• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* chunkcopy.h -- fast chunk copy and set operations
2  * Copyright (C) 2017 ARM, Inc.
3  * Copyright 2017 The Chromium Authors. All rights reserved.
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the Chromium source repository LICENSE file.
6  */
7 
8 #ifndef CHUNKCOPY_H
9 #define CHUNKCOPY_H
10 
11 #include <stdint.h>
12 #include "zutil.h"
13 
14 #define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
15 
16 #if __STDC_VERSION__ >= 199901L
17 #define Z_RESTRICT restrict
18 #else
19 #define Z_RESTRICT
20 #endif
21 
22 #if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
23 #define Z_BUILTIN_MEMCPY __builtin_memcpy
24 #else
25 #define Z_BUILTIN_MEMCPY zmemcpy
26 #endif
27 
28 #if defined(INFLATE_CHUNK_SIMD_NEON)
29 #include <arm_neon.h>
30 typedef uint8x16_t z_vec128i_t;
31 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
32 #include <emmintrin.h>
33 typedef __m128i z_vec128i_t;
34 #else
35 #error chunkcopy.h inflate chunk SIMD is not defined for your build target
36 #endif
37 
38 /*
39  * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
40  * and equal to CHUNKCOPY_CHUNK_SIZE.
41  */
42 #define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
43 
44 Z_STATIC_ASSERT(vector_128_bits_wide,
45                 CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
46 
47 /*
48  * Ask the compiler to perform a wide, unaligned load with a machine
49  * instruction appropriate for the z_vec128i_t type.
50  */
loadchunk(const unsigned char FAR * s)51 static inline z_vec128i_t loadchunk(
52     const unsigned char FAR* s) {
53   z_vec128i_t v;
54   Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
55   return v;
56 }
57 
58 /*
59  * Ask the compiler to perform a wide, unaligned store with a machine
60  * instruction appropriate for the z_vec128i_t type.
61  */
storechunk(unsigned char FAR * d,const z_vec128i_t v)62 static inline void storechunk(
63     unsigned char FAR* d,
64     const z_vec128i_t v) {
65   Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
66 }
67 
68 /*
69  * Perform a memcpy-like operation, assuming that length is non-zero and that
70  * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
71  * the length is shorter than this.
72  *
73  * It also guarantees that it will properly unroll the data if the distance
74  * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
75  * in chunkcopy_relaxed().
76  *
77  * Aside from better memory bus utilisation, this means that short copies
78  * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
79  * without iteration, which will hopefully make the branch prediction more
80  * reliable.
81  */
chunkcopy_core(unsigned char FAR * out,const unsigned char FAR * from,unsigned len)82 static inline unsigned char FAR* chunkcopy_core(
83     unsigned char FAR* out,
84     const unsigned char FAR* from,
85     unsigned len) {
86   const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
87   storechunk(out, loadchunk(from));
88   out += bump;
89   from += bump;
90   len /= CHUNKCOPY_CHUNK_SIZE;
91   while (len-- > 0) {
92     storechunk(out, loadchunk(from));
93     out += CHUNKCOPY_CHUNK_SIZE;
94     from += CHUNKCOPY_CHUNK_SIZE;
95   }
96   return out;
97 }
98 
99 /*
100  * Like chunkcopy_core(), but avoid writing beyond of legal output.
101  *
102  * Accepts an additional pointer to the end of safe output.  A generic safe
103  * copy would use (out + len), but it's normally the case that the end of the
104  * output buffer is beyond the end of the current copy, and this can still be
105  * exploited.
