• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_WASM_JUMP_TABLE_ASSEMBLER_H_
6 #define V8_WASM_JUMP_TABLE_ASSEMBLER_H_
7 
8 #include "src/codegen/macro-assembler.h"
9 
10 namespace v8 {
11 namespace internal {
12 namespace wasm {
13 
14 // The jump table is the central dispatch point for all (direct and indirect)
15 // invocations in WebAssembly. It holds one slot per function in a module, with
16 // each slot containing a dispatch to the currently published {WasmCode} that
17 // corresponds to the function.
18 //
19 // Additionally to this main jump table, there exist special jump tables for
20 // other purposes:
21 // - the far stub table contains one entry per wasm runtime stub (see
22 //   {WasmCode::RuntimeStubId}, which jumps to the corresponding embedded
23 //   builtin, plus (if not the full address space can be reached via the jump
24 //   table) one entry per wasm function.
25 // - the lazy compile table contains one entry per wasm function which jumps to
26 //   the common {WasmCompileLazy} builtin and passes the function index that was
27 //   invoked.
28 //
29 // The main jump table is split into lines of fixed size, with lines laid out
30 // consecutively within the executable memory of the {NativeModule}. The slots
31 // in turn are consecutive within a line, but do not cross line boundaries.
32 //
33 //   +- L1 -------------------+ +- L2 -------------------+ +- L3 ...
34 //   | S1 | S2 | ... | Sn | x | | S1 | S2 | ... | Sn | x | | S1  ...
35 //   +------------------------+ +------------------------+ +---- ...
36 //
37 // The above illustrates jump table lines {Li} containing slots {Si} with each
38 // line containing {n} slots and some padding {x} for alignment purposes.
39 // Other jump tables are just consecutive.
40 //
41 // The main jump table will be patched concurrently while other threads execute
42 // it. The code at the new target might also have been emitted concurrently, so
43 // we need to ensure that there is proper synchronization between code emission,
44 // jump table patching and code execution.
45 // On Intel platforms, this all works out of the box because there is cache
46 // coherency between i-cache and d-cache.
47 // On ARM, it is safe because the i-cache flush after code emission executes an
48 // "ic ivau" (Instruction Cache line Invalidate by Virtual Address to Point of
49 // Unification), which broadcasts to all cores. A core which sees the jump table
50 // update thus also sees the new code. Since the other core does not explicitly
51 // execute an "isb" (Instruction Synchronization Barrier), it might still
52 // execute the old code afterwards, which is no problem, since that code remains
53 // available until it is garbage collected. Garbage collection itself is a
54 // synchronization barrier though.
55 class V8_EXPORT_PRIVATE JumpTableAssembler : public MacroAssembler {
56  public:
57   // Translate an offset into the continuous jump table to a jump table index.
SlotOffsetToIndex(uint32_t slot_offset)58   static uint32_t SlotOffsetToIndex(uint32_t slot_offset) {
59     uint32_t line_index = slot_offset / kJumpTableLineSize;
60     uint32_t line_offset = slot_offset % kJumpTableLineSize;
61     DCHECK_EQ(0, line_offset % kJumpTableSlotSize);
62     return line_index * kJumpTableSlotsPerLine +
63            line_offset / kJumpTableSlotSize;
64   }
65 
66   // Translate a jump table index to an offset into the continuous jump table.
JumpSlotIndexToOffset(uint32_t slot_index)67   static uint32_t JumpSlotIndexToOffset(uint32_t slot_index) {
68     uint32_t line_index = slot_index / kJumpTableSlotsPerLine;
69     uint32_t line_offset =
70         (slot_index % kJumpTableSlotsPerLine) * kJumpTableSlotSize;
71     return line_index * kJumpTableLineSize + line_offset;
72   }
73 
74   // Determine the size of a jump table containing the given number of slots.
SizeForNumberOfSlots(uint32_t slot_count)75   static constexpr uint32_t SizeForNumberOfSlots(uint32_t slot_count) {
76     return ((slot_count + kJumpTableSlotsPerLine - 1) /
77             kJumpTableSlotsPerLine) *
78            kJumpTableLineSize;
79   }
80 
81   // Translate a far jump table index to an offset into the table.
FarJumpSlotIndexToOffset(uint32_t slot_index)82   static uint32_t FarJumpSlotIndexToOffset(uint32_t slot_index) {
83     return slot_index * kFarJumpTableSlotSize;
84   }
85 
86   // Translate a far jump table offset to the index into the table.
FarJumpSlotOffsetToIndex(uint32_t offset)87   static uint32_t FarJumpSlotOffsetToIndex(uint32_t offset) {
88     DCHECK_EQ(0, offset % kFarJumpTableSlotSize);
89     return offset / kFarJumpTableSlotSize;
90   }
91 
92   // Determine the size of a far jump table containing the given number of
93   // slots.
