1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/torque/cfg.h"
6
7 #include "src/torque/type-oracle.h"
8
9 namespace v8 {
10 namespace internal {
11 namespace torque {
12
SetInputTypes(const Stack<const Type * > & input_types)13 void Block::SetInputTypes(const Stack<const Type*>& input_types) {
14 if (!input_types_) {
15 input_types_ = input_types;
16 return;
17 } else if (*input_types_ == input_types) {
18 return;
19 }
20
21 DCHECK_EQ(input_types.Size(), input_types_->Size());
22 Stack<const Type*> merged_types;
23 bool widened = false;
24 auto c2_iterator = input_types.begin();
25 for (const Type* c1 : *input_types_) {
26 const Type* merged_type = TypeOracle::GetUnionType(c1, *c2_iterator++);
27 if (!merged_type->IsSubtypeOf(c1)) {
28 widened = true;
29 }
30 merged_types.Push(merged_type);
31 }
32 if (merged_types.Size() == input_types_->Size()) {
33 if (widened) {
34 input_types_ = merged_types;
35 Retype();
36 }
37 return;
38 }
39
40 std::stringstream error;
41 error << "incompatible types at branch:\n";
42 for (intptr_t i = std::max(input_types_->Size(), input_types.Size()) - 1;
43 i >= 0; --i) {
44 base::Optional<const Type*> left;
45 base::Optional<const Type*> right;
46 if (static_cast<size_t>(i) < input_types.Size()) {
47 left = input_types.Peek(BottomOffset{static_cast<size_t>(i)});
48 }
49 if (static_cast<size_t>(i) < input_types_->Size()) {
50 right = input_types_->Peek(BottomOffset{static_cast<size_t>(i)});
51 }
52 if (left && right && *left == *right) {
53 error << **left << "\n";
54 } else {
55 if (left) {
56 error << **left;
57 } else {
58 error << "/*missing*/";
59 }
60 error << " => ";
61 if (right) {
62 error << **right;
63 } else {
64 error << "/*missing*/";
65 }
66 error << "\n";
67 }
68 }
69 ReportError(error.str());
70 }
71
Bind(Block * block)72 void CfgAssembler::Bind(Block* block) {
73 DCHECK(current_block_->IsComplete());
74 DCHECK(block->instructions().empty());
75 DCHECK(block->HasInputTypes());
76 current_block_ = block;
77 current_stack_ = block->InputTypes();
78 cfg_.PlaceBlock(block);
79 }
80
Goto(Block * block)81 void CfgAssembler::Goto(Block* block) {
82 if (block->HasInputTypes()) {
83 DropTo(block->InputTypes().AboveTop());
84 }
85 Emit(GotoInstruction{block});
86 }
87
Goto(Block * block,size_t preserved_slots)88 StackRange CfgAssembler::Goto(Block* block, size_t preserved_slots) {
89 DCHECK(block->HasInputTypes());
90 DCHECK_GE(CurrentStack().Size(), block->InputTypes().Size());
91 Emit(DeleteRangeInstruction{
92 StackRange{block->InputTypes().AboveTop() - preserved_slots,
93 CurrentStack().AboveTop() - preserved_slots}});
94 StackRange preserved_slot_range = TopRange(preserved_slots);
95 Emit(GotoInstruction{block});
96 return preserved_slot_range;
97 }
98
Branch(Block * if_true,Block * if_false)99 void CfgAssembler::Branch(Block* if_true, Block* if_false) {
100 Emit(BranchInstruction{if_true, if_false});
101 }
102
103 // Delete the specified range of slots, moving upper slots to fill the gap.
