof(PatternChar) == 1) ? c : c % AlphabetSize();
481 bad_char_occurrence[bucket] = i;
482 }
483 }
484
485 //---------------------------------------------------------------------
486 // Linear string search with bailout to BMH.
487 //---------------------------------------------------------------------
488
489 // Simple linear search for short patterns, which bails out if the string
490 // isn't found very early in the subject. Upgrades to BoyerMooreHorspool.
491 template <typename PatternChar, typename SubjectChar>
InitialSearch(StringSearch<PatternChar,SubjectChar> * search,Vector<const SubjectChar> subject,int index)492 int StringSearch<PatternChar, SubjectChar>::InitialSearch(
493 StringSearch<PatternChar, SubjectChar>* search,
494 Vector<const SubjectChar> subject, int index) {
495 Vector<const PatternChar> pattern = search->pattern_;
496 int pattern_length = pattern.length();
497 // Badness is a count of how much work we have done. When we have
498 // done enough work we decide it's probably worth switching to a better
499 // algorithm.
500 int badness = -10 - (pattern_length << 2);
501
502 // We know our pattern is at least 2 characters, we cache the first so
503 // the common case of the first character not matching is faster.
504 for (int i = index, n = subject.length() - pattern_length; i <= n; i++) {
505 badness++;
506 if (badness <= 0) {
507 i = FindFirstCharacter(pattern, subject, i);
508 if (i == -1) return -1;
509 DCHECK_LE(i, n);
510 int j = 1;
511 do {
512 if (pattern[j] != subject[i + j]) {
513 break;
514 }
515 j++;
516 } while (j < pattern_length);
517 if (j == pattern_length) {
518 return i;
519 }
520 badness += j;
521 } else {
522 search->PopulateBoyerMooreHorspoolTable();
523 search->strategy_ = &BoyerMooreHorspoolSearch;
524 return BoyerMooreHorspoolSearch(search, subject, i);
525 }
526 }
527 return -1;
528 }
529
530 // Perform a a single stand-alone search.
531 // If searching multiple times for the same pattern, a search
532 // object should be constructed once and the Search function then called
533 // for each search.
534 template <typename SubjectChar, typename PatternChar>
SearchString(Isolate * isolate,Vector<const SubjectChar> subject,Vector<const PatternChar> pattern,int start_index)535 int SearchString(Isolate* isolate, Vector<const SubjectChar> subject,
536 Vector<const PatternChar> pattern, int start_index) {
537 StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
538 return search.Search(subject, start_index);
539 }
540
541 // A wrapper function around SearchString that wraps raw pointers to the subject
542 // and pattern as vectors before calling SearchString. Used from the
543 // StringIndexOf builtin.
544 template <typename SubjectChar, typename PatternChar>
SearchStringRaw(Isolate * isolate,const SubjectChar * subject_ptr,int subject_length,const PatternChar * pattern_ptr,int pattern_length,int start_index)545 intptr_t SearchStringRaw(Isolate* isolate, const SubjectChar* subject_ptr,
546 int subject_length, const PatternChar* pattern_ptr,
547 int pattern_length, int start_index) {
548 DisallowHeapAllocation no_gc;
549 Vector<const SubjectChar> subject(subject_ptr, subject_length);
550 Vector<const PatternChar> pattern(pattern_ptr, pattern_length);
551 return SearchString(isolate, subject, pattern, start_index);
552 }
553
554 } // namespace internal
555 } // namespace v8
556
557 #endif // V8_STRINGS_STRING_SEARCH_H_
558