• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <algorithm>
6 #include <set>
7 #include <unordered_map>
8 #include <unordered_set>
9 
10 #include "src/torque/ast.h"
11 #include "src/torque/earley-parser.h"
12 #include "src/torque/utils.h"
13 
14 namespace v8 {
15 namespace internal {
16 namespace torque {
17 
18 namespace {
19 
20 struct LineAndColumnTracker {
21   LineAndColumn previous{0, 0};
22   LineAndColumn current{0, 0};
23 
Advancev8::internal::torque::__anon1cbbf8af0111::LineAndColumnTracker24   void Advance(InputPosition from, InputPosition to) {
25     previous = current;
26     while (from != to) {
27       if (*from == '\n') {
28         current.line += 1;
29         current.column = 0;
30       } else {
31         current.column += 1;
32       }
33       ++from;
34     }
35   }
36 
ToSourcePositionv8::internal::torque::__anon1cbbf8af0111::LineAndColumnTracker37   SourcePosition ToSourcePosition() {
38     return {CurrentSourceFile::Get(), previous, current};
39   }
40 };
41 
42 }  // namespace
43 
RunAction(const Item * completed_item,const LexerResult & tokens) const44 base::Optional<ParseResult> Rule::RunAction(const Item* completed_item,
45                                             const LexerResult& tokens) const {
46   std::vector<ParseResult> results;
47   for (const Item* child : completed_item->Children()) {
48     if (!child) continue;
49     base::Optional<ParseResult> child_result =
50         child->left()->RunAction(child, tokens);
51     if (child_result) results.push_back(std::move(*child_result));
52   }
53   MatchedInput matched_input = completed_item->GetMatchedInput(tokens);
54   CurrentSourcePosition::Scope pos_scope(matched_input.pos);
55   ParseResultIterator iterator(std::move(results), matched_input);
56   return action_(&iterator);
57 }
58 
operator =(std::initializer_list<Rule> rules)59 Symbol& Symbol::operator=(std::initializer_list<Rule> rules) {
60   rules_.clear();
61   for (const Rule& rule : rules) {
62     AddRule(rule);
63   }
64   return *this;
65 }
66 
Children() const67 std::vector<const Item*> Item::Children() const {
68   std::vector<const Item*> children;
69   for (const Item* current = this; current->prev_; current = current->prev_) {
70     children.push_back(current->child_);
71   }
72   // The above loop collects the child nodes in reversed order.
73   std::reverse(children.begin(), children.end());
74   DCHECK_EQ(children.size(), right().size());
75   return children;
76 }
77 
SplitByChildren(const LexerResult & tokens) const78 std::string Item::SplitByChildren(const LexerResult& tokens) const {
79   if (right().size() == 1) {
80     if (const Item* child = Children()[0])
81       return child->SplitByChildren(tokens);
82   }
83   std::stringstream s;
84   bool first = true;
85   for (const Item* item : Children()) {
86     if (!item) continue;
87     if (!first) s << "  ";
88     s << item->GetMatchedInput(tokens).ToString();
89     first = false;
90   }
91   return s.str();
92 }
93 
CheckAmbiguity(const Item & other,const LexerResult & tokens) const94 void Item::CheckAmbiguity(const Item& other, const LexerResult& tokens) const {
95   DCHECK(*this == other);
96   if (child_ != other.child_) {
97     std::stringstream s;
98     s << "Ambiguous grammer rules for \""
99       << child_->GetMatchedInput(tokens).ToString() << "\":\n   "
100       << child_->SplitByChildren(tokens) << "\nvs\n   "
101       << other.child_->SplitByChildren(tokens);
102     ReportError(s.str());
103   }
104   if (prev_ != other.prev_) {
105     std::stringstream s;
106     s << "Ambiguous grammer rules for \"" << GetMatchedInput(tokens).ToString()
107       << "\":\n   " << SplitByChildren(tokens) << "  ...\nvs\n   "
108       << other.SplitByChildren(tokens) << "  ...";
109     ReportError(s.str());
110   }
111 }
112 
RunLexer(const std::string & input)113 LexerResult Lexer::RunLexer(const std::string& input) {
114   LexerResult result;
115   InputPosition const begin = input.c_str();
116   InputPosition const end = begin + input.size();
117   InputPosition pos = begin;
118   InputPosition token_start = pos;
119   LineAndColumnTracker line_column_tracker;
120 
121   match_whitespace_(&pos);
122   line_column_tracker.Advance(token_start, pos);
123   while (pos != end) {
124     token_start = pos;
125     Symbol* symbol = MatchToken(&pos, end);
126     InputPosition token_end = pos;
127     line_column_tracker.Advance(token_start, token_end);
128     if (!symbol) {
129       CurrentSourcePosition::Scope pos_scope(
130           line_column_tracker.ToSourcePosition());
131       ReportError("Lexer Error: unknown token " +
132                   StringLiteralQuote(std::string(
133                       token_start, token_start + std::min<ptrdiff_t>(
134                                                      end - token_start, 10))));
135     }
136     result.token_symbols.push_back(symbol);
137     result.token_contents.push_back(
138         {token_start, pos, line_column_tracker.ToSourcePosition()});
139     match_whitespace_(&pos);
140     line_column_tracker.Advance(token_end, pos);
141   }
142 
143   // Add an additional token position to simplify corner cases.
