• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <unistd.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <fcntl.h>
21 #include <string.h>
22 #include <sys/mman.h>
23 #include <sys/stat.h>
24 #include <errno.h>
25 #include <inttypes.h>
26 #include <time.h>
27 #include <math.h>
28 #include <audio_utils/primitives.h>
29 #include <audio_utils/sndfile.h>
30 #include <android-base/macros.h>
31 #include <utils/Vector.h>
32 #include <media/AudioBufferProvider.h>
33 #include <media/AudioResampler.h>
34 
35 using namespace android;
36 
37 static bool gVerbose = false;
38 
usage(const char * name)39 static int usage(const char* name) {
40     fprintf(stderr,"Usage: %s [-p] [-f] [-F] [-v] [-c channels]"
41                    " [-q {dq|lq|mq|hq|vhq|dlq|dmq|dhq}]"
42                    " [-i input-sample-rate] [-o output-sample-rate]"
43                    " [-O csv] [-P csv] [<input-file>]"
44                    " <output-file>\n", name);
45     fprintf(stderr,"    -p    enable profiling\n");
46     fprintf(stderr,"    -f    enable filter profiling\n");
47     fprintf(stderr,"    -F    enable floating point -q {dlq|dmq|dhq} only");
48     fprintf(stderr,"    -v    verbose : log buffer provider calls\n");
49     fprintf(stderr,"    -c    # channels (1-2 for lq|mq|hq; 1-8 for dlq|dmq|dhq)\n");
50     fprintf(stderr,"    -q    resampler quality\n");
51     fprintf(stderr,"              dq  : default quality\n");
52     fprintf(stderr,"              lq  : low quality\n");
53     fprintf(stderr,"              mq  : medium quality\n");
54     fprintf(stderr,"              hq  : high quality\n");
55     fprintf(stderr,"              vhq : very high quality\n");
56     fprintf(stderr,"              dlq : dynamic low quality\n");
57     fprintf(stderr,"              dmq : dynamic medium quality\n");
58     fprintf(stderr,"              dhq : dynamic high quality\n");
59     fprintf(stderr,"    -i    input file sample rate (ignored if input file is specified)\n");
60     fprintf(stderr,"    -o    output file sample rate\n");
61     fprintf(stderr,"    -O    # frames output per call to resample() in CSV format\n");
62     fprintf(stderr,"    -P    # frames provided per call to resample() in CSV format\n");
63     return -1;
64 }
65 
66 // Convert a list of integers in CSV format to a Vector of those values.
67 // Returns the number of elements in the list, or -1 on error.
parseCSV(const char * string,Vector<int> & values)68 int parseCSV(const char *string, Vector<int>& values)
69 {
70     // pass 1: count the number of values and do syntax check
71     size_t numValues = 0;
72     bool hadDigit = false;
73     for (const char *p = string; ; ) {
74         switch (*p++) {
75         case '0': case '1': case '2': case '3': case '4':
76         case '5': case '6': case '7': case '8': case '9':
77             hadDigit = true;
78             break;
79         case '\0':
80             if (hadDigit) {
81                 // pass 2: allocate and initialize vector of values
82                 values.resize(++numValues);
83                 values.editItemAt(0) = atoi(p = optarg);
84                 for (size_t i = 1; i < numValues; ) {
85                     if (*p++ == ',') {
86                         values.editItemAt(i++) = atoi(p);
87                     }
88                 }
89                 return numValues;
90             }
91             FALLTHROUGH_INTENDED;
92         case ',':
93             if (hadDigit) {
94                 hadDigit = false;
95                 numValues++;
96                 break;
97             }
98             FALLTHROUGH_INTENDED;
99         default:
100             return -1;
101         }
102     }
103 }
104 
main(int argc,char * argv[])105 int main(int argc, char* argv[]) {
106     const char* const progname = argv[0];
107     bool profileResample = false;
108     bool profileFilter = false;
109     bool useFloat = false;
110     int channels = 1;
111     int input_freq = 0;
112     int output_freq = 0;
113     AudioResampler::src_quality quality = AudioResampler::DEFAULT_QUALITY;
114     Vector<int> Ovalues;
115     Vector<int> Pvalues;
116 
117     int ch;
118     while ((ch = getopt(argc, argv, "pfFvc:q:i:o:O:P:")) != -1) {
119         switch (ch) {
120         case 'p':
121             profileResample = true;
122             break;
123         case 'f':
124             profileFilter = true;
125             break;
126         case 'F':
127             useFloat = true;
128             break;
129         case 'v':
130             gVerbose = true;
131             break;
132         case 'c':
133             channels = atoi(optarg);
134             break;
135         case 'q':
136             if (!strcmp(optarg, "dq"))
137                 quality = AudioResampler::DEFAULT_QUALITY;
138             else if (!strcmp(optarg, "lq"))
139                 quality = AudioResampler::LOW_QUALITY;
140             else if (!strcmp(optarg, "mq"))
141                 quality = AudioResampler::MED_QUALITY;
142             else if (!strcmp(optarg, "hq"))
143                 quality = AudioResampler::HIGH_QUALITY;
144             else if (!strcmp(optarg, "vhq"))
145                 quality = AudioResampler::VERY_HIGH_QUALITY;
146             else if (!strcmp(optarg, "dlq"))
147                 quality = AudioResampler::DYN_LOW_QUALITY;
148             else if (!strcmp(optarg, "dmq"))
149                 quality = AudioResampler::DYN_MED_QUALITY;
150             else if (!strcmp(optarg, "dhq"))
151                 quality = AudioResampler::DYN_HIGH_QUALITY;
152             else {
153                 usage(progname);
154                 return -1;
155             }
156             break;
157         case 'i':