106  */
chunkcopy_core_safe(unsigned char FAR * out,const unsigned char FAR * from,unsigned len,unsigned char FAR * limit)107 static inline unsigned char FAR* chunkcopy_core_safe(
108     unsigned char FAR* out,
109     const unsigned char FAR* from,
110     unsigned len,
111     unsigned char FAR* limit) {
112   Assert(out + len <= limit, "chunk copy exceeds safety limit");
113   if ((limit - out) < (ptrdiff_t)CHUNKCOPY_CHUNK_SIZE) {
114     const unsigned char FAR* Z_RESTRICT rfrom = from;
115     if (len & 8) {
116       Z_BUILTIN_MEMCPY(out, rfrom, 8);
117       out += 8;
118       rfrom += 8;
119     }
120     if (len & 4) {
121       Z_BUILTIN_MEMCPY(out, rfrom, 4);
122       out += 4;
123       rfrom += 4;
124     }
125     if (len & 2) {
126       Z_BUILTIN_MEMCPY(out, rfrom, 2);
127       out += 2;
128       rfrom += 2;
129     }
130     if (len & 1) {
131       *out++ = *rfrom++;
132     }
133     return out;
134   }
135   return chunkcopy_core(out, from, len);
136 }
137 
138 /*
139  * Perform short copies until distance can be rewritten as being at least
140  * CHUNKCOPY_CHUNK_SIZE.
141  *
142  * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
143  * bytes of output even if the copy is shorter than this.  This assumption
144  * holds within zlib inflate_fast(), which starts every iteration with at
145  * least 258 bytes of output space available (258 being the maximum length
146  * output from a single token; see inffast.c).
147  */
chunkunroll_relaxed(unsigned char FAR * out,unsigned FAR * dist,unsigned FAR * len)148 static inline unsigned char FAR* chunkunroll_relaxed(
149     unsigned char FAR* out,
150     unsigned FAR* dist,
151     unsigned FAR* len) {
152   const unsigned char FAR* from = out - *dist;
153   while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
154     storechunk(out, loadchunk(from));
155     out += *dist;
156     *len -= *dist;
157     *dist += *dist;
158   }
159   return out;
160 }
161 
162 #if defined(INFLATE_CHUNK_SIMD_NEON)
163 /*
164  * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
165  * every 64-bit component of the 128-bit result (64-bit int splat).
166  */
v_load64_dup(const void * src)167 static inline z_vec128i_t v_load64_dup(const void* src) {
168   return vcombine_u8(vld1_u8(src), vld1_u8(src));
169 }
170 
171 /*
172  * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
173  * every 32-bit component of the 128-bit result (32-bit int splat).
174  */
v_load32_dup(const void * src)175 static inline z_vec128i_t v_load32_dup(const void* src) {
176   int32_t i32;
177   Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
178   return vreinterpretq_u8_s32(vdupq_n_s32(i32));
179 }
180 
181 /*
182  * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
183  * every 16-bit component of the 128-bit result (16-bit int splat).
184  */
v_load16_dup(const void * src)185 static inline z_vec128i_t v_load16_dup(const void* src) {
186   int16_t i16;
187   Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
188   return vreinterpretq_u8_s16(vdupq_n_s16(i16));
189 }
190 
191 /*
192  * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
193  * component of the 128-bit result (8-bit int splat).
194  */
v_load8_dup(const void * src)195 static inline z_vec128i_t v_load8_dup(const void* src) {
196   return vld1q_dup_u8((const uint8_t*)src);
197 }
198 
199 /*
200  * v_store_128(): store the 128-bit vec in a memory destination (that might
201  * not be 16-byte aligned) void* out.
202  */
v_store_128(void * out,const z_vec128i_t vec)203 static inline void v_store_128(void* out, const z_vec128i_t vec) {
204   vst1q_u8(out, vec);
205 }
206 
207 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
208 /*
209  * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
210  * every 64-bit component of the 128-bit result (64-bit int splat).
211  */
v_load64_dup(const void * src)212 static inline z_vec128i_t v_load64_dup(const void* src) {
213   int64_t i64;
214   Z_BUILTIN_MEMCPY(&i64, src, sizeof(i64));
215   return _mm_set1_epi64x(i64);
216 }
217 
218 /*
219  * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
220  * every 32-bit component of the 128-bit result (32-bit int splat).
221  */
v_load32_dup(const void * src)222 static inline z_vec128i_t v_load32_dup(const void* src) {
223   int32_t i32;
224   Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
225   return _mm_set1_epi32(i32);
226 }
227 
228 /*
229  * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
230  * every 16-bit component of the 128-bit result (16-bit int splat).
