1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_WASM_BASELINE_LIFTOFF_REGISTER_H_
6 #define V8_WASM_BASELINE_LIFTOFF_REGISTER_H_
7
8 #include <iosfwd>
9 #include <memory>
10
11 #include "src/base/bits.h"
12 #include "src/wasm/baseline/liftoff-assembler-defs.h"
13 #include "src/wasm/wasm-opcodes.h"
14
15 namespace v8 {
16 namespace internal {
17 namespace wasm {
18
19 static constexpr bool kNeedI64RegPair = kSystemPointerSize == 4;
20 static constexpr bool kNeedS128RegPair = !kSimpleFPAliasing;
21
22 enum RegClass : uint8_t {
23 kGpReg,
24 kFpReg,
25 kGpRegPair = kFpReg + 1 + (kNeedS128RegPair && !kNeedI64RegPair),
26 kFpRegPair = kFpReg + 1 + kNeedI64RegPair,
27 kNoReg = kFpRegPair + kNeedS128RegPair,
28 // +------------------+-------------------------------+
29 // | | kNeedI64RegPair |
30 // +------------------+---------------+---------------+
31 // | kNeedS128RegPair | true | false |
32 // +------------------+---------------+---------------+
33 // | true | 0,1,2,3,4 (a) | 0,1,3,2,3 |
34 // | false | 0,1,2,3,3 (b) | 0,1,2,2,2 (c) |
35 // +------------------+---------------+---------------+
36 // (a) arm
37 // (b) ia32
38 // (c) x64, arm64
39 };
40
41 static_assert(kNeedI64RegPair == (kGpRegPair != kNoReg),
42 "kGpRegPair equals kNoReg if unused");
43 static_assert(kNeedS128RegPair == (kFpRegPair != kNoReg),
44 "kFpRegPair equals kNoReg if unused");
45
46 enum RegPairHalf : uint8_t { kLowWord = 0, kHighWord = 1 };
47
needs_gp_reg_pair(ValueType type)48 static inline constexpr bool needs_gp_reg_pair(ValueType type) {
49 return kNeedI64RegPair && type == kWasmI64;
50 }
51
needs_fp_reg_pair(ValueType type)52 static inline constexpr bool needs_fp_reg_pair(ValueType type) {
53 return kNeedS128RegPair && type == kWasmS128;
54 }
55
reg_class_for(ValueType::Kind kind)56 static inline constexpr RegClass reg_class_for(ValueType::Kind kind) {
57 switch (kind) {
58 case ValueType::kF32:
59 case ValueType::kF64:
60 return kFpReg;
61 case ValueType::kI32:
62 return kGpReg;
63 case ValueType::kI64:
64 return kNeedI64RegPair ? kGpRegPair : kGpReg;
65 case ValueType::kS128:
66 return kNeedS128RegPair ? kFpRegPair : kFpReg;
67 case ValueType::kRef:
68 case ValueType::kOptRef:
69 return kGpReg;
70 default:
71 return kNoReg; // unsupported type
72 }
73 }
74
reg_class_for(ValueType type)75 static inline constexpr RegClass reg_class_for(ValueType type) {
76 return reg_class_for(type.kind());
77 }
78
79 // Description of LiftoffRegister code encoding.
80 // This example uses the ARM architecture, which as of writing has:
81 // - 9 GP registers, requiring 4 bits
82 // - 13 FP regitsters, requiring 5 bits
83 // - kNeedI64RegPair is true
84 // - kNeedS128RegPair is true
85 // - thus, kBitsPerRegPair is 2 + 2 * 4 = 10
86 // - storage_t is uint16_t
87 // The table below illustrates how each RegClass is encoded, with brackets
88 // surrounding the bits which encode the register number.
89 //
90 // +----------------+------------------+
91 // | RegClass | Example |
92 // +----------------+------------------+
93 // | kGpReg (1) | [00 0000 0000] |
94 // | kFpReg (2) | [00 0000 1001] |
95 // | kGpRegPair (3) | 01 [0000] [0001] |
96 // | kFpRegPair (4) | 10 000[0 0010] |
97 // +----------------+------------------+
98 //
99 // gp and fp registers are encoded in the same index space, which means that
100 // code has to check for kGpRegPair and kFpRegPair before it can treat the code
101 // as a register code.