144   line_column_tracker.Advance(token_start, pos);
145   result.token_contents.push_back(
146       {pos, pos, line_column_tracker.ToSourcePosition()});
147   return result;
148 }
149 
MatchToken(InputPosition * pos,InputPosition end)150 Symbol* Lexer::MatchToken(InputPosition* pos, InputPosition end) {
151   InputPosition token_start = *pos;
152   Symbol* symbol = nullptr;
153   // Find longest matching pattern.
154   for (std::pair<const PatternFunction, Symbol>& pair : patterns_) {
155     InputPosition token_end = token_start;
156     PatternFunction matchPattern = pair.first;
157     if (matchPattern(&token_end) && token_end > *pos) {
158       *pos = token_end;
159       symbol = &pair.second;
160     }
161   }
162   size_t pattern_size = *pos - token_start;
163 
164   // Now check for keywords. Prefer keywords over patterns unless the pattern is
165   // longer. Iterate from the end to ensure that if one keyword is a prefix of
166   // another, we first try to match the longer one.
167   for (auto it = keywords_.rbegin(); it != keywords_.rend(); ++it) {
168     const std::string& keyword = it->first;
169     if (static_cast<size_t>(end - token_start) < keyword.size()) continue;
170     if (keyword.size() >= pattern_size &&
171         keyword == std::string(token_start, token_start + keyword.size())) {
172       *pos = token_start + keyword.size();
173       return &it->second;
174     }
175   }
176   if (pattern_size > 0) return symbol;
177   return nullptr;
178 }
179 
180 // This is an implementation of Earley's parsing algorithm
181 // (https://en.wikipedia.org/wiki/Earley_parser).
RunEarleyAlgorithm(Symbol * start,const LexerResult & tokens,std::unordered_set<Item,base::hash<Item>> * processed)182 const Item* RunEarleyAlgorithm(
183     Symbol* start, const LexerResult& tokens,
184     std::unordered_set<Item, base::hash<Item>>* processed) {
185   // Worklist for items at the current position.
186   std::vector<Item> worklist;
187   // Worklist for items at the next position.
188   std::vector<Item> future_items;
189   CurrentSourcePosition::Scope source_position(
190       SourcePosition{CurrentSourceFile::Get(), {0, 0}, {0, 0}});
191   std::vector<const Item*> completed_items;
192   std::unordered_map<std::pair<size_t, Symbol*>, std::set<const Item*>,
193                      base::hash<std::pair<size_t, Symbol*>>>
194       waiting;
195 
196   std::vector<const Item*> debug_trace;
197 
198   // Start with one top_level symbol mapping to the start symbol of the grammar.
199   // This simplifies things because the start symbol might have several
200   // rules.
