• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 /* @(#) $Id$ */
51 #include <assert.h>
52 #include "deflate.h"
53 #include "cpu_features.h"
54 #include "contrib/optimizations/insert_string.h"
55 
56 #if (defined(__ARM_NEON__) || defined(__ARM_NEON))
57 #include "contrib/optimizations/slide_hash_neon.h"
58 #endif
59 #if defined(CRC32_ARMV8_CRC32)
60 #include "crc32_simd.h"
61 #endif
62 
63 const char deflate_copyright[] =
64    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
65 /*
66   If you use the zlib library in a product, an acknowledgment is welcome
67   in the documentation of your product. If for some reason you cannot
68   include such an acknowledgment, I would appreciate that you keep this
69   copyright string in the executable of your product.
70  */
71 
72 /* ===========================================================================
73  *  Function prototypes.
74  */
75 typedef enum {
76     need_more,      /* block not completed, need more input or more output */
77     block_done,     /* block flush performed */
78     finish_started, /* finish started, need only more output at next deflate */
79     finish_done     /* finish done, accept no more input or output */
80 } block_state;
81 
82 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
83 /* Compression function. Returns the block state after the call. */
84 
85 local int deflateStateCheck      OF((z_streamp strm));
86 local void slide_hash     OF((deflate_state *s));
87 local void fill_window    OF((deflate_state *s));
88 local block_state deflate_stored OF((deflate_state *s, int flush));
89 local block_state deflate_fast   OF((deflate_state *s, int flush));
90 #ifndef FASTEST
91 local block_state deflate_slow   OF((deflate_state *s, int flush));
92 #endif
93 local block_state deflate_rle    OF((deflate_state *s, int flush));
94 local block_state deflate_huff   OF((deflate_state *s, int flush));
95 local void lm_init        OF((deflate_state *s));
96 local void putShortMSB    OF((deflate_state *s, uInt b));
97 local void flush_pending  OF((z_streamp strm));
98 unsigned ZLIB_INTERNAL deflate_read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
99 #ifdef ASMV
100 #  pragma message("Assembler code may have bugs -- use at your own risk")
101       void match_init OF((void)); /* asm code initialization */
102       uInt longest_match  OF((deflate_state *s, IPos cur_match));
103 #else
104 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
105 #endif
106 
107 #ifdef ZLIB_DEBUG
108 local  void check_match OF((deflate_state *s, IPos start, IPos match,
109                             int length));
110 #endif
111 
112 /* From crc32.c */
113 extern void ZLIB_INTERNAL crc_reset(deflate_state *const s);
114 extern void ZLIB_INTERNAL crc_finalize(deflate_state *const s);
115 extern void ZLIB_INTERNAL copy_with_crc(z_streamp strm, Bytef *dst, long size);
116 
117 /* ===========================================================================
118  * Local data
119  */
120 
121 #define NIL 0
122 /* Tail of hash chains */
123 
124 #ifndef TOO_FAR
125 #  define TOO_FAR 4096
126 #endif
127 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
128 
129 /* Values for max_lazy_match, good_match and max_chain_length, depending on
130  * the desired pack level (0..9). The values given below have been tuned to
131  * exclude worst case performance for pathological files. Better values may be
132  * found for specific files.
133  */
134 typedef struct config_s {
135    ush good_length; /* reduce lazy search above this match length */
136    ush max_lazy;    /* do not perform lazy search above this match length */
137    ush nice_length; /* quit search above this match length */
138    ush max_chain;
139    compress_func func;
140 } config;
141 
142 #ifdef FASTEST
143 local const config configuration_table[2] = {
144 /*      good lazy nice chain */
145 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
146 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
147 #else
148 local const config configuration_table[10] = {
149 /*      good lazy nice chain */
150 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
151 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
152 /* 2 */ {4,    5, 16,    8, deflate_fast},
153 /* 3 */ {4,    6, 32,   32, deflate_fast},
154 
155 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
156 /* 5 */ {8,   16, 32,   32, deflate_slow},
157 /* 6 */ {8,   16, 128, 128, deflate_slow},
158 /* 7 */ {8,   32, 128, 256, deflate_slow},
159 /* 8 */ {32, 128, 258, 1024, deflate_slow},
160 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
161 #endif
162 
163 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
164  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
165  * meaning.
166  */
167 
168 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
169 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
170 
171 /* ===========================================================================
172  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
173  * prev[] will be initialized on the fly.
174  */
175 #define CLEAR_HASH(s) \
176     s->head[s->hash_size-1] = NIL; \
177     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
178 
179 /* ===========================================================================
180  * Slide the hash table when sliding the window down (could be avoided with 32
181  * bit values at the expense of memory usage). We slide even when level == 0 to
182  * keep the hash table consistent if we switch back to level > 0 later.
183  */
slide_hash(s)184 local void slide_hash(s)
185     deflate_state *s;
186 {
187 #if (defined(__ARM_NEON__) || defined(__ARM_NEON))
188     /* NEON based hash table rebase. */
189     return neon_slide_hash(s->head, s->prev, s->w_size, s->hash_size);
190 #endif
191     unsigned n, m;
192     Posf *p;
193     uInt wsize = s->w_size;
194 
195     n = s->hash_size;
196     p = &s->head[n];
197     do {
198         m = *--p;
199         *p = (Pos)(m >= wsize ? m - wsize : NIL);
200     } while (--n);
201     n = wsize;
202 #ifndef FASTEST
203     p = &s->prev[n];
204     do {
205         m = *--p;
206         *p = (Pos)(m >= wsize ? m - wsize : NIL);
207         /* If n is not on any hash chain, prev[n] is garbage but
208          * its value will never be used.
209          */
210     } while (--n);
211 #endif
212 }
213 
214 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)215 int ZEXPORT deflateInit_(strm, level, version, stream_size)
216     z_streamp strm;
217     int level;
218     const char *version;
219     int stream_size;
220 {
221     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
222                          Z_DEFAULT_STRATEGY, version, stream_size);
223     /* To do: ignore strm->next_in if we use it as window */
224 }
225 
226 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)227 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
228                   version, stream_size)
229     z_streamp strm;
230     int  level;
231     int  method;
232     int  windowBits;
233     int  memLevel;
234     int  strategy;
235     const char *version;
236     int stream_size;
237 {
238     unsigned window_padding = 8;
239     deflate_state *s;
240     int wrap = 1;
241     static const char my_version[] = ZLIB_VERSION;
242 
243     // Needed to activate optimized insert_string() that helps compression
244     // for all wrapper formats (e.g. RAW, ZLIB, GZIP).
245     // Feature detection is not triggered while using RAW mode (i.e. we never
246     // call crc32() with a NULL buffer).
247 #if defined(CRC32_ARMV8_CRC32) || defined(CRC32_SIMD_SSE42_PCLMUL)
248     cpu_check_features();
249 #endif
250 
251     if (version == Z_NULL || version[0] != my_version[0] ||
252         stream_size != sizeof(z_stream)) {
253         return Z_VERSION_ERROR;
254     }
255     if (strm == Z_NULL) return Z_STREAM_ERROR;
256 
257     strm->msg = Z_NULL;
258     if (strm->zalloc == (alloc_func)0) {
259 #ifdef Z_SOLO
260         return Z_STREAM_ERROR;
261 #else
262         strm->zalloc = zcalloc;
263         strm->opaque = (voidpf)0;
264 #endif
265     }
266     if (strm->zfree == (free_func)0)
267 #ifdef Z_SOLO
268         return Z_STREAM_ERROR;
269 #else
270         strm->zfree = zcfree;
271 #endif
272 
273 #ifdef FASTEST
274     if (level != 0) level = 1;
275 #else
276     if (level == Z_DEFAULT_COMPRESSION) level = 6;
277 #endif
278 
279     if (windowBits < 0) { /* suppress zlib wrapper */
280         wrap = 0;
281         windowBits = -windowBits;
282     }
283 #ifdef GZIP
284     else if (windowBits > 15) {
285         wrap = 2;       /* write gzip wrapper instead */
286         windowBits -= 16;
287     }
288 #endif
289     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
290         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
291         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
292         return Z_STREAM_ERROR;
293     }
294     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
295     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
296     if (s == Z_NULL) return Z_MEM_ERROR;
297     strm->state = (struct internal_state FAR *)s;
298     s->strm = strm;
299     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
300 
301     s->wrap = wrap;
302     s->gzhead = Z_NULL;
303     s->w_bits = (uInt)windowBits;
304     s->w_size = 1 << s->w_bits;
305     s->w_mask = s->w_size - 1;
306 
307     if (x86_cpu_enable_simd) {
308         s->hash_bits = 15;
309     } else {
310         s->hash_bits = memLevel + 7;
311     }
312 
313     s->hash_size = 1 << s->hash_bits;
314     s->hash_mask = s->hash_size - 1;
315     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
316 
317     s->window = (Bytef *) ZALLOC(strm,
318                                  s->w_size + window_padding,
319                                  2*sizeof(Byte));
320     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
321     /* Avoid use of uninitialized value, see:
322      * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360
323      */
324     zmemzero(s->prev, s->w_size * sizeof(Pos));
325     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
326 
327     s->high_water = 0;      /* nothing written to s->window yet */
328 
329     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
330 
331     /* We overlay pending_buf and sym_buf. This works since the average size
332      * for length/distance pairs over any compressed block is assured to be 31
333      * bits or less.