102 // (1) [0 .. kMaxGpRegCode] encodes gp registers
103 // (2) [kMaxGpRegCode + 1 .. kMaxGpRegCode + kMaxFpRegCode] encodes fp
104 // registers, so in this example, 1001 is really fp register 0.
105 // (3) The second top bit is set for kGpRegPair, and the two gp registers are
106 // stuffed side by side in code. Note that this is not the second top bit of
107 // storage_t, since storage_t is larger than the number of meaningful bits we
108 // need for the encoding.
109 // (4) The top bit is set for kFpRegPair, and the fp register is stuffed into
110 // the bottom part of the code. Unlike (2), this is the fp register code itself
111 // (not sharing index space with gp), so in this example, it is fp register 2.
112
113 // Maximum code of a gp cache register.
114 static constexpr int kMaxGpRegCode =
115 8 * sizeof(kLiftoffAssemblerGpCacheRegs) -
116 base::bits::CountLeadingZeros(kLiftoffAssemblerGpCacheRegs) - 1;
117 // Maximum code of an fp cache register.
118 static constexpr int kMaxFpRegCode =
119 8 * sizeof(kLiftoffAssemblerFpCacheRegs) -
120 base::bits::CountLeadingZeros(kLiftoffAssemblerFpCacheRegs) - 1;
121 static constexpr int kAfterMaxLiftoffGpRegCode = kMaxGpRegCode + 1;
122 static constexpr int kAfterMaxLiftoffFpRegCode =
123 kAfterMaxLiftoffGpRegCode + kMaxFpRegCode + 1;
124 static constexpr int kAfterMaxLiftoffRegCode = kAfterMaxLiftoffFpRegCode;
125 static constexpr int kBitsPerLiftoffRegCode =
126 32 - base::bits::CountLeadingZeros<uint32_t>(kAfterMaxLiftoffRegCode - 1);
127 static constexpr int kBitsPerGpRegCode =
128 32 - base::bits::CountLeadingZeros<uint32_t>(kMaxGpRegCode);
129 static constexpr int kBitsPerFpRegCode =
130 32 - base::bits::CountLeadingZeros<uint32_t>(kMaxFpRegCode);
131 // GpRegPair requires 1 extra bit, S128RegPair also needs an extra bit.
132 static constexpr int kBitsPerRegPair =
133 (kNeedS128RegPair ? 2 : 1) + 2 * kBitsPerGpRegCode;
134
135 static_assert(2 * kBitsPerGpRegCode >= kBitsPerFpRegCode,
136 "encoding for gp pair and fp pair collides");
137
138 class LiftoffRegister {
139 static constexpr int needed_bits =
140 std::max(kNeedI64RegPair || kNeedS128RegPair ? kBitsPerRegPair : 0,
141 kBitsPerLiftoffRegCode);
142 using storage_t = std::conditional<
143 needed_bits <= 8, uint8_t,
144 std::conditional<needed_bits <= 16, uint16_t, uint32_t>::type>::type;
145
146 static_assert(8 * sizeof(storage_t) >= needed_bits,
147 "chosen type is big enough");
148 // Check for smallest required data type being chosen.
149 // Special case for uint8_t as there are no smaller types.
150 static_assert((8 * sizeof(storage_t) < 2 * needed_bits) ||
151 (sizeof(storage_t) == sizeof(uint8_t)),
152 "chosen type is small enough");
153
154 public:
LiftoffRegister(Register reg)155 explicit LiftoffRegister(Register reg) : LiftoffRegister(reg.code()) {
156 DCHECK_NE(0, kLiftoffAssemblerGpCacheRegs & reg.bit());
157 DCHECK_EQ(reg, gp());
158 }
LiftoffRegister(DoubleRegister reg)159 explicit LiftoffRegister(DoubleRegister reg)
160 : LiftoffRegister(kAfterMaxLiftoffGpRegCode + reg.code()) {
161 DCHECK_NE(0, kLiftoffAssemblerFpCacheRegs & reg.bit());
162 DCHECK_EQ(reg, fp());
163 }
164
from_liftoff_code(int code)165 static LiftoffRegister from_liftoff_code(int code) {
166 LiftoffRegister reg{static_cast<storage_t>(code)};
167 // Check that the code is correct by round-tripping through the
168 // reg-class-specific constructor.