SizeForNumberOfFarJumpSlots(int num_runtime_slots,int num_function_slots)94   static constexpr uint32_t SizeForNumberOfFarJumpSlots(
95       int num_runtime_slots, int num_function_slots) {
96     int num_entries = num_runtime_slots + num_function_slots;
97     return num_entries * kFarJumpTableSlotSize;
98   }
99 
100   // Translate a slot index to an offset into the lazy compile table.
LazyCompileSlotIndexToOffset(uint32_t slot_index)101   static uint32_t LazyCompileSlotIndexToOffset(uint32_t slot_index) {
102     return slot_index * kLazyCompileTableSlotSize;
103   }
104 
105   // Determine the size of a lazy compile table.
SizeForNumberOfLazyFunctions(uint32_t slot_count)106   static constexpr uint32_t SizeForNumberOfLazyFunctions(uint32_t slot_count) {
107     return slot_count * kLazyCompileTableSlotSize;
108   }
109 
GenerateLazyCompileTable(Address base,uint32_t num_slots,uint32_t num_imported_functions,Address wasm_compile_lazy_target)110   static void GenerateLazyCompileTable(Address base, uint32_t num_slots,
111                                        uint32_t num_imported_functions,
112                                        Address wasm_compile_lazy_target) {
113     uint32_t lazy_compile_table_size = num_slots * kLazyCompileTableSlotSize;
114     // Assume enough space, so the Assembler does not try to grow the buffer.
115     JumpTableAssembler jtasm(base, lazy_compile_table_size + 256);
116     for (uint32_t slot_index = 0; slot_index < num_slots; ++slot_index) {
117       DCHECK_EQ(slot_index * kLazyCompileTableSlotSize, jtasm.pc_offset());
118       jtasm.EmitLazyCompileJumpSlot(slot_index + num_imported_functions,
119                                     wasm_compile_lazy_target);
120     }
121     DCHECK_EQ(lazy_compile_table_size, jtasm.pc_offset());
122     FlushInstructionCache(base, lazy_compile_table_size);
123   }
124 
GenerateFarJumpTable(Address base,Address * stub_targets,int num_runtime_slots,int num_function_slots)125   static void GenerateFarJumpTable(Address base, Address* stub_targets,
126                                    int num_runtime_slots,
127                                    int num_function_slots) {
128     uint32_t table_size =
129         SizeForNumberOfFarJumpSlots(num_runtime_slots, num_function_slots);
130     // Assume enough space, so the Assembler does not try to grow the buffer.
131     JumpTableAssembler jtasm(base, table_size + 256);
132     int offset = 0;
133     for (int index = 0; index < num_runtime_slots + num_function_slots;
134          ++index) {
135       DCHECK_EQ(offset, FarJumpSlotIndexToOffset(index));
136       // Functions slots initially jump to themselves. They are patched before
137       // being used.
138       Address target =
139           index < num_runtime_slots ? stub_targets[index] : base + offset;
140       jtasm.EmitFarJumpSlot(target);
141       offset += kFarJumpTableSlotSize;
142       DCHECK_EQ(offset, jtasm.pc_offset());
143     }
144     FlushInstructionCache(base, table_size);
145   }
146 
PatchJumpTableSlot(Address jump_table_slot,Address far_jump_table_slot,Address target)147   static void PatchJumpTableSlot(Address jump_table_slot,
148                                  Address far_jump_table_slot, Address target) {
149     // First, try to patch the jump table slot.
150     JumpTableAssembler jtasm(jump_table_slot);
151     if (!jtasm.EmitJumpSlot(target)) {
152       // If that fails, we need to patch the far jump table slot, and then
153       // update the jump table slot to jump to this far jump table slot.
154       DCHECK_NE(kNullAddress, far_jump_table_slot);
155       JumpTableAssembler::PatchFarJumpSlot(far_jump_table_slot, target);
156       CHECK(jtasm.EmitJumpSlot(far_jump_table_slot));
157     }
158     jtasm.NopBytes(kJumpTableSlotSize - jtasm.pc_offset());
159     FlushInstructionCache(jump_table_slot, kJumpTableSlotSize);
160   }
161 
162  private:
163   // Instantiate a {JumpTableAssembler} for patching.
164   explicit JumpTableAssembler(Address slot_addr, int size = 256)
MacroAssembler(nullptr,JumpTableAssemblerOptions (),CodeObjectRequired::kNo,ExternalAssemblerBuffer (reinterpret_cast<uint8_t * > (slot_addr),size))165       : MacroAssembler(nullptr, JumpTableAssemblerOptions(),
166                        CodeObjectRequired::kNo,
167                        ExternalAssemblerBuffer(
168                            reinterpret_cast<uint8_t*>(slot_addr), size)) {}
169 
170 // To allow concurrent patching of the jump table entries, we need to ensure
171 // that the instruction containing the call target does not cross cache-line
172 // boundaries. The jump table line size has been chosen to satisfy this.