334      *
335      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
336      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
337      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
338      * possible fixed-codes length/distance pair is then 31 bits total.
339      *
340      * sym_buf starts one-fourth of the way into pending_buf. So there are
341      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
342      * in sym_buf is three bytes -- two for the distance and one for the
343      * literal/length. As each symbol is consumed, the pointer to the next
344      * sym_buf value to read moves forward three bytes. From that symbol, up to
345      * 31 bits are written to pending_buf. The closest the written pending_buf
346      * bits gets to the next sym_buf symbol to read is just before the last
347      * code is written. At that time, 31*(n-2) bits have been written, just
348      * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
349      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
350      * symbols are written.) The closest the writing gets to what is unread is
351      * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
352      * can range from 128 to 32768.
353      *
354      * Therefore, at a minimum, there are 142 bits of space between what is
355      * written and what is read in the overlain buffers, so the symbols cannot
356      * be overwritten by the compressed data. That space is actually 139 bits,
357      * due to the three-bit fixed-code block header.
358      *
359      * That covers the case where either Z_FIXED is specified, forcing fixed
360      * codes, or when the use of fixed codes is chosen, because that choice
361      * results in a smaller compressed block than dynamic codes. That latter
362      * condition then assures that the above analysis also covers all dynamic
363      * blocks. A dynamic-code block will only be chosen to be emitted if it has
364      * fewer bits than a fixed-code block would for the same set of symbols.
365      * Therefore its average symbol length is assured to be less than 31. So
366      * the compressed data for a dynamic block also cannot overwrite the
367      * symbols from which it is being constructed.
368      */
369     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
370     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
371 
372     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
373         s->pending_buf == Z_NULL) {
374         s->status = FINISH_STATE;
375         strm->msg = ERR_MSG(Z_MEM_ERROR);
376         deflateEnd (strm);
377         return Z_MEM_ERROR;
378     }
379     s->sym_buf = s->pending_buf + s->lit_bufsize;
380     s->sym_end = (s->lit_bufsize - 1) * 3;
381     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
382      * on 16 bit machines and because stored blocks are restricted to
383      * 64K-1 bytes.
384      */
385 
386     s->level = level;
387     s->strategy = strategy;
388     s->method = (Byte)method;
389 
390     return deflateReset(strm);
391 }
392 
393 /* =========================================================================
394  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
395  */
deflateStateCheck(strm)396 local int deflateStateCheck (strm)
397     z_streamp strm;
398 {
399     deflate_state *s;
400     if (strm == Z_NULL ||
401         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
402         return 1;
403     s = strm->state;
404     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
405 #ifdef GZIP
406                                            s->status != GZIP_STATE &&
407 #endif
408                                            s->status != EXTRA_STATE &&
409                                            s->status != NAME_STATE &&
410                                            s->status != COMMENT_STATE &&
411                                            s->status != HCRC_STATE &&
412                                            s->status != BUSY_STATE &&
413                                            s->status != FINISH_STATE))
414         return 1;
415     return 0;
416 }
417 
418 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)419 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
420     z_streamp strm;
421     const Bytef *dictionary;
422     uInt  dictLength;
423 {
424     deflate_state *s;
425     uInt str, n;
426     int wrap;
427     unsigned avail;
428     z_const unsigned char *next;
429 
430     if (deflateStateCheck(strm) || dictionary == Z_NULL)
431         return Z_STREAM_ERROR;
432     s = strm->state;
433     wrap = s->wrap;
434     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
435         return Z_STREAM_ERROR;
436 
437     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
438     if (wrap == 1)
439         strm->adler = adler32(strm->adler, dictionary, dictLength);
440     s->wrap = 0;                    /* avoid computing Adler-32 in deflate_read_buf */
441 
442     /* if dictionary would fill window, just replace the history */
443     if (dictLength >= s->w_size) {
444         if (wrap == 0) {            /* already empty otherwise */
445             CLEAR_HASH(s);
446             s->strstart = 0;
447             s->block_start = 0L;
448             s->insert = 0;
449         }
450         dictionary += dictLength - s->w_size;  /* use the tail */
451         dictLength = s->w_size;
452     }
453 
454     /* insert dictionary into window and hash */
455     avail = strm->avail_in;
456     next = strm->next_in;
457     strm->avail_in = dictLength;
458     strm->next_in = (z_const Bytef *)dictionary;
459     fill_window(s);
460     while (s->lookahead >= MIN_MATCH) {
461         str = s->strstart;
462         n = s->lookahead - (MIN_MATCH-1);
463         do {
464             insert_string(s, str);
465             str++;
466         } while (--n);
467         s->strstart = str;
468         s->lookahead = MIN_MATCH-1;
469         fill_window(s);
470     }
471     s->strstart += s->lookahead;
472     s->block_start = (long)s->strstart;
473     s->insert = s->lookahead;
474     s->lookahead = 0;
475     s->match_length = s->prev_length = MIN_MATCH-1;
476     s->match_available = 0;
477     strm->next_in = next;
478     strm->avail_in = avail;
479     s->wrap = wrap;
480     return Z_OK;
481 }
482 
483 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)484 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
485     z_streamp strm;
486     Bytef *dictionary;
487     uInt  *dictLength;
488 {
489     deflate_state *s;
490     uInt len;
491 
492     if (deflateStateCheck(strm))
493         return Z_STREAM_ERROR;
494     s = strm->state;
495     len = s->strstart + s->lookahead;
496     if (len > s->w_size)
497         len = s->w_size;
498     if (dictionary != Z_NULL && len)
499         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
500     if (dictLength != Z_NULL)
501         *dictLength = len;
502     return Z_OK;
503 }
504 
505 /* ========================================================================= */
deflateResetKeep(strm)506 int ZEXPORT deflateResetKeep (strm)
507     z_streamp strm;
508 {
509     deflate_state *s;
510 
511     if (deflateStateCheck(strm)) {
512         return Z_STREAM_ERROR;
513     }
514 
515     strm->total_in = strm->total_out = 0;
516     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
517     strm->data_type = Z_UNKNOWN;
518 
519     s = (deflate_state *)strm->state;
520     s->pending = 0;
521     s->pending_out = s->pending_buf;
522 
523     if (s->wrap < 0) {
524         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
525     }
526     s->status =
527 #ifdef GZIP
528         s->wrap == 2 ? GZIP_STATE :
529 #endif
530         s->wrap ? INIT_STATE : BUSY_STATE;
531     strm->adler =
532 #ifdef GZIP
533         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
534 #endif
535         adler32(0L, Z_NULL, 0);
536     s->last_flush = Z_NO_FLUSH;
537 
538     _tr_init(s);
539 
540     return Z_OK;
541 }
542 
543 /* ========================================================================= */
deflateReset(strm)544 int ZEXPORT deflateReset (strm)
545     z_streamp strm;
546 {
547     int ret;
548 
549     ret = deflateResetKeep(strm);
550     if (ret == Z_OK)
551         lm_init(strm->state);
552     return ret;
553 }
554 
555 /* ========================================================================= */
deflateSetHeader(strm,head)556 int ZEXPORT deflateSetHeader (strm, head)
557     z_streamp strm;
558     gz_headerp head;
559 {
560     if (deflateStateCheck(strm) || strm->state->wrap != 2)
561         return Z_STREAM_ERROR;
562     strm->state->gzhead = head;
563     return Z_OK;
564 }
565 
566 /* ========================================================================= */
deflatePending(strm,pending,bits)567 int ZEXPORT deflatePending (strm, pending, bits)
568     unsigned *pending;
569     int *bits;
570     z_streamp strm;
571 {
572     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
573     if (pending != Z_NULL)
574         *pending = strm->state->pending;
575     if (bits != Z_NULL)
576         *bits = strm->state->bi_valid;
577     return Z_OK;
578 }
579 
580 /* ========================================================================= */
deflatePrime(strm,bits,value)581 int ZEXPORT deflatePrime (strm, bits, value)
582     z_streamp strm;
583     int bits;
584     int value;
585 {
586     deflate_state *s;
587     int put;
588 
589     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
590     s = strm->state;
591     if (s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
592         return Z_BUF_ERROR;
593     do {
594         put = Buf_size - s->bi_valid;
595         if (put > bits)
596             put = bits;
597         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
598         s->bi_valid += put;
599         _tr_flush_bits(s);
600         value >>= put;
601         bits -= put;
602     } while (bits);
603     return Z_OK;
604 }
605 
606 /* ========================================================================= */
deflateParams(strm,level,strategy)607 int ZEXPORT deflateParams(strm, level, strategy)
608     z_streamp strm;
609     int level;
610     int strategy;
611 {
612     deflate_state *s;
613     compress_func func;
614 
615     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
616     s = strm->state;
617 
618 #ifdef FASTEST
619     if (level != 0) level = 1;
620 #else
621     if (level == Z_DEFAULT_COMPRESSION) level = 6;
622 #endif
623     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
624         return Z_STREAM_ERROR;
625     }
626     func = configuration_table[s->level].func;
627 
628     if ((strategy != s->strategy || func != configuration_table[level].func) &&
629         s->high_water) {
630         /* Flush the last buffer: */
631         int err = deflate(strm, Z_BLOCK);
632         if (err == Z_STREAM_ERROR)
633             return err;
634         if (strm->avail_out == 0)
635             return Z_BUF_ERROR;
636     }
637     if (s->level != level) {
638         if (s->level == 0 && s->matches != 0) {
639             if (s->matches == 1)
640                 slide_hash(s);
641             else
642                 CLEAR_HASH(s);
643             s->matches = 0;
644         }
645         s->level = level;
646         s->max_lazy_match   = configuration_table[level].max_lazy;
647         s->good_match       = configuration_table[level].good_length;
648         s->nice_match       = configuration_table[level].nice_length;
649         s->max_chain_length = configuration_table[level].max_chain;
650     }
651     s->strategy = strategy;
652     return Z_OK;
653 }
654 
655 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)656 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
657     z_streamp strm;
658     int good_length;
659     int max_lazy;
660     int nice_length;
661     int max_chain;
662 {
663     deflate_state *s;
664 
665     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
666     s = strm->state;
667     s->good_match = (uInt)good_length;
668     s->max_lazy_match = (uInt)max_lazy;
669     s->nice_match = nice_length;
670     s->max_chain_length = (uInt)max_chain;
671     return Z_OK;
672 }
673 
674 /* =========================================================================
675  * For the default windowBits of 15 and memLevel of 8, this function returns
676  * a close to exact, as well as small, upper bound on the compressed size.