169 DCHECK(
170 (reg.is_gp() && code == LiftoffRegister{reg.gp()}.liftoff_code()) ||
171 (reg.is_fp() && code == LiftoffRegister{reg.fp()}.liftoff_code()) ||
172 (reg.is_gp_pair() &&
173 code == ForPair(reg.low_gp(), reg.high_gp()).liftoff_code()) ||
174 (reg.is_fp_pair() && code == ForFpPair(reg.low_fp()).liftoff_code()));
175 return reg;
176 }
177
from_code(RegClass rc,int code)178 static LiftoffRegister from_code(RegClass rc, int code) {
179 switch (rc) {
180 case kGpReg:
181 return LiftoffRegister(Register::from_code(code));
182 case kFpReg:
183 return LiftoffRegister(DoubleRegister::from_code(code));
184 default:
185 UNREACHABLE();
186 }
187 }
188
189 // Shifts the register code depending on the type before converting to a
190 // LiftoffRegister.
from_external_code(RegClass rc,ValueType type,int code)191 static LiftoffRegister from_external_code(RegClass rc, ValueType type,
192 int code) {
193 if (!kSimpleFPAliasing && type == kWasmF32) {
194 // Liftoff assumes a one-to-one mapping between float registers and
195 // double registers, and so does not distinguish between f32 and f64
196 // registers. The f32 register code must therefore be halved in order
197 // to pass the f64 code to Liftoff.
198 DCHECK_EQ(0, code % 2);
199 return LiftoffRegister::from_code(rc, code >> 1);
200 }
201 if (kNeedS128RegPair && type == kWasmS128) {
202 // Similarly for double registers and SIMD registers, the SIMD code
203 // needs to be doubled to pass the f64 code to Liftoff.
204 return LiftoffRegister::ForFpPair(DoubleRegister::from_code(code << 1));
205 }
206 return LiftoffRegister::from_code(rc, code);
207 }
208
ForPair(Register low,Register high)209 static LiftoffRegister ForPair(Register low, Register high) {
210 DCHECK(kNeedI64RegPair);
211 DCHECK_NE(low, high);
212 storage_t combined_code = low.code() | high.code() << kBitsPerGpRegCode |
213 1 << (2 * kBitsPerGpRegCode);
214 return LiftoffRegister(combined_code);
215 }
216
ForFpPair(DoubleRegister low)217 static LiftoffRegister ForFpPair(DoubleRegister low) {
218 DCHECK(kNeedS128RegPair);
219 DCHECK_EQ(0, low.code() % 2);
220 storage_t combined_code = low.code() | 2 << (2 * kBitsPerGpRegCode);
221 return LiftoffRegister(combined_code);
222 }
223
is_pair()224 constexpr bool is_pair() const {
225 return (kNeedI64RegPair || kNeedS128RegPair) &&
226 (code_ & (3 << (2 * kBitsPerGpRegCode)));
227 }
228
is_gp_pair()229 constexpr bool is_gp_pair() const {
230 return kNeedI64RegPair && (code_ & (1 << (2 * kBitsPerGpRegCode))) != 0;
231 }
is_fp_pair()232 constexpr bool is_fp_pair() const {
233 return kNeedS128RegPair && (code_ & (2 << (2 * kBitsPerGpRegCode))) != 0;
234 }
is_gp()235 constexpr bool is_gp() const { return code_ < kAfterMaxLiftoffGpRegCode; }
is_fp()236 constexpr bool is_fp() const {
237 return code_ >= kAfterMaxLiftoffGpRegCode &&
238 code_ < kAfterMaxLiftoffFpRegCode;
239 }
240
low()241 LiftoffRegister low() const {
242 // Common case for most archs where only gp pair supported.