201   Symbol top_level;
202   top_level.AddRule(Rule({start}));
203   worklist.push_back(Item{top_level.rule(0), 0, 0, 0});
204 
205   size_t input_length = tokens.token_symbols.size();
206 
207   for (size_t pos = 0; pos <= input_length; ++pos) {
208     while (!worklist.empty()) {
209       auto insert_result = processed->insert(worklist.back());
210       const Item& item = *insert_result.first;
211       DCHECK_EQ(pos, item.pos());
212       MatchedInput last_token = tokens.token_contents[pos];
213       CurrentSourcePosition::Get() = last_token.pos;
214       bool is_new = insert_result.second;
215       if (!is_new) item.CheckAmbiguity(worklist.back(), tokens);
216       worklist.pop_back();
217       if (!is_new) continue;
218 
219       debug_trace.push_back(&item);
220       if (item.IsComplete()) {
221         // 'Complete' phase: Advance all items that were waiting to match this
222         // symbol next.
223         for (const Item* parent : waiting[{item.start(), item.left()}]) {
224           worklist.push_back(parent->Advance(pos, &item));
225         }
226       } else {
227         Symbol* next = item.NextSymbol();
228         // 'Scan' phase: Check if {next} is the next symbol in the input (this
229         // is never the case if {next} is a non-terminal).
230         if (pos < tokens.token_symbols.size() &&
231             tokens.token_symbols[pos] == next) {
232           future_items.push_back(item.Advance(pos + 1, nullptr));
233         }
234         // 'Predict' phase: Add items for every rule of the non-terminal.
235         if (!next->IsTerminal()) {
236           // Remember that this item is waiting for completion with {next}.
237           waiting[{pos, next}].insert(&item);
238         }
239         for (size_t i = 0; i < next->rule_number(); ++i) {
240           Rule* rule = next->rule(i);
241           auto already_completed =
242               processed->find(Item{rule, rule->right().size(), pos, pos});
243           // As discussed in section 3 of
244           //    Aycock, John, and R. Nigel Horspool. "Practical earley
245           //    parsing." The Computer Journal 45.6 (2002): 620-630.
246           // Earley parsing has the following problem with epsilon rules:
247           // When we complete an item that started at the current position
248           // (that is, it matched zero tokens), we might not yet have
249           // predicted all items it can complete with. Thus we check for the
250           // existence of such items here and complete them immediately.
251           if (already_completed != processed->end()) {
252             worklist.push_back(item.Advance(pos, &*already_completed));
253           } else {
254             worklist.push_back(Item{rule, 0, pos, pos});
255           }
256         }
257       }
258     }
259     std::swap(worklist, future_items);
260   }
261 
262   auto final_item =
263       processed->find(Item{top_level.rule(0), 1, 0, input_length});
264   if (final_item != processed->end()) {
265     // Success: The {top_level} rule matches the complete input.
266     return final_item->Children()[0];
267   }
268   std::string reason;
269   const Item& last_item = *debug_trace.back();
270   if (last_item.pos() < tokens.token_symbols.size()) {
271     std::string next_token = tokens.token_contents[last_item.pos()].ToString();
272     reason = "unexpected token \"" + next_token + "\"";
273   } else {
274     reason = "unexpected end of input";
275   }
276   ReportError("Parser Error: " + reason);
277 }
278 
279 // static
MatchChar(int (* char_class)(int),InputPosition * pos)280 bool Grammar::MatchChar(int (*char_class)(int), InputPosition* pos) {
281   if (**pos && char_class(static_cast<unsigned char>(**pos))) {
282     ++*pos;
283     return true;
284   }
285   return false;
286 }
287 
288 // static
MatchChar(bool (* char_class)(char),InputPosition * pos)289 bool Grammar::MatchChar(bool (*char_class)(char), InputPosition* pos) {
290   if (**pos && char_class(**pos)) {
291     ++*pos;
292     return true;
293   }
294   return false;
295 }
296 
297 // static
MatchString(const char * s,InputPosition * pos)298 bool Grammar::MatchString(const char* s, InputPosition* pos) {
299   InputPosition current = *pos;
300   for (; *s != 0; ++s, ++current) {
301     if (*s != *current) return false;
302   }
303   *pos = current;
304   return true;
305 }
306 
307 // static
MatchAnyChar(InputPosition * pos)308 bool Grammar::MatchAnyChar(InputPosition* pos) {
309   return MatchChar([](char c) { return true; }, pos);
310 }
311 
312 }  // namespace torque
313 }  // namespace internal
314 }  // namespace v8
315