677  * They are coded as constants here for a reason--if the #define's are
678  * changed, then this function needs to be changed as well.  The return
679  * value for 15 and 8 only works for those exact settings.
680  *
681  * For any setting other than those defaults for windowBits and memLevel,
682  * the value returned is a conservative worst case for the maximum expansion
683  * resulting from using fixed blocks instead of stored blocks, which deflate
684  * can emit on compressed data for some combinations of the parameters.
685  *
686  * This function could be more sophisticated to provide closer upper bounds for
687  * every combination of windowBits and memLevel.  But even the conservative
688  * upper bound of about 14% expansion does not seem onerous for output buffer
689  * allocation.
690  */
deflateBound(strm,sourceLen)691 uLong ZEXPORT deflateBound(strm, sourceLen)
692     z_streamp strm;
693     uLong sourceLen;
694 {
695     deflate_state *s;
696     uLong complen, wraplen;
697 
698     /* conservative upper bound for compressed data */
699     complen = sourceLen +
700               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
701 
702     /* if can't get parameters, return conservative bound plus zlib wrapper */
703     if (deflateStateCheck(strm))
704         return complen + 6;
705 
706     /* compute wrapper length */
707     s = strm->state;
708     switch (s->wrap) {
709     case 0:                                 /* raw deflate */
710         wraplen = 0;
711         break;
712     case 1:                                 /* zlib wrapper */
713         wraplen = 6 + (s->strstart ? 4 : 0);
714         break;
715 #ifdef GZIP
716     case 2:                                 /* gzip wrapper */
717         wraplen = 18;
718         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
719             Bytef *str;
720             if (s->gzhead->extra != Z_NULL)
721                 wraplen += 2 + s->gzhead->extra_len;
722             str = s->gzhead->name;
723             if (str != Z_NULL)
724                 do {
725                     wraplen++;
726                 } while (*str++);
727             str = s->gzhead->comment;
728             if (str != Z_NULL)
729                 do {
730                     wraplen++;
731                 } while (*str++);
732             if (s->gzhead->hcrc)
733                 wraplen += 2;
734         }
735         break;
736 #endif
737     default:                                /* for compiler happiness */
738         wraplen = 6;
739     }
740 
741     /* if not default parameters, return conservative bound */
742     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
743         return complen + wraplen;
744 
745     /* default settings: return tight bound for that case */
746     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
747            (sourceLen >> 25) + 13 - 6 + wraplen;
748 }
749 
750 /* =========================================================================
751  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
752  * IN assertion: the stream state is correct and there is enough room in
753  * pending_buf.
754  */
putShortMSB(s,b)755 local void putShortMSB (s, b)
756     deflate_state *s;
757     uInt b;
758 {
759     put_byte(s, (Byte)(b >> 8));
760     put_byte(s, (Byte)(b & 0xff));
761 }
762 
763 /* =========================================================================
764  * Flush as much pending output as possible. All deflate() output, except for
765  * some deflate_stored() output, goes through this function so some
766  * applications may wish to modify it to avoid allocating a large
767  * strm->next_out buffer and copying into it. (See also deflate_read_buf()).
768  */
flush_pending(strm)769 local void flush_pending(strm)
770     z_streamp strm;
771 {
772     unsigned len;
773     deflate_state *s = strm->state;
774 
775     _tr_flush_bits(s);
776     len = s->pending;
777     if (len > strm->avail_out) len = strm->avail_out;
778     if (len == 0) return;
779 
780     zmemcpy(strm->next_out, s->pending_out, len);
781     strm->next_out  += len;
782     s->pending_out  += len;
783     strm->total_out += len;
784     strm->avail_out -= len;
785     s->pending      -= len;
786     if (s->pending == 0) {
787         s->pending_out = s->pending_buf;
788     }
789 }
790 
791 /* ===========================================================================
792  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
793  */
794 #define HCRC_UPDATE(beg) \
795     do { \
796         if (s->gzhead->hcrc && s->pending > (beg)) \
797             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
798                                 s->pending - (beg)); \
799     } while (0)
800 
801 /* ========================================================================= */
deflate(strm,flush)802 int ZEXPORT deflate (strm, flush)
803     z_streamp strm;
804     int flush;
805 {
806     int old_flush; /* value of flush param for previous deflate call */
807     deflate_state *s;
808 
809     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
810         return Z_STREAM_ERROR;
811     }
812     s = strm->state;
813 
814     if (strm->next_out == Z_NULL ||
815         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
816         (s->status == FINISH_STATE && flush != Z_FINISH)) {
817         ERR_RETURN(strm, Z_STREAM_ERROR);
818     }
819     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
820 
821     old_flush = s->last_flush;
822     s->last_flush = flush;
823 
824     /* Flush as much pending output as possible */
825     if (s->pending != 0) {
826         flush_pending(strm);
827         if (strm->avail_out == 0) {
828             /* Since avail_out is 0, deflate will be called again with
829              * more output space, but possibly with both pending and
830              * avail_in equal to zero. There won't be anything to do,
831              * but this is not an error situation so make sure we
832              * return OK instead of BUF_ERROR at next call of deflate:
833              */
834             s->last_flush = -1;
835             return Z_OK;
836         }
837 
838     /* Make sure there is something to do and avoid duplicate consecutive
839      * flushes. For repeated and useless calls with Z_FINISH, we keep
840      * returning Z_STREAM_END instead of Z_BUF_ERROR.