231  */
v_load16_dup(const void * src)232 static inline z_vec128i_t v_load16_dup(const void* src) {
233   int16_t i16;
234   Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
235   return _mm_set1_epi16(i16);
236 }
237 
238 /*
239  * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
240  * component of the 128-bit result (8-bit int splat).
241  */
v_load8_dup(const void * src)242 static inline z_vec128i_t v_load8_dup(const void* src) {
243   return _mm_set1_epi8(*(const char*)src);
244 }
245 
246 /*
247  * v_store_128(): store the 128-bit vec in a memory destination (that might
248  * not be 16-byte aligned) void* out.
249  */
v_store_128(void * out,const z_vec128i_t vec)250 static inline void v_store_128(void* out, const z_vec128i_t vec) {
251   _mm_storeu_si128((__m128i*)out, vec);
252 }
253 #endif
254 
255 /*
256  * Perform an overlapping copy which behaves as a memset() operation, but
257  * supporting periods other than one, and assume that length is non-zero and
258  * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
259  * even if the length is shorter than this.
260  */
chunkset_core(unsigned char FAR * out,unsigned period,unsigned len)261 static inline unsigned char FAR* chunkset_core(
262     unsigned char FAR* out,
263     unsigned period,
264     unsigned len) {
265   z_vec128i_t v;
266   const int bump = ((len - 1) % sizeof(v)) + 1;
267 
268   switch (period) {
269     case 1:
270       v = v_load8_dup(out - 1);
271       v_store_128(out, v);
272       out += bump;
273       len -= bump;
274       while (len > 0) {
275         v_store_128(out, v);
276         out += sizeof(v);
277         len -= sizeof(v);
278       }
279       return out;
280     case 2:
281       v = v_load16_dup(out - 2);
282       v_store_128(out, v);
283       out += bump;
284       len -= bump;
285       if (len > 0) {
286         v = v_load16_dup(out - 2);
287         do {
288           v_store_128(out, v);
289           out += sizeof(v);
290           len -= sizeof(v);
291         } while (len > 0);
292       }
293       return out;
294     case 4:
295       v = v_load32_dup(out - 4);
296       v_store_128(out, v);
297       out += bump;
298       len -= bump;
299       if (len > 0) {
300         v = v_load32_dup(out - 4);
301         do {
302           v_store_128(out, v);
303           out += sizeof(v);
304           len -= sizeof(v);
305         } while (len > 0);
306       }
307       return out;
308     case 8:
309       v = v_load64_dup(out - 8);
310       v_store_128(out, v);
311       out += bump;
312       len -= bump;
313       if (len > 0) {
314         v = v_load64_dup(out - 8);
315         do {
316           v_store_128(out, v);
317           out += sizeof(v);
318           len -= sizeof(v);
319         } while (len > 0);
320       }
321       return out;
322   }
323   out = chunkunroll_relaxed(out, &period, &len);
324   return chunkcopy_core(out, out - period, len);
325 }
326 
327 /*
328  * Perform a memcpy-like operation, but assume that length is non-zero and that
329  * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
330  * the length is shorter than this.
331  *
332  * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
333  * of overlapping buffers, regardless of the distance between the pointers.
334  * This is reflected in the `restrict`-qualified pointers, allowing the
335  * compiler to re-order loads and stores.
336  */
chunkcopy_relaxed(unsigned char FAR * Z_RESTRICT out,const unsigned char FAR * Z_RESTRICT from,unsigned len)337 static inline unsigned char FAR* chunkcopy_relaxed(
338     unsigned char FAR* Z_RESTRICT out,
339     const unsigned char FAR* Z_RESTRICT from,
340     unsigned len) {
341   return chunkcopy_core(out, from, len);
342 }
343 
344 /*
345  * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
346  *
347  * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
348  * behaviour of overlapping buffers, regardless of the distance between the
349  * pointers.  This is reflected in the `restrict`-qualified pointers, allowing
350  * the compiler to re-order loads and stores.