DeleteRange(StackRange range)104 void CfgAssembler::DeleteRange(StackRange range) {
105 DCHECK_LE(range.end(), current_stack_.AboveTop());
106 if (range.Size() == 0) return;
107 Emit(DeleteRangeInstruction{range});
108 }
109
DropTo(BottomOffset new_level)110 void CfgAssembler::DropTo(BottomOffset new_level) {
111 DeleteRange(StackRange{new_level, CurrentStack().AboveTop()});
112 }
113
Peek(StackRange range,base::Optional<const Type * > type)114 StackRange CfgAssembler::Peek(StackRange range,
115 base::Optional<const Type*> type) {
116 std::vector<const Type*> lowered_types;
117 if (type) {
118 lowered_types = LowerType(*type);
119 DCHECK_EQ(lowered_types.size(), range.Size());
120 }
121 for (size_t i = 0; i < range.Size(); ++i) {
122 Emit(PeekInstruction{
123 range.begin() + i,
124 type ? lowered_types[i] : base::Optional<const Type*>{}});
125 }
126 return TopRange(range.Size());
127 }
128
Poke(StackRange destination,StackRange origin,base::Optional<const Type * > type)129 void CfgAssembler::Poke(StackRange destination, StackRange origin,
130 base::Optional<const Type*> type) {
131 DCHECK_EQ(destination.Size(), origin.Size());
132 DCHECK_LE(destination.end(), origin.begin());
133 DCHECK_EQ(origin.end(), CurrentStack().AboveTop());
134 std::vector<const Type*> lowered_types;
135 if (type) {
136 lowered_types = LowerType(*type);
137 DCHECK_EQ(lowered_types.size(), origin.Size());
138 }
139 for (intptr_t i = origin.Size() - 1; i >= 0; --i) {
140 Emit(PokeInstruction{
141 destination.begin() + i,
142 type ? lowered_types[i] : base::Optional<const Type*>{}});
143 }
144 }
145
Print(std::string s)146 void CfgAssembler::Print(std::string s) {
147 Emit(PrintConstantStringInstruction{std::move(s)});
148 }
149
AssertionFailure(std::string message)150 void CfgAssembler::AssertionFailure(std::string message) {
151 Emit(AbortInstruction{AbortInstruction::Kind::kAssertionFailure,
152 std::move(message)});
153 }
154
Unreachable()155 void CfgAssembler::Unreachable() {
156 Emit(AbortInstruction{AbortInstruction::Kind::kUnreachable});
157 }
158
DebugBreak()159 void CfgAssembler::DebugBreak() {
160 Emit(AbortInstruction{AbortInstruction::Kind::kDebugBreak});
161 }
162
CountBlockPredecessors(const ControlFlowGraph & cfg)163 std::vector<std::size_t> CountBlockPredecessors(const ControlFlowGraph& cfg) {
164 std::vector<std::size_t> count(cfg.NumberOfBlockIds(), 0);
165 count[cfg.start()->id()] = 1;
166
167 for (const Block* block : cfg.blocks()) {
168 std::vector<Block*> successors;
169 for (const auto& instruction : block->instructions()) {
170 instruction->AppendSuccessorBlocks(&successors);
171 }
172 for (Block* successor : successors) {
173 DCHECK_LT(successor->id(), count.size());
174 ++count[successor->id()];
175 }
176 }
177
178 return count;
179 }
180
OptimizeCfg()181 void CfgAssembler::OptimizeCfg() {
182 auto predecessor_count = CountBlockPredecessors(cfg_);
183
184 for (Block* block : cfg_.blocks()) {
185 if (cfg_.end() && *cfg_.end() == block) continue;
186 if (predecessor_count[block->id()] == 0) continue;
187
188 while (!block->instructions().empty()) {
189 const auto& instruction = block->instructions().back();
190 if (!instruction.Is<GotoInstruction>()) break;
191 Block* destination = instruction.Cast<GotoInstruction>().destination;
192 if (destination == block) break;
193 if (cfg_.end() && *cfg_.end() == destination) break;
194 DCHECK_GT(predecessor_count[destination->id()], 0);
195 if (predecessor_count[destination->id()] != 1) break;
196
197 DCHECK_GT(destination->instructions().size(), 0);
198 block->instructions().pop_back();
199 block->instructions().insert(block->instructions().end(),
200 destination->instructions().begin(),
201 destination->instructions().end());
202
203 --predecessor_count[destination->id()];
204 DCHECK_EQ(predecessor_count[destination->id()], 0);
205 }
206 }
207
208 cfg_.UnplaceBlockIf(
209 [&](Block* b) { return predecessor_count[b->id()] == 0; });
210 }
211
ComputeInputDefinitions()212 void CfgAssembler::ComputeInputDefinitions() {
213 Worklist<Block*> worklist;
214
215 // Setup start block.
216 Stack<DefinitionLocation> parameter_defs;
217 for (std::size_t i = 0; i < cfg_.ParameterCount(); ++i) {
218 parameter_defs.Push(DefinitionLocation::Parameter(i));
219 }
220 cfg_.start()->MergeInputDefinitions(parameter_defs, &worklist);
221
222 // Run fixpoint algorithm.
223 while (!worklist.IsEmpty()) {
224 Block* block = worklist.Dequeue();
225 Stack<DefinitionLocation> definitions = block->InputDefinitions();
226
227 // Propagate through block's instructions.
228 for (const auto& instruction : block->instructions()) {
229 instruction.RecomputeDefinitionLocations(&definitions, &worklist);
230 }
231 }
232
233 for (Block* block : cfg_.blocks()) {
234 DCHECK_IMPLIES(!block->IsDead(), block->InputDefinitions().Size() ==
235 block->InputTypes().Size());
236 USE(block);
237 }
238 }
239
240 } // namespace torque
241 } // namespace internal
242 } // namespace v8
243