841      */
842     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
843                flush != Z_FINISH) {
844         ERR_RETURN(strm, Z_BUF_ERROR);
845     }
846 
847     /* User must not provide more input after the first FINISH: */
848     if (s->status == FINISH_STATE && strm->avail_in != 0) {
849         ERR_RETURN(strm, Z_BUF_ERROR);
850     }
851 
852     /* Write the header */
853     if (s->status == INIT_STATE) {
854         /* zlib header */
855         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
856         uInt level_flags;
857 
858         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
859             level_flags = 0;
860         else if (s->level < 6)
861             level_flags = 1;
862         else if (s->level == 6)
863             level_flags = 2;
864         else
865             level_flags = 3;
866         header |= (level_flags << 6);
867         if (s->strstart != 0) header |= PRESET_DICT;
868         header += 31 - (header % 31);
869 
870         putShortMSB(s, header);
871 
872         /* Save the adler32 of the preset dictionary: */
873         if (s->strstart != 0) {
874             putShortMSB(s, (uInt)(strm->adler >> 16));
875             putShortMSB(s, (uInt)(strm->adler & 0xffff));
876         }
877         strm->adler = adler32(0L, Z_NULL, 0);
878         s->status = BUSY_STATE;
879 
880         /* Compression must start with an empty pending buffer */
881         flush_pending(strm);
882         if (s->pending != 0) {
883             s->last_flush = -1;
884             return Z_OK;
885         }
886     }
887 #ifdef GZIP
888     if (s->status == GZIP_STATE) {
889         /* gzip header */
890         crc_reset(s);
891         put_byte(s, 31);
892         put_byte(s, 139);
893         put_byte(s, 8);
894         if (s->gzhead == Z_NULL) {
895             put_byte(s, 0);
896             put_byte(s, 0);
897             put_byte(s, 0);
898             put_byte(s, 0);
899             put_byte(s, 0);
900             put_byte(s, s->level == 9 ? 2 :
901                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
902                       4 : 0));
903             put_byte(s, OS_CODE);
904             s->status = BUSY_STATE;
905 
906             /* Compression must start with an empty pending buffer */
907             flush_pending(strm);
908             if (s->pending != 0) {
909                 s->last_flush = -1;
910                 return Z_OK;
911             }
912         }
913         else {
914             put_byte(s, (s->gzhead->text ? 1 : 0) +
915                      (s->gzhead->hcrc ? 2 : 0) +
916                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
917                      (s->gzhead->name == Z_NULL ? 0 : 8) +
918                      (s->gzhead->comment == Z_NULL ? 0 : 16)
919                      );
920             put_byte(s, (Byte)(s->gzhead->time & 0xff));
921             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
922             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
923             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
924             put_byte(s, s->level == 9 ? 2 :
925                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
926                       4 : 0));
927             put_byte(s, s->gzhead->os & 0xff);
928             if (s->gzhead->extra != Z_NULL) {
929                 put_byte(s, s->gzhead->extra_len & 0xff);
930                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
931             }
932             if (s->gzhead->hcrc)
933                 strm->adler = crc32(strm->adler, s->pending_buf,
934                                     s->pending);
935             s->gzindex = 0;
936             s->status = EXTRA_STATE;
937         }
938     }
939     if (s->status == EXTRA_STATE) {
940         if (s->gzhead->extra != Z_NULL) {
941             ulg beg = s->pending;   /* start of bytes to update crc */
942             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
943             while (s->pending + left > s->pending_buf_size) {
944                 uInt copy = s->pending_buf_size - s->pending;
945                 zmemcpy(s->pending_buf + s->pending,
946                         s->gzhead->extra + s->gzindex, copy);
947                 s->pending = s->pending_buf_size;
948                 HCRC_UPDATE(beg);
949                 s->gzindex += copy;
950                 flush_pending(strm);
951                 if (s->pending != 0) {
952                     s->last_flush = -1;
953                     return Z_OK;
954                 }
955                 beg = 0;
956                 left -= copy;
957             }
958             zmemcpy(s->pending_buf + s->pending,
959                     s->gzhead->extra + s->gzindex, left);
960             s->pending += left;
961             HCRC_UPDATE(beg);
962             s->gzindex = 0;
963         }
964         s->status = NAME_STATE;
965     }
966     if (s->status == NAME_STATE) {
967         if (s->gzhead->name != Z_NULL) {
968             ulg beg = s->pending;   /* start of bytes to update crc */
969             int val;
970             do {
971                 if (s->pending == s->pending_buf_size) {
972                     HCRC_UPDATE(beg);
973                     flush_pending(strm);
974                     if (s->pending != 0) {
975                         s->last_flush = -1;
976                         return Z_OK;
977                     }
978                     beg = 0;
979                 }
980                 val = s->gzhead->name[s->gzindex++];
981                 put_byte(s, val);
982             } while (val != 0);
983             HCRC_UPDATE(beg);
984             s->gzindex = 0;
985         }
986         s->status = COMMENT_STATE;
987     }
988     if (s->status == COMMENT_STATE) {
989         if (s->gzhead->comment != Z_NULL) {
990             ulg beg = s->pending;   /* start of bytes to update crc */
991             int val;
992             do {
993                 if (s->pending == s->pending_buf_size) {
994                     HCRC_UPDATE(beg);
995                     flush_pending(strm);
996                     if (s->pending != 0) {
997                         s->last_flush = -1;
998                         return Z_OK;
999                     }
1000                     beg = 0;
1001                 }
1002                 val = s->gzhead->comment[s->gzindex++];
1003                 put_byte(s, val);
1004             } while (val != 0);
1005             HCRC_UPDATE(beg);
1006         }
1007         s->status = HCRC_STATE;
1008     }
1009     if (s->status == HCRC_STATE) {
1010         if (s->gzhead->hcrc) {
1011             if (s->pending + 2 > s->pending_buf_size) {
1012                 flush_pending(strm);
1013                 if (s->pending != 0) {
1014                     s->last_flush = -1;
1015                     return Z_OK;
1016                 }
1017             }
1018             put_byte(s, (Byte)(strm->adler & 0xff));
1019             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1020             strm->adler = crc32(0L, Z_NULL, 0);
1021         }
1022         s->status = BUSY_STATE;
1023 
1024         /* Compression must start with an empty pending buffer */
1025         flush_pending(strm);
1026         if (s->pending != 0) {
1027             s->last_flush = -1;
1028             return Z_OK;
1029         }
1030     }
1031 #endif
1032 
1033     /* Start a new block or continue the current one.
1034      */
1035     if (strm->avail_in != 0 || s->lookahead != 0 ||
1036         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1037         block_state bstate;
1038 
1039         bstate = s->level == 0 ? deflate_stored(s, flush) :
1040                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1041                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1042                  (*(configuration_table[s->level].func))(s, flush);
1043 
1044         if (bstate == finish_started || bstate == finish_done) {
1045             s->status = FINISH_STATE;
1046         }
1047         if (bstate == need_more || bstate == finish_started) {
1048             if (strm->avail_out == 0) {
1049                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1050             }
1051             return Z_OK;
1052             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1053              * of deflate should use the same flush parameter to make sure
1054              * that the flush is complete. So we don't have to output an
1055              * empty block here, this will be done at next call. This also
1056              * ensures that for a very small output buffer, we emit at most
1057              * one empty block.
1058              */
1059         }
1060         if (bstate == block_done) {
1061             if (flush == Z_PARTIAL_FLUSH) {
1062                 _tr_align(s);
1063             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1064                 _tr_stored_block(s, (char*)0, 0L, 0);
1065                 /* For a full flush, this empty block will be recognized
1066                  * as a special marker by inflate_sync().
1067                  */
1068                 if (flush == Z_FULL_FLUSH) {
1069                     CLEAR_HASH(s);             /* forget history */
1070                     if (s->lookahead == 0) {
1071                         s->strstart = 0;
1072                         s->block_start = 0L;
1073                         s->insert = 0;
1074                     }
1075                 }
1076             }
1077             flush_pending(strm);
1078             if (strm->avail_out == 0) {
1079               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1080               return Z_OK;
1081             }
1082         }
1083     }
1084 
1085     if (flush != Z_FINISH) return Z_OK;
1086     if (s->wrap <= 0) return Z_STREAM_END;
1087 
1088     /* Write the trailer */
1089 #ifdef GZIP
1090     if (s->wrap == 2) {
1091         crc_finalize(s);
1092         put_byte(s, (Byte)(strm->adler & 0xff));
1093         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1094         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1095         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1096         put_byte(s, (Byte)(strm->total_in & 0xff));
1097         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1098         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1099         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1100     }
1101     else
1102 #endif
1103     {
1104         putShortMSB(s, (uInt)(strm->adler >> 16));
1105         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1106     }
1107     flush_pending(strm);
1108     /* If avail_out is zero, the application will call deflate again
1109      * to flush the rest.
1110      */
1111     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1112     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1113 }
1114 
1115 /* ========================================================================= */
deflateEnd(strm)1116 int ZEXPORT deflateEnd (strm)
1117     z_streamp strm;
1118 {
1119     int status;
1120 
1121     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1122 
1123     status = strm->state->status;
1124 
1125     /* Deallocate in reverse order of allocations: */
1126     TRY_FREE(strm, strm->state->pending_buf);
1127     TRY_FREE(strm, strm->state->head);
1128     TRY_FREE(strm, strm->state->prev);
1129     TRY_FREE(strm, strm->state->window);
1130 
1131     ZFREE(strm, strm->state);
1132     strm->state = Z_NULL;
1133 
1134     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1135 }
1136 
1137 /* =========================================================================
1138  * Copy the source state to the destination state.
1139  * To simplify the source, this is not supported for 16-bit MSDOS (which
1140  * doesn't have enough memory anyway to duplicate compression states).
1141  */
deflateCopy(dest,source)1142 int ZEXPORT deflateCopy (dest, source)
1143     z_streamp dest;
1144     z_streamp source;
1145 {
1146 #ifdef MAXSEG_64K
1147     return Z_STREAM_ERROR;
1148 #else
1149     deflate_state *ds;
1150     deflate_state *ss;
1151 
1152 
1153     if (deflateStateCheck(source) || dest == Z_NULL) {
1154         return Z_STREAM_ERROR;
1155     }
1156 
1157     ss = source->state;
1158 
1159     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1160 
1161     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1162     if (ds == Z_NULL) return Z_MEM_ERROR;
1163     dest->state = (struct internal_state FAR *) ds;
1164     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1165     ds->strm = dest;
1166 
1167     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1168     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1169     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1170     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1171 
1172     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1173         ds->pending_buf == Z_NULL) {
1174         deflateEnd (dest);
1175         return Z_MEM_ERROR;
1176     }
1177     /* following zmemcpy do not work for 16-bit MSDOS */
1178     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1179     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1180     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1181     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1182 
1183     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1184     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1185 
1186     ds->l_desc.dyn_tree = ds->dyn_ltree;
1187     ds->d_desc.dyn_tree = ds->dyn_dtree;
1188     ds->bl_desc.dyn_tree = ds->bl_tree;
1189 
1190     return Z_OK;
1191 #endif /* MAXSEG_64K */
1192 }
1193 
1194 /* ===========================================================================
1195  * Read a new buffer from the current input stream, update the adler32
1196  * and total number of bytes read.  All deflate() input goes through
1197  * this function so some applications may wish to modify it to avoid
1198  * allocating a large strm->next_in buffer and copying from it.