173 #if V8_TARGET_ARCH_X64
174   static constexpr int kJumpTableLineSize = 64;
175   static constexpr int kJumpTableSlotSize = 5;
176   static constexpr int kFarJumpTableSlotSize = 16;
177   static constexpr int kLazyCompileTableSlotSize = 10;
178 #elif V8_TARGET_ARCH_IA32
179   static constexpr int kJumpTableLineSize = 64;
180   static constexpr int kJumpTableSlotSize = 5;
181   static constexpr int kFarJumpTableSlotSize = 5;
182   static constexpr int kLazyCompileTableSlotSize = 10;
183 #elif V8_TARGET_ARCH_ARM
184   static constexpr int kJumpTableLineSize = 3 * kInstrSize;
185   static constexpr int kJumpTableSlotSize = 3 * kInstrSize;
186   static constexpr int kFarJumpTableSlotSize = 2 * kInstrSize;
187   static constexpr int kLazyCompileTableSlotSize = 5 * kInstrSize;
188 #elif V8_TARGET_ARCH_ARM64 && V8_ENABLE_CONTROL_FLOW_INTEGRITY
189   static constexpr int kJumpTableLineSize = 2 * kInstrSize;
190   static constexpr int kJumpTableSlotSize = 2 * kInstrSize;
191   static constexpr int kFarJumpTableSlotSize = 6 * kInstrSize;
192   static constexpr int kLazyCompileTableSlotSize = 4 * kInstrSize;
193 #elif V8_TARGET_ARCH_ARM64 && !V8_ENABLE_CONTROL_FLOW_INTEGRITY
194   static constexpr int kJumpTableLineSize = 1 * kInstrSize;
195   static constexpr int kJumpTableSlotSize = 1 * kInstrSize;
196   static constexpr int kFarJumpTableSlotSize = 4 * kInstrSize;
197   static constexpr int kLazyCompileTableSlotSize = 3 * kInstrSize;
198 #elif V8_TARGET_ARCH_S390X
199   static constexpr int kJumpTableLineSize = 128;
200   static constexpr int kJumpTableSlotSize = 14;
201   static constexpr int kFarJumpTableSlotSize = 14;
202   static constexpr int kLazyCompileTableSlotSize = 20;
203 #elif V8_TARGET_ARCH_PPC64
204   static constexpr int kJumpTableLineSize = 64;
205   static constexpr int kJumpTableSlotSize = 7 * kInstrSize;
206   static constexpr int kFarJumpTableSlotSize = 7 * kInstrSize;
207   static constexpr int kLazyCompileTableSlotSize = 12 * kInstrSize;
208 #elif V8_TARGET_ARCH_MIPS
209   static constexpr int kJumpTableLineSize = 8 * kInstrSize;
210   static constexpr int kJumpTableSlotSize = 8 * kInstrSize;
211   static constexpr int kFarJumpTableSlotSize = 4 * kInstrSize;
212   static constexpr int kLazyCompileTableSlotSize = 6 * kInstrSize;
213 #elif V8_TARGET_ARCH_MIPS64
214   static constexpr int kJumpTableLineSize = 8 * kInstrSize;
215   static constexpr int kJumpTableSlotSize = 8 * kInstrSize;
216   static constexpr int kFarJumpTableSlotSize = 6 * kInstrSize;
217   static constexpr int kLazyCompileTableSlotSize = 8 * kInstrSize;
218 #else
219 #error Unknown architecture.
220 #endif
221 
222   static constexpr int kJumpTableSlotsPerLine =
223       kJumpTableLineSize / kJumpTableSlotSize;
224   STATIC_ASSERT(kJumpTableSlotsPerLine >= 1);
225 
226   // {JumpTableAssembler} is never used during snapshot generation, and its code
227   // must be independent of the code range of any isolate anyway. Just ensure
228   // that no relocation information is recorded, there is no buffer to store it
229   // since it is instantiated in patching mode in existing code directly.
JumpTableAssemblerOptions()230   static AssemblerOptions JumpTableAssemblerOptions() {
231     AssemblerOptions options;
232     options.disable_reloc_info_for_patching = true;
233     return options;
234   }
235 
236   void EmitLazyCompileJumpSlot(uint32_t func_index,
237                                Address lazy_compile_target);
238 
239   // Returns {true} if the jump fits in the jump table slot, {false} otherwise.
240   bool EmitJumpSlot(Address target);
241 
242   // Initially emit a far jump slot.
243   void EmitFarJumpSlot(Address target);
244 
245   // Patch an existing far jump slot, and make sure that this updated eventually
246   // becomes available to all execution units that might execute this code.
247   static void PatchFarJumpSlot(Address slot, Address target);
248 
249   void NopBytes(int bytes);
250 };
251 
252 }  // namespace wasm
253 }  // namespace internal
254 }  // namespace v8
255 
256 #endif  // V8_WASM_JUMP_TABLE_ASSEMBLER_H_
257