243 if (!kNeedS128RegPair) return LiftoffRegister(low_gp());
244 return is_gp_pair() ? LiftoffRegister(low_gp()) : LiftoffRegister(low_fp());
245 }
246
high()247 LiftoffRegister high() const {
248 // Common case for most archs where only gp pair supported.
249 if (!kNeedS128RegPair) return LiftoffRegister(high_gp());
250 return is_gp_pair() ? LiftoffRegister(high_gp())
251 : LiftoffRegister(high_fp());
252 }
253
low_gp()254 Register low_gp() const {
255 DCHECK(is_gp_pair());
256 static constexpr storage_t kCodeMask = (1 << kBitsPerGpRegCode) - 1;
257 return Register::from_code(code_ & kCodeMask);
258 }
259
high_gp()260 Register high_gp() const {
261 DCHECK(is_gp_pair());
262 static constexpr storage_t kCodeMask = (1 << kBitsPerGpRegCode) - 1;
263 return Register::from_code((code_ >> kBitsPerGpRegCode) & kCodeMask);
264 }
265
low_fp()266 DoubleRegister low_fp() const {
267 DCHECK(is_fp_pair());
268 static constexpr storage_t kCodeMask = (1 << kBitsPerFpRegCode) - 1;
269 return DoubleRegister::from_code(code_ & kCodeMask);
270 }
271
high_fp()272 DoubleRegister high_fp() const {
273 DCHECK(is_fp_pair());
274 static constexpr storage_t kCodeMask = (1 << kBitsPerFpRegCode) - 1;
275 return DoubleRegister::from_code((code_ & kCodeMask) + 1);
276 }
277
gp()278 Register gp() const {
279 DCHECK(is_gp());
280 return Register::from_code(code_);
281 }
282
fp()283 DoubleRegister fp() const {
284 DCHECK(is_fp());
285 return DoubleRegister::from_code(code_ - kAfterMaxLiftoffGpRegCode);
286 }
287
liftoff_code()288 int liftoff_code() const {
289 STATIC_ASSERT(sizeof(int) >= sizeof(storage_t));
290 return static_cast<int>(code_);
291 }
292
reg_class()293 RegClass reg_class() const {
294 return is_fp_pair() ? kFpRegPair
295 : is_gp_pair() ? kGpRegPair : is_gp() ? kGpReg : kFpReg;
296 }
297
298 bool operator==(const LiftoffRegister other) const {
299 DCHECK_EQ(is_gp_pair(), other.is_gp_pair());
300 DCHECK_EQ(is_fp_pair(), other.is_fp_pair());
301 return code_ == other.code_;
302 }
303 bool operator!=(const LiftoffRegister other) const {
304 DCHECK_EQ(is_gp_pair(), other.is_gp_pair());
305 DCHECK_EQ(is_fp_pair(), other.is_fp_pair());
306 return code_ != other.code_;
307 }
overlaps(const LiftoffRegister other)308 bool overlaps(const LiftoffRegister other) const {
309 if (is_pair()) return low().overlaps(other) || high().overlaps(other);
310 if (other.is_pair()) return *this == other.low() || *this == other.high();
311 return *this == other;
312 }
313
314 private:
315 storage_t code_;
316
LiftoffRegister(storage_t code)317 explicit constexpr LiftoffRegister(storage_t code) : code_(code) {}
318 };
319 ASSERT_TRIVIALLY_COPYABLE(LiftoffRegister);
320
321 inline std::ostream& operator<<(std::ostream& os, LiftoffRegister reg) {
322 if (reg.is_gp_pair()) {
323 return os << "<" << reg.low_gp() << "+" << reg.high_gp() << ">";
324 } else if (reg.is_fp_pair()) {
325 return os << "<" << reg.low_fp() << "+" << reg.high_fp() << ">";
326 } else if (reg.is_gp()) {
327 return os << reg.gp();
328 } else {
329 return os << reg.fp();
330 }
331 }
332
333 class LiftoffRegList {
334 public:
335 class Iterator;
336
337 static constexpr bool use_u16 = kAfterMaxLiftoffRegCode <= 16;
338 static constexpr bool use_u32 = !use_u16 && kAfterMaxLiftoffRegCode <= 32;
339 using storage_t = std::conditional<
340 use_u16, uint16_t,
341 std::conditional<use_u32, uint32_t, uint64_t>::type>::type;
342
343 static constexpr storage_t kGpMask = storage_t{kLiftoffAssemblerGpCacheRegs};
344 static constexpr storage_t kFpMask = storage_t{kLiftoffAssemblerFpCacheRegs}
345 << kAfterMaxLiftoffGpRegCode;
346 // Sets all even numbered fp registers.