1199  * (See also flush_pending()).
1200  */
deflate_read_buf(strm,buf,size)1201 ZLIB_INTERNAL unsigned deflate_read_buf(strm, buf, size)
1202     z_streamp strm;
1203     Bytef *buf;
1204     unsigned size;
1205 {
1206     unsigned len = strm->avail_in;
1207 
1208     if (len > size) len = size;
1209     if (len == 0) return 0;
1210 
1211     strm->avail_in  -= len;
1212 
1213 #ifdef GZIP
1214     if (strm->state->wrap == 2)
1215         copy_with_crc(strm, buf, len);
1216     else
1217 #endif
1218     {
1219         zmemcpy(buf, strm->next_in, len);
1220         if (strm->state->wrap == 1)
1221             strm->adler = adler32(strm->adler, buf, len);
1222     }
1223     strm->next_in  += len;
1224     strm->total_in += len;
1225 
1226     return len;
1227 }
1228 
1229 /* ===========================================================================
1230  * Initialize the "longest match" routines for a new zlib stream
1231  */
lm_init(s)1232 local void lm_init (s)
1233     deflate_state *s;
1234 {
1235     s->window_size = (ulg)2L*s->w_size;
1236 
1237     CLEAR_HASH(s);
1238 
1239     /* Set the default configuration parameters:
1240      */
1241     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1242     s->good_match       = configuration_table[s->level].good_length;
1243     s->nice_match       = configuration_table[s->level].nice_length;
1244     s->max_chain_length = configuration_table[s->level].max_chain;
1245 
1246     s->strstart = 0;
1247     s->block_start = 0L;
1248     s->lookahead = 0;
1249     s->insert = 0;
1250     s->match_length = s->prev_length = MIN_MATCH-1;
1251     s->match_available = 0;
1252     s->ins_h = 0;
1253 #ifndef FASTEST
1254 #ifdef ASMV
1255     match_init(); /* initialize the asm code */
1256 #endif
1257 #endif
1258 }
1259 
1260 #ifndef FASTEST
1261 /* ===========================================================================
1262  * Set match_start to the longest match starting at the given string and
1263  * return its length. Matches shorter or equal to prev_length are discarded,
1264  * in which case the result is equal to prev_length and match_start is
1265  * garbage.
1266  * IN assertions: cur_match is the head of the hash chain for the current
1267  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1268  * OUT assertion: the match length is not greater than s->lookahead.
1269  */
1270 #ifndef ASMV
1271 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1272  * match.S. The code will be functionally equivalent.
1273  */
longest_match(s,cur_match)1274 local uInt longest_match(s, cur_match)
1275     deflate_state *s;
1276     IPos cur_match;                             /* current match */
1277 {
1278     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1279     register Bytef *scan = s->window + s->strstart; /* current string */
1280     register Bytef *match;                      /* matched string */
1281     register int len;                           /* length of current match */
1282     int best_len = (int)s->prev_length;         /* best match length so far */
1283     int nice_match = s->nice_match;             /* stop if match long enough */
1284     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1285         s->strstart - (IPos)MAX_DIST(s) : NIL;
1286     /* Stop when cur_match becomes <= limit. To simplify the code,
1287      * we prevent matches with the string of window index 0.
1288      */
1289     Posf *prev = s->prev;
1290     uInt wmask = s->w_mask;
1291 
1292 #ifdef UNALIGNED_OK
1293     /* Compare two bytes at a time. Note: this is not always beneficial.
1294      * Try with and without -DUNALIGNED_OK to check.
1295      */
1296     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1297     register ush scan_start = *(ushf*)scan;
1298     register ush scan_end   = *(ushf*)(scan+best_len-1);
1299 #else
1300     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1301     register Byte scan_end1  = scan[best_len-1];
1302     register Byte scan_end   = scan[best_len];
1303 #endif
1304 
1305     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1306      * It is easy to get rid of this optimization if necessary.
1307      */
1308     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1309 
1310     /* Do not waste too much time if we already have a good match: */
1311     if (s->prev_length >= s->good_match) {
1312         chain_length >>= 2;
1313     }
1314     /* Do not look for matches beyond the end of the input. This is necessary
1315      * to make deflate deterministic.
1316      */
1317     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1318 
1319     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1320 
1321     do {
1322         Assert(cur_match < s->strstart, "no future");
1323         match = s->window + cur_match;
1324 
1325         /* Skip to next match if the match length cannot increase
1326          * or if the match length is less than 2.  Note that the checks below
1327          * for insufficient lookahead only occur occasionally for performance
1328          * reasons.  Therefore uninitialized memory will be accessed, and
1329          * conditional jumps will be made that depend on those values.
1330          * However the length of the match is limited to the lookahead, so
1331          * the output of deflate is not affected by the uninitialized values.
1332          */
1333 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1334         /* This code assumes sizeof(unsigned short) == 2. Do not use
1335          * UNALIGNED_OK if your compiler uses a different size.
1336          */
1337         if (*(ushf*)(match+best_len-1) != scan_end ||
1338             *(ushf*)match != scan_start) continue;
1339 
1340         /* It is not necessary to compare scan[2] and match[2] since they are
1341          * always equal when the other bytes match, given that the hash keys
1342          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1343          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1344          * lookahead only every 4th comparison; the 128th check will be made
1345          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1346          * necessary to put more guard bytes at the end of the window, or
1347          * to check more often for insufficient lookahead.
1348          */
1349         Assert(scan[2] == match[2], "scan[2]?");
1350         scan++, match++;
1351         do {
1352         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1353                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1354                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356                  scan < strend);
1357         /* The funny "do {}" generates better code on most compilers */
1358 
1359         /* Here, scan <= window+strstart+257 */
1360         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1361         if (*scan == *match) scan++;
1362 
1363         len = (MAX_MATCH - 1) - (int)(strend-scan);
1364         scan = strend - (MAX_MATCH-1);
1365 
1366 #else /* UNALIGNED_OK */
1367 
1368         if (match[best_len]   != scan_end  ||
1369             match[best_len-1] != scan_end1 ||
1370             *match            != *scan     ||
1371             *++match          != scan[1])      continue;
1372 
1373         /* The check at best_len-1 can be removed because it will be made
1374          * again later. (This heuristic is not always a win.)
1375          * It is not necessary to compare scan[2] and match[2] since they
1376          * are always equal when the other bytes match, given that
1377          * the hash keys are equal and that HASH_BITS >= 8.
1378          */
1379         scan += 2, match++;
1380         Assert(*scan == *match, "match[2]?");
1381 
1382         /* We check for insufficient lookahead only every 8th comparison;
1383          * the 256th check will be made at strstart+258.
1384          */
1385         do {
1386         } while (*++scan == *++match && *++scan == *++match &&
1387                  *++scan == *++match && *++scan == *++match &&
1388                  *++scan == *++match && *++scan == *++match &&
1389                  *++scan == *++match && *++scan == *++match &&
1390                  scan < strend);
1391 
1392         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1393 
1394         len = MAX_MATCH - (int)(strend - scan);
1395         scan = strend - MAX_MATCH;
1396 
1397 #endif /* UNALIGNED_OK */
1398 
1399         if (len > best_len) {
1400             s->match_start = cur_match;
1401             best_len = len;
1402             if (len >= nice_match) break;
1403 #ifdef UNALIGNED_OK
1404             scan_end = *(ushf*)(scan+best_len-1);
1405 #else
1406             scan_end1  = scan[best_len-1];
1407             scan_end   = scan[best_len];
1408 #endif
1409         }
1410     } while ((cur_match = prev[cur_match & wmask]) > limit
1411              && --chain_length != 0);
1412 
1413     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1414     return s->lookahead;
1415 }
1416 #endif /* ASMV */
1417 
1418 #else /* FASTEST */
1419 
1420 /* ---------------------------------------------------------------------------
1421  * Optimized version for FASTEST only
1422  */
longest_match(s,cur_match)1423 local uInt longest_match(s, cur_match)
1424     deflate_state *s;
1425     IPos cur_match;                             /* current match */
1426 {
1427     register Bytef *scan = s->window + s->strstart; /* current string */
1428     register Bytef *match;                       /* matched string */
1429     register int len;                           /* length of current match */
1430     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1431 
1432     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1433      * It is easy to get rid of this optimization if necessary.