351  *
352  * Accepts an additional pointer to the end of safe output.  A generic safe
353  * copy would use (out + len), but it's normally the case that the end of the
354  * output buffer is beyond the end of the current copy, and this can still be
355  * exploited.
356  */
chunkcopy_safe(unsigned char FAR * out,const unsigned char FAR * Z_RESTRICT from,unsigned len,unsigned char FAR * limit)357 static inline unsigned char FAR* chunkcopy_safe(
358     unsigned char FAR* out,
359     const unsigned char FAR* Z_RESTRICT from,
360     unsigned len,
361     unsigned char FAR* limit) {
362   Assert(out + len <= limit, "chunk copy exceeds safety limit");
363   return chunkcopy_core_safe(out, from, len, limit);
364 }
365 
366 /*
367  * Perform chunky copy within the same buffer, where the source and destination
368  * may potentially overlap.
369  *
370  * Assumes that len > 0 on entry, and that it's safe to write at least
371  * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
372  */
chunkcopy_lapped_relaxed(unsigned char FAR * out,unsigned dist,unsigned len)373 static inline unsigned char FAR* chunkcopy_lapped_relaxed(
374     unsigned char FAR* out,
375     unsigned dist,
376     unsigned len) {
377   if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
378     return chunkset_core(out, dist, len);
379   }
380   return chunkcopy_core(out, out - dist, len);
381 }
382 
383 /*
384  * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
385  * output.
386  *
387  * Accepts an additional pointer to the end of safe output.  A generic safe
388  * copy would use (out + len), but it's normally the case that the end of the
389  * output buffer is beyond the end of the current copy, and this can still be
390  * exploited.
391  */
chunkcopy_lapped_safe(unsigned char FAR * out,unsigned dist,unsigned len,unsigned char FAR * limit)392 static inline unsigned char FAR* chunkcopy_lapped_safe(
393     unsigned char FAR* out,
394     unsigned dist,
395     unsigned len,
396     unsigned char FAR* limit) {
397   Assert(out + len <= limit, "chunk copy exceeds safety limit");
398   if ((limit - out) < (ptrdiff_t)(3 * CHUNKCOPY_CHUNK_SIZE)) {
399     /* TODO(cavalcantii): try harder to optimise this */
400     while (len-- > 0) {
401       *out = *(out - dist);
402       out++;
403     }
404     return out;
405   }
406   return chunkcopy_lapped_relaxed(out, dist, len);
407 }
408 
409 /*
410  * The chunk-copy code above deals with writing the decoded DEFLATE data to
411  * the output with SIMD methods to increase decode speed. Reading the input
412  * to the DEFLATE decoder with a wide, SIMD method can also increase decode
413  * speed. This option is supported on little endian machines, and reads the
414  * input data in 64-bit (8 byte) chunks.
415  */
416 
417 #ifdef INFLATE_CHUNK_READ_64LE
418 /*
419  * Buffer the input in a uint64_t (8 bytes) in the wide input reading case.
420  */
421 typedef uint64_t inflate_holder_t;
422 
423 /*
424  * Ask the compiler to perform a wide, unaligned load of a uint64_t using a
425  * machine instruction appropriate for the uint64_t type.
426  */
read64le(const unsigned char FAR * in)427 static inline inflate_holder_t read64le(const unsigned char FAR *in) {
428     inflate_holder_t input;
429     Z_BUILTIN_MEMCPY(&input, in, sizeof(input));
430     return input;
431 }
432 #else
433 /*
434  * Otherwise, buffer the input bits using zlib's default input buffer type.
435  */
436 typedef unsigned long inflate_holder_t;
437 
438 #endif /* INFLATE_CHUNK_READ_64LE */
439 
440 #undef Z_STATIC_ASSERT
441 #undef Z_RESTRICT
442 #undef Z_BUILTIN_MEMCPY
443 
444 #endif /* CHUNKCOPY_H */
445