347 static constexpr uint64_t kEvenFpSetMask = uint64_t{0x5555555555555555}
348 << kAfterMaxLiftoffGpRegCode;
349
350 constexpr LiftoffRegList() = default;
351
set(Register reg)352 Register set(Register reg) { return set(LiftoffRegister(reg)).gp(); }
set(DoubleRegister reg)353 DoubleRegister set(DoubleRegister reg) {
354 return set(LiftoffRegister(reg)).fp();
355 }
356
set(LiftoffRegister reg)357 LiftoffRegister set(LiftoffRegister reg) {
358 if (reg.is_pair()) {
359 regs_ |= storage_t{1} << reg.low().liftoff_code();
360 regs_ |= storage_t{1} << reg.high().liftoff_code();
361 } else {
362 regs_ |= storage_t{1} << reg.liftoff_code();
363 }
364 return reg;
365 }
366
clear(LiftoffRegister reg)367 LiftoffRegister clear(LiftoffRegister reg) {
368 if (reg.is_pair()) {
369 regs_ &= ~(storage_t{1} << reg.low().liftoff_code());
370 regs_ &= ~(storage_t{1} << reg.high().liftoff_code());
371 } else {
372 regs_ &= ~(storage_t{1} << reg.liftoff_code());
373 }
374 return reg;
375 }
376
has(LiftoffRegister reg)377 bool has(LiftoffRegister reg) const {
378 if (reg.is_pair()) {
379 DCHECK_EQ(has(reg.low()), has(reg.high()));
380 reg = reg.low();
381 }
382 return (regs_ & (storage_t{1} << reg.liftoff_code())) != 0;
383 }
has(Register reg)384 bool has(Register reg) const { return has(LiftoffRegister(reg)); }
has(DoubleRegister reg)385 bool has(DoubleRegister reg) const { return has(LiftoffRegister(reg)); }
386
is_empty()387 constexpr bool is_empty() const { return regs_ == 0; }
388
GetNumRegsSet()389 constexpr unsigned GetNumRegsSet() const {
390 return base::bits::CountPopulation(regs_);
391 }
392
393 constexpr LiftoffRegList operator&(const LiftoffRegList other) const {
394 return LiftoffRegList(regs_ & other.regs_);
395 }
396
397 constexpr LiftoffRegList operator|(const LiftoffRegList other) const {
398 return LiftoffRegList(regs_ | other.regs_);
399 }
400
GetAdjacentFpRegsSet()401 constexpr LiftoffRegList GetAdjacentFpRegsSet() const {
402 // And regs_ with a right shifted version of itself, so reg[i] is set only
403 // if reg[i+1] is set. We only care about the even fp registers.
404 storage_t available = (regs_ >> 1) & regs_ & kEvenFpSetMask;
405 return LiftoffRegList(available);
406 }
407
HasAdjacentFpRegsSet()408 constexpr bool HasAdjacentFpRegsSet() const {
409 return !GetAdjacentFpRegsSet().is_empty();
410 }
411
412 constexpr bool operator==(const LiftoffRegList other) const {
413 return regs_ == other.regs_;
414 }
415 constexpr bool operator!=(const LiftoffRegList other) const {
416 return regs_ != other.regs_;
417 }
418
GetFirstRegSet()419 LiftoffRegister GetFirstRegSet() const {
420 DCHECK(!is_empty());
421 int first_code = base::bits::CountTrailingZeros(regs_);
422 return LiftoffRegister::from_liftoff_code(first_code);
423 }
424
GetLastRegSet()425 LiftoffRegister GetLastRegSet() const {
426 DCHECK(!is_empty());
427 int last_code =
428 8 * sizeof(regs_) - 1 - base::bits::CountLeadingZeros(regs_);
429 return LiftoffRegister::from_liftoff_code(last_code);
430 }
431
MaskOut(const LiftoffRegList mask)432 LiftoffRegList MaskOut(const LiftoffRegList mask) const {
433 // Masking out is guaranteed to return a correct reg list, hence no checks
434 // needed.