1434      */
1435     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1436 
1437     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1438 
1439     Assert(cur_match < s->strstart, "no future");
1440 
1441     match = s->window + cur_match;
1442 
1443     /* Return failure if the match length is less than 2:
1444      */
1445     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1446 
1447     /* The check at best_len-1 can be removed because it will be made
1448      * again later. (This heuristic is not always a win.)
1449      * It is not necessary to compare scan[2] and match[2] since they
1450      * are always equal when the other bytes match, given that
1451      * the hash keys are equal and that HASH_BITS >= 8.
1452      */
1453     scan += 2, match += 2;
1454     Assert(*scan == *match, "match[2]?");
1455 
1456     /* We check for insufficient lookahead only every 8th comparison;
1457      * the 256th check will be made at strstart+258.
1458      */
1459     do {
1460     } while (*++scan == *++match && *++scan == *++match &&
1461              *++scan == *++match && *++scan == *++match &&
1462              *++scan == *++match && *++scan == *++match &&
1463              *++scan == *++match && *++scan == *++match &&
1464              scan < strend);
1465 
1466     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1467 
1468     len = MAX_MATCH - (int)(strend - scan);
1469 
1470     if (len < MIN_MATCH) return MIN_MATCH - 1;
1471 
1472     s->match_start = cur_match;
1473     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1474 }
1475 
1476 #endif /* FASTEST */
1477 
1478 #ifdef ZLIB_DEBUG
1479 
1480 #define EQUAL 0
1481 /* result of memcmp for equal strings */
1482 
1483 /* ===========================================================================
1484  * Check that the match at match_start is indeed a match.
1485  */
check_match(s,start,match,length)1486 local void check_match(s, start, match, length)
1487     deflate_state *s;
1488     IPos start, match;
1489     int length;
1490 {
1491     /* check that the match is indeed a match */
1492     if (zmemcmp(s->window + match,
1493                 s->window + start, length) != EQUAL) {
1494         fprintf(stderr, " start %u, match %u, length %d\n",
1495                 start, match, length);
1496         do {
1497             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1498         } while (--length != 0);
1499         z_error("invalid match");
1500     }
1501     if (z_verbose > 1) {
1502         fprintf(stderr,"\\[%d,%d]", start-match, length);
1503         do { putc(s->window[start++], stderr); } while (--length != 0);
1504     }
1505 }
1506 #else
1507 #  define check_match(s, start, match, length)
1508 #endif /* ZLIB_DEBUG */
1509 
1510 /* ===========================================================================
1511  * Fill the window when the lookahead becomes insufficient.
1512  * Updates strstart and lookahead.
1513  *
1514  * IN assertion: lookahead < MIN_LOOKAHEAD
1515  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1516  *    At least one byte has been read, or avail_in == 0; reads are
1517  *    performed for at least two bytes (required for the zip translate_eol
1518  *    option -- not supported here).
1519  */
1520 local void fill_window_c(deflate_state *s);
1521 
fill_window(deflate_state * s)1522 local void fill_window(deflate_state *s)
1523 {
1524 #ifdef ADLER32_SIMD_SSSE3
1525     if (x86_cpu_enable_simd) {
1526         fill_window_sse(s);
1527         return;
1528     }
1529 #endif
1530     fill_window_c(s);
1531 }
1532 
fill_window_c(s)1533 local void fill_window_c(s)
1534     deflate_state *s;
1535 {
1536     unsigned n;
1537     unsigned more;    /* Amount of free space at the end of the window. */
1538     uInt wsize = s->w_size;
1539 
1540     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1541 
1542     do {
1543         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1544 
1545         /* Deal with !@#$% 64K limit: */
1546         if (sizeof(int) <= 2) {
1547             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1548                 more = wsize;
1549 
1550             } else if (more == (unsigned)(-1)) {
1551                 /* Very unlikely, but possible on 16 bit machine if
1552                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1553                  */
1554                 more--;
1555             }
1556         }
1557 
1558         /* If the window is almost full and there is insufficient lookahead,
1559          * move the upper half to the lower one to make room in the upper half.
1560          */
1561         if (s->strstart >= wsize+MAX_DIST(s)) {
1562 
1563             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1564             s->match_start -= wsize;
1565             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1566             s->block_start -= (long) wsize;
1567             slide_hash(s);
1568             more += wsize;
1569         }
1570         if (s->strm->avail_in == 0) break;
1571 
1572         /* If there was no sliding:
1573          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1574          *    more == window_size - lookahead - strstart
1575          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1576          * => more >= window_size - 2*WSIZE + 2
1577          * In the BIG_MEM or MMAP case (not yet supported),
1578          *   window_size == input_size + MIN_LOOKAHEAD  &&
1579          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1580          * Otherwise, window_size == 2*WSIZE so more >= 2.
1581          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1582          */
1583         Assert(more >= 2, "more < 2");
1584 
1585         n = deflate_read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1586         s->lookahead += n;
1587 
1588         /* Initialize the hash value now that we have some input: */
1589         if (s->lookahead + s->insert >= MIN_MATCH) {
1590             uInt str = s->strstart - s->insert;
1591             s->ins_h = s->window[str];
1592             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1593 #if MIN_MATCH != 3
1594             Call UPDATE_HASH() MIN_MATCH-3 more times
1595 #endif
1596             while (s->insert) {
1597                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1598 #ifndef FASTEST
1599                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1600 #endif
1601                 s->head[s->ins_h] = (Pos)str;
1602                 str++;
1603                 s->insert--;
1604                 if (s->lookahead + s->insert < MIN_MATCH)
1605                     break;
1606             }
1607         }
1608         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1609          * but this is not important since only literal bytes will be emitted.
1610          */
1611 
1612     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1613 
1614     /* If the WIN_INIT bytes after the end of the current data have never been
1615      * written, then zero those bytes in order to avoid memory check reports of
1616      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1617      * the longest match routines.  Update the high water mark for the next
1618      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1619      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1620      */
1621     if (s->high_water < s->window_size) {
1622         ulg curr = s->strstart + (ulg)(s->lookahead);
1623         ulg init;
1624 
1625         if (s->high_water < curr) {
1626             /* Previous high water mark below current data -- zero WIN_INIT
1627              * bytes or up to end of window, whichever is less.
1628              */
1629             init = s->window_size - curr;
1630             if (init > WIN_INIT)
1631                 init = WIN_INIT;
1632             zmemzero(s->window + curr, (unsigned)init);
1633             s->high_water = curr + init;
1634         }
1635         else if (s->high_water < (ulg)curr + WIN_INIT) {
1636             /* High water mark at or above current data, but below current data
1637              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1638              * to end of window, whichever is less.
1639              */
1640             init = (ulg)curr + WIN_INIT - s->high_water;
1641             if (init > s->window_size - s->high_water)
1642                 init = s->window_size - s->high_water;
1643             zmemzero(s->window + s->high_water, (unsigned)init);
1644             s->high_water += init;
1645         }
1646     }
1647 
1648     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1649            "not enough room for search");
1650 }
1651 
1652 /* ===========================================================================
1653  * Flush the current block, with given end-of-file flag.
1654  * IN assertion: strstart is set to the end of the current match.
1655  */
1656 #define FLUSH_BLOCK_ONLY(s, last) { \
1657    _tr_flush_block(s, (s->block_start >= 0L ? \
1658                    (charf *)&s->window[(unsigned)s->block_start] : \
1659                    (charf *)Z_NULL), \
1660                 (ulg)((long)s->strstart - s->block_start), \
1661                 (last)); \
1662    s->block_start = s->strstart; \
1663    flush_pending(s->strm); \
1664    Tracev((stderr,"[FLUSH]")); \
1665 }
1666 
1667 /* Same but force premature exit if necessary. */
1668 #define FLUSH_BLOCK(s, last) { \
1669    FLUSH_BLOCK_ONLY(s, last); \
1670    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1671 }
1672 
1673 /* Maximum stored block length in deflate format (not including header). */
1674 #define MAX_STORED 65535
1675 
1676 /* Minimum of a and b. */
1677 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1678 
1679 /* ===========================================================================
1680  * Copy without compression as much as possible from the input stream, return
1681  * the current block state.
1682  *
1683  * In case deflateParams() is used to later switch to a non-zero compression
1684  * level, s->matches (otherwise unused when storing) keeps track of the number
1685  * of hash table slides to perform. If s->matches is 1, then one hash table
1686  * slide will be done when switching. If s->matches is 2, the maximum value
1687  * allowed here, then the hash table will be cleared, since two or more slides
1688  * is the same as a clear.
1689  *
1690  * deflate_stored() is written to minimize the number of times an input byte is
1691  * copied. It is most efficient with large input and output buffers, which
1692  * maximizes the opportunites to have a single copy from next_in to next_out.
1693  */
deflate_stored(s,flush)1694 local block_state deflate_stored(s, flush)
1695     deflate_state *s;
1696     int flush;
1697 {
1698     /* Smallest worthy block size when not flushing or finishing. By default
1699      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1700      * large input and output buffers, the stored block size will be larger.
1701      */
1702     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1703 
1704     /* Copy as many min_block or larger stored blocks directly to next_out as
1705      * possible. If flushing, copy the remaining available input to next_out as
1706      * stored blocks, if there is enough space.
1707      */
1708     unsigned len, left, have, last = 0;
1709     unsigned used = s->strm->avail_in;
1710     do {
1711         /* Set len to the maximum size block that we can copy directly with the
1712          * available input data and output space. Set left to how much of that
1713          * would be copied from what's left in the window.
1714          */
1715         len = MAX_STORED;       /* maximum deflate stored block length */
1716         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1717         if (s->strm->avail_out < have)          /* need room for header */
1718             break;
1719             /* maximum stored block length that will fit in avail_out: */
1720         have = s->strm->avail_out - have;
1721         left = s->strstart - s->block_start;    /* bytes left in window */
1722         if (len > (ulg)left + s->strm->avail_in)
1723             len = left + s->strm->avail_in;     /* limit len to the input */
1724         if (len > have)
1725             len = have;                         /* limit len to the output */
1726 
1727         /* If the stored block would be less than min_block in length, or if
1728          * unable to copy all of the available input when flushing, then try
1729          * copying to the window and the pending buffer instead. Also don't
1730          * write an empty block when flushing -- deflate() does that.
1731          */
1732         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1733                                 flush == Z_NO_FLUSH ||
1734                                 len != left + s->strm->avail_in))
1735             break;
1736 
1737         /* Make a dummy stored block in pending to get the header bytes,
1738          * including any pending bits. This also updates the debugging counts.
1739          */
1740         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1741         _tr_stored_block(s, (char *)0, 0L, last);
1742 
1743         /* Replace the lengths in the dummy stored block with len. */
1744         s->pending_buf[s->pending - 4] = len;
1745         s->pending_buf[s->pending - 3] = len >> 8;
1746         s->pending_buf[s->pending - 2] = ~len;
1747         s->pending_buf[s->pending - 1] = ~len >> 8;
1748 
1749         /* Write the stored block header bytes. */
1750         flush_pending(s->strm);
1751 
1752 #ifdef ZLIB_DEBUG
1753         /* Update debugging counts for the data about to be copied. */
1754         s->compressed_len += len << 3;
1755         s->bits_sent += len << 3;
1756 #endif
1757 
1758         /* Copy uncompressed bytes from the window to next_out. */
1759         if (left) {
1760             if (left > len)
1761                 left = len;
1762             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1763             s->strm->next_out += left;
1764             s->strm->avail_out -= left;
1765             s->strm->total_out += left;
1766             s->block_start += left;
1767             len -= left;
1768         }
1769 
1770         /* Copy uncompressed bytes directly from next_in to next_out, updating
1771          * the check value.
1772          */
1773         if (len) {
1774             deflate_read_buf(s->strm, s->strm->next_out, len);
1775             s->strm->next_out += len;
1776             s->strm->avail_out -= len;
1777             s->strm->total_out += len;
1778         }
1779     } while (last == 0);
1780 
1781     /* Update the sliding window with the last s->w_size bytes of the copied
1782      * data, or append all of the copied data to the existing window if less
1783      * than s->w_size bytes were copied. Also update the number of bytes to
1784      * insert in the hash tables, in the event that deflateParams() switches to
1785      * a non-zero compression level.
1786      */
1787     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1788     if (used) {
1789         /* If any input was used, then no unused input remains in the window,
1790          * therefore s->block_start == s->strstart.
1791          */
1792         if (used >= s->w_size) {    /* supplant the previous history */
1793             s->matches = 2;         /* clear hash */
1794             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1795             s->strstart = s->w_size;
1796         }
1797         else {
1798             if (s->window_size - s->strstart <= used) {
1799                 /* Slide the window down. */
1800                 s->strstart -= s->w_size;
1801                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1802                 if (s->matches < 2)
1803                     s->matches++;   /* add a pending slide_hash() */
1804             }
1805             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1806             s->strstart += used;
1807         }
1808         s->block_start = s->strstart;
1809         s->insert += MIN(used, s->w_size - s->insert);
1810     }
1811     if (s->high_water < s->strstart)
1812         s->high_water = s->strstart;
1813 
1814     /* If the last block was written to next_out, then done. */
1815     if (last)
1816         return finish_done;
1817 
1818     /* If flushing and all input has been consumed, then done. */
1819     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1820         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1821         return block_done;
1822 
1823     /* Fill the window with any remaining input. */
1824     have = s->window_size - s->strstart - 1;
1825     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1826         /* Slide the window down. */
1827         s->block_start -= s->w_size;
1828         s->strstart -= s->w_size;
1829         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1830         if (s->matches < 2)
1831             s->matches++;           /* add a pending slide_hash() */
1832         have += s->w_size;          /* more space now */
1833     }
1834     if (have > s->strm->avail_in)
1835         have = s->strm->avail_in;
1836     if (have) {
1837         deflate_read_buf(s->strm, s->window + s->strstart, have);
1838         s->strstart += have;
1839     }
1840     if (s->high_water < s->strstart)
1841         s->high_water = s->strstart;
1842 
1843     /* There was not enough avail_out to write a complete worthy or flushed
1844      * stored block to next_out. Write a stored block to pending instead, if we
1845      * have enough input for a worthy block, or if flushing and there is enough
1846      * room for the remaining input as a stored block in the pending buffer.
1847      */
1848     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1849         /* maximum stored block length that will fit in pending: */
1850     have = MIN(s->pending_buf_size - have, MAX_STORED);
1851     min_block = MIN(have, s->w_size);
1852     left = s->strstart - s->block_start;
1853     if (left >= min_block ||
1854         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1855          s->strm->avail_in == 0 && left <= have)) {
1856         len = MIN(left, have);
1857         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1858                len == left ? 1 : 0;
1859         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1860         s->block_start += len;
1861         flush_pending(s->strm);
1862     }
1863 
1864     /* We've done all we can with the available input and output. */
1865     return last ? finish_started : need_more;
1866 }
1867 
1868 /* ===========================================================================
1869  * Compress as much as possible from the input stream, return the current
1870  * block state.
1871  * This function does not perform lazy evaluation of matches and inserts
1872  * new strings in the dictionary only for unmatched strings or for short
1873  * matches. It is used only for the fast compression options.
1874  */
deflate_fast(s,flush)1875 local block_state deflate_fast(s, flush)
1876     deflate_state *s;
1877     int flush;
1878 {
1879     IPos hash_head;       /* head of the hash chain */
1880     int bflush;           /* set if current block must be flushed */
1881 
1882     for (;;) {
1883         /* Make sure that we always have enough lookahead, except
1884          * at the end of the input file. We need MAX_MATCH bytes
1885          * for the next match, plus MIN_MATCH bytes to insert the
1886          * string following the next match.
1887          */
1888         if (s->lookahead < MIN_LOOKAHEAD) {
1889             fill_window(s);
1890             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1891                 return need_more;
1892             }
1893             if (s->lookahead == 0) break; /* flush the current block */
1894         }
1895 
1896         /* Insert the string window[strstart .. strstart+2] in the
1897          * dictionary, and set hash_head to the head of the hash chain:
1898          */
1899         hash_head = NIL;
1900         if (s->lookahead >= MIN_MATCH) {
1901             hash_head = insert_string(s, s->strstart);
1902         }
1903 
1904         /* Find the longest match, discarding those <= prev_length.
1905          * At this point we have always match_length < MIN_MATCH
1906          */
1907         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1908             /* To simplify the code, we prevent matches with the string
1909              * of window index 0 (in particular we have to avoid a match
1910              * of the string with itself at the start of the input file).
1911              */
1912             s->match_length = longest_match (s, hash_head);
1913             /* longest_match() sets match_start */
1914         }
1915         if (s->match_length >= MIN_MATCH) {
1916             check_match(s, s->strstart, s->match_start, s->match_length);
1917 
1918             _tr_tally_dist(s, s->strstart - s->match_start,
1919                            s->match_length - MIN_MATCH, bflush);
1920 
1921             s->lookahead -= s->match_length;
1922 
1923             /* Insert new strings in the hash table only if the match length
1924              * is not too large. This saves time but degrades compression.
1925              */
1926 #ifndef FASTEST
1927             if (s->match_length <= s->max_insert_length &&
1928                 s->lookahead >= MIN_MATCH) {
1929                 s->match_length--; /* string at strstart already in table */
1930                 do {
1931                     s->strstart++;
1932                     hash_head = insert_string(s, s->strstart);
1933                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1934                      * always MIN_MATCH bytes ahead.