435 return FromBits(regs_ & ~mask.regs_);
436 }
437
GetGpList()438 RegList GetGpList() { return regs_ & kGpMask; }
GetFpList()439 RegList GetFpList() { return (regs_ & kFpMask) >> kAfterMaxLiftoffGpRegCode; }
440
441 inline Iterator begin() const;
442 inline Iterator end() const;
443
FromBits(storage_t bits)444 static LiftoffRegList FromBits(storage_t bits) {
445 DCHECK_EQ(bits, bits & (kGpMask | kFpMask));
446 return LiftoffRegList(bits);
447 }
448
449 template <storage_t bits>
FromBits()450 static constexpr LiftoffRegList FromBits() {
451 static_assert(bits == (bits & (kGpMask | kFpMask)), "illegal reg list");
452 return LiftoffRegList(bits);
453 }
454
455 template <typename... Regs>
ForRegs(Regs...regs)456 static LiftoffRegList ForRegs(Regs... regs) {
457 LiftoffRegList list;
458 for (LiftoffRegister reg : {LiftoffRegister(regs)...}) list.set(reg);
459 return list;
460 }
461
462 private:
463 storage_t regs_ = 0;
464
465 // Unchecked constructor. Only use for valid bits.
LiftoffRegList(storage_t bits)466 explicit constexpr LiftoffRegList(storage_t bits) : regs_(bits) {}
467 };
468 ASSERT_TRIVIALLY_COPYABLE(LiftoffRegList);
469
470 static constexpr LiftoffRegList kGpCacheRegList =
471 LiftoffRegList::FromBits<LiftoffRegList::kGpMask>();
472 static constexpr LiftoffRegList kFpCacheRegList =
473 LiftoffRegList::FromBits<LiftoffRegList::kFpMask>();
474
475 class LiftoffRegList::Iterator {
476 public:
477 LiftoffRegister operator*() { return remaining_.GetFirstRegSet(); }
478 Iterator& operator++() {
479 remaining_.clear(remaining_.GetFirstRegSet());
480 return *this;
481 }
482 bool operator==(Iterator other) { return remaining_ == other.remaining_; }
483 bool operator!=(Iterator other) { return remaining_ != other.remaining_; }
484
485 private:
Iterator(LiftoffRegList remaining)486 explicit Iterator(LiftoffRegList remaining) : remaining_(remaining) {}
487 friend class LiftoffRegList;
488
489 LiftoffRegList remaining_;
490 };
491
begin()492 LiftoffRegList::Iterator LiftoffRegList::begin() const {
493 return Iterator{*this};
494 }
end()495 LiftoffRegList::Iterator LiftoffRegList::end() const {
496 return Iterator{LiftoffRegList{}};
497 }
498
GetCacheRegList(RegClass rc)499 static constexpr LiftoffRegList GetCacheRegList(RegClass rc) {
500 return rc == kFpReg ? kFpCacheRegList : kGpCacheRegList;
501 }
502
503 inline std::ostream& operator<<(std::ostream& os, LiftoffRegList reglist) {
504 os << "{";
505 for (bool first = true; !reglist.is_empty(); first = false) {
506 LiftoffRegister reg = reglist.GetFirstRegSet();
507 reglist.clear(reg);
508 os << (first ? "" : ", ") << reg;
509 }
510 return os << "}";
511 }
512
513 } // namespace wasm
514 } // namespace internal
515 } // namespace v8
516
517 #endif // V8_WASM_BASELINE_LIFTOFF_REGISTER_H_
518