1935                      */
1936                 } while (--s->match_length != 0);
1937                 s->strstart++;
1938             } else
1939 #endif
1940             {
1941                 s->strstart += s->match_length;
1942                 s->match_length = 0;
1943                 s->ins_h = s->window[s->strstart];
1944                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1945 #if MIN_MATCH != 3
1946                 Call UPDATE_HASH() MIN_MATCH-3 more times
1947 #endif
1948                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1949                  * matter since it will be recomputed at next deflate call.
1950                  */
1951             }
1952         } else {
1953             /* No match, output a literal byte */
1954             Tracevv((stderr,"%c", s->window[s->strstart]));
1955             _tr_tally_lit (s, s->window[s->strstart], bflush);
1956             s->lookahead--;
1957             s->strstart++;
1958         }
1959         if (bflush) FLUSH_BLOCK(s, 0);
1960     }
1961     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1962     if (flush == Z_FINISH) {
1963         FLUSH_BLOCK(s, 1);
1964         return finish_done;
1965     }
1966     if (s->sym_next)
1967         FLUSH_BLOCK(s, 0);
1968     return block_done;
1969 }
1970 
1971 #ifndef FASTEST
1972 /* ===========================================================================
1973  * Same as above, but achieves better compression. We use a lazy
1974  * evaluation for matches: a match is finally adopted only if there is
1975  * no better match at the next window position.
1976  */
deflate_slow(s,flush)1977 local block_state deflate_slow(s, flush)
1978     deflate_state *s;
1979     int flush;
1980 {
1981     IPos hash_head;          /* head of hash chain */
1982     int bflush;              /* set if current block must be flushed */
1983 
1984     /* Process the input block. */
1985     for (;;) {
1986         /* Make sure that we always have enough lookahead, except
1987          * at the end of the input file. We need MAX_MATCH bytes
1988          * for the next match, plus MIN_MATCH bytes to insert the
1989          * string following the next match.
1990          */
1991         if (s->lookahead < MIN_LOOKAHEAD) {
1992             fill_window(s);
1993             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1994                 return need_more;
1995             }
1996             if (s->lookahead == 0) break; /* flush the current block */
1997         }
1998 
1999         /* Insert the string window[strstart .. strstart+2] in the
2000          * dictionary, and set hash_head to the head of the hash chain:
2001          */
2002         hash_head = NIL;
2003         if (s->lookahead >= MIN_MATCH) {
2004             hash_head = insert_string(s, s->strstart);
2005         }
2006 
2007         /* Find the longest match, discarding those <= prev_length.
2008          */
2009         s->prev_length = s->match_length, s->prev_match = s->match_start;
2010         s->match_length = MIN_MATCH-1;
2011 
2012         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2013             s->strstart - hash_head <= MAX_DIST(s)) {
2014             /* To simplify the code, we prevent matches with the string
2015              * of window index 0 (in particular we have to avoid a match
2016              * of the string with itself at the start of the input file).
2017              */
2018             s->match_length = longest_match (s, hash_head);
2019             /* longest_match() sets match_start */
2020 
2021             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2022 #if TOO_FAR <= 32767
2023                 || (s->match_length == MIN_MATCH &&
2024                     s->strstart - s->match_start > TOO_FAR)
2025 #endif
2026                 )) {
2027 
2028                 /* If prev_match is also MIN_MATCH, match_start is garbage
2029                  * but we will ignore the current match anyway.
2030                  */
2031                 s->match_length = MIN_MATCH-1;
2032             }
2033         }
2034         /* If there was a match at the previous step and the current
2035          * match is not better, output the previous match:
2036          */
2037         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2038             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2039             /* Do not insert strings in hash table beyond this. */
2040 
2041             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2042 
2043             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2044                            s->prev_length - MIN_MATCH, bflush);
2045 
2046             /* Insert in hash table all strings up to the end of the match.
2047              * strstart-1 and strstart are already inserted. If there is not
2048              * enough lookahead, the last two strings are not inserted in
2049              * the hash table.
2050              */
2051             s->lookahead -= s->prev_length-1;
2052             s->prev_length -= 2;
2053             do {
2054                 if (++s->strstart <= max_insert) {
2055                     hash_head = insert_string(s, s->strstart);
2056                 }
2057             } while (--s->prev_length != 0);
2058             s->match_available = 0;
2059             s->match_length = MIN_MATCH-1;
2060             s->strstart++;
2061 
2062             if (bflush) FLUSH_BLOCK(s, 0);
2063 
2064         } else if (s->match_available) {
2065             /* If there was no match at the previous position, output a
2066              * single literal. If there was a match but the current match
2067              * is longer, truncate the previous match to a single literal.
2068              */
2069             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2070             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2071             if (bflush) {
2072                 FLUSH_BLOCK_ONLY(s, 0);
2073             }
2074             s->strstart++;
2075             s->lookahead--;
2076             if (s->strm->avail_out == 0) return need_more;
2077         } else {
2078             /* There is no previous match to compare with, wait for
2079              * the next step to decide.
2080              */
2081             s->match_available = 1;
2082             s->strstart++;
2083             s->lookahead--;
2084         }
2085     }
2086     Assert (flush != Z_NO_FLUSH, "no flush?");
2087     if (s->match_available) {
2088         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2089         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2090         s->match_available = 0;
2091     }
2092     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2093     if (flush == Z_FINISH) {
2094         FLUSH_BLOCK(s, 1);
2095         return finish_done;
2096     }
2097     if (s->sym_next)
2098         FLUSH_BLOCK(s, 0);
2099     return block_done;
2100 }
2101 #endif /* FASTEST */
2102 
2103 /* ===========================================================================
2104  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2105  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2106  * deflate switches away from Z_RLE.)
2107  */
deflate_rle(s,flush)2108 local block_state deflate_rle(s, flush)
2109     deflate_state *s;
2110     int flush;
2111 {
2112     int bflush;             /* set if current block must be flushed */
2113     uInt prev;              /* byte at distance one to match */
2114     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2115 
2116     for (;;) {
2117         /* Make sure that we always have enough lookahead, except
2118          * at the end of the input file. We need MAX_MATCH bytes
2119          * for the longest run, plus one for the unrolled loop.
2120          */
2121         if (s->lookahead <= MAX_MATCH) {
2122             fill_window(s);
2123             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2124                 return need_more;
2125             }
2126             if (s->lookahead == 0) break; /* flush the current block */
2127         }
2128 
2129         /* See how many times the previous byte repeats */
2130         s->match_length = 0;
2131         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2132             scan = s->window + s->strstart - 1;
2133             prev = *scan;
2134             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2135                 strend = s->window + s->strstart + MAX_MATCH;
2136                 do {
2137                 } while (prev == *++scan && prev == *++scan &&
2138                          prev == *++scan && prev == *++scan &&
2139                          prev == *++scan && prev == *++scan &&
2140                          prev == *++scan && prev == *++scan &&
2141                          scan < strend);
2142                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2143                 if (s->match_length > s->lookahead)
2144                     s->match_length = s->lookahead;
2145             }
2146             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2147         }
2148 
2149         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2150         if (s->match_length >= MIN_MATCH) {
2151             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2152 
2153             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2154 
2155             s->lookahead -= s->match_length;
2156             s->strstart += s->match_length;
2157             s->match_length = 0;
2158         } else {
2159             /* No match, output a literal byte */
2160             Tracevv((stderr,"%c", s->window[s->strstart]));
2161             _tr_tally_lit (s, s->window[s->strstart], bflush);
2162             s->lookahead--;
2163             s->strstart++;
2164         }
2165         if (bflush) FLUSH_BLOCK(s, 0);
2166     }
2167     s->insert = 0;
2168     if (flush == Z_FINISH) {
2169         FLUSH_BLOCK(s, 1);
2170         return finish_done;
2171     }
2172     if (s->sym_next)
2173         FLUSH_BLOCK(s, 0);
2174     return block_done;
2175 }
2176 
2177 /* ===========================================================================
2178  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2179  * (It will be regenerated if this run of deflate switches away from Huffman.)
2180  */
deflate_huff(s,flush)2181 local block_state deflate_huff(s, flush)
2182     deflate_state *s;
2183     int flush;
2184 {
2185     int bflush;             /* set if current block must be flushed */
2186 
2187     for (;;) {
2188         /* Make sure that we have a literal to write. */
2189         if (s->lookahead == 0) {
2190             fill_window(s);
2191             if (s->lookahead == 0) {
2192                 if (flush == Z_NO_FLUSH)
2193                     return need_more;
2194                 break;      /* flush the current block */
2195             }
2196         }
2197 
2198         /* Output a literal byte */
2199         s->match_length = 0;
2200         Tracevv((stderr,"%c", s->window[s->strstart]));
2201         _tr_tally_lit (s, s->window[s->strstart], bflush);
2202         s->lookahead--;
2203         s->strstart++;
2204         if (bflush) FLUSH_BLOCK(s, 0);
2205     }
2206     s->insert = 0;
2207     if (flush == Z_FINISH) {
2208         FLUSH_BLOCK(s, 1);
2209         return finish_done;
2210     }
2211     if (s->sym_next)
2212         FLUSH_BLOCK(s, 0);
2213     return block_done;
2214 }
2215