158             input_freq = atoi(optarg);
159             break;
160         case 'o':
161             output_freq = atoi(optarg);
162             break;
163         case 'O':
164             if (parseCSV(optarg, Ovalues) < 0) {
165                 fprintf(stderr, "incorrect syntax for -O option\n");
166                 return -1;
167             }
168             break;
169         case 'P':
170             if (parseCSV(optarg, Pvalues) < 0) {
171                 fprintf(stderr, "incorrect syntax for -P option\n");
172                 return -1;
173             }
174             break;
175         case '?':
176         default:
177             usage(progname);
178             return -1;
179         }
180     }
181 
182     if (channels < 1
183             || channels > (quality < AudioResampler::DYN_LOW_QUALITY ? 2 : 8)) {
184         fprintf(stderr, "invalid number of audio channels %d\n", channels);
185         return -1;
186     }
187     if (useFloat && quality < AudioResampler::DYN_LOW_QUALITY) {
188         fprintf(stderr, "float processing is only possible for dynamic resamplers\n");
189         return -1;
190     }
191 
192     argc -= optind;
193     argv += optind;
194 
195     const char* file_in = NULL;
196     const char* file_out = NULL;
197     if (argc == 1) {
198         file_out = argv[0];
199     } else if (argc == 2) {
200         file_in = argv[0];
201         file_out = argv[1];
202     } else {
203         usage(progname);
204         return -1;
205     }
206 
207     // ----------------------------------------------------------
208 
209     size_t input_size;
210     void* input_vaddr;
211     if (argc == 2) {
212         SF_INFO info;
213         info.format = 0;
214         SNDFILE *sf = sf_open(file_in, SFM_READ, &info);
215         if (sf == NULL) {
216             perror(file_in);
217             return EXIT_FAILURE;
218         }
219         input_size = info.frames * info.channels * sizeof(short);
220         input_vaddr = malloc(input_size);
221         (void) sf_readf_short(sf, (short *) input_vaddr, info.frames);
222         sf_close(sf);
223         channels = info.channels;
224         input_freq = info.samplerate;
225     } else {
226         // data for testing is exactly (input sampling rate/1000)/2 seconds
227         // so 44.1khz input is 22.05 seconds
228         double k = 1000; // Hz / s
229         double time = (input_freq / 2) / k;
230         size_t input_frames = size_t(input_freq * time);
231         input_size = channels * sizeof(int16_t) * input_frames;
232         input_vaddr = malloc(input_size);
233         int16_t* in = (int16_t*)input_vaddr;
234         for (size_t i=0 ; i<input_frames ; i++) {
235             double t = double(i) / input_freq;
236             double y = sin(M_PI * k * t * t);
237             int16_t yi = floor(y * 32767.0 + 0.5);
238             for (int j = 0; j < channels; j++) {
239                 in[i*channels + j] = yi / (1 + j);
240             }
241         }
242     }
243     size_t input_framesize = channels * sizeof(int16_t);
244     size_t input_frames = input_size / input_framesize;
245 
246     // For float processing, convert input int16_t to float array
247     if (useFloat) {
248         void *new_vaddr;
249 
250         input_framesize = channels * sizeof(float);
251         input_size = input_frames * input_framesize;
252         new_vaddr = malloc(input_size);
253         memcpy_to_float_from_i16(reinterpret_cast<float*>(new_vaddr),
254                 reinterpret_cast<int16_t*>(input_vaddr), input_frames * channels);
255         free(input_vaddr);
256         input_vaddr = new_vaddr;
257     }
258 
259     // ----------------------------------------------------------
260 
261     class Provider: public AudioBufferProvider {
262         const void*     mAddr;      // base address
263         const size_t    mNumFrames; // total frames
264         const size_t    mFrameSize; // size of each frame in bytes
265         size_t          mNextFrame; // index of next frame to provide
266         size_t          mUnrel;     // number of frames not yet released
267         const Vector<int> mPvalues; // number of frames provided per call
268         size_t          mNextPidx;  // index of next entry in mPvalues to use
269     public:
270         Provider(const void* addr, size_t frames, size_t frameSize, const Vector<int>& Pvalues)
271           : mAddr(addr),
272             mNumFrames(frames),
273             mFrameSize(frameSize),
274             mNextFrame(0), mUnrel(0), mPvalues(Pvalues), mNextPidx(0) {
275         }
276         virtual status_t getNextBuffer(Buffer* buffer) {
277             size_t requestedFrames = buffer->frameCount;
278             if (requestedFrames > mNumFrames - mNextFrame) {
279                 buffer->frameCount = mNumFrames - mNextFrame;
280             }
281             if (!mPvalues.isEmpty()) {
282                 size_t provided = mPvalues[mNextPidx++];
283                 printf("mPvalue[%zu]=%zu not %zu\n", mNextPidx-1, provided, buffer->frameCount);
284                 if (provided < buffer->frameCount) {
285                     buffer->frameCount = provided;
286                 }
287                 if (mNextPidx >= mPvalues.size()) {
288                     mNextPidx = 0;
289                 }
290             }
291             if (gVerbose) {
292                 printf("getNextBuffer() requested %zu frames out of %zu frames available,"
293                         " and returned %zu frames\n",
294                         requestedFrames, (size_t) (mNumFrames - mNextFrame), buffer->frameCount);
295             }
296             mUnrel = buffer->frameCount;
297             if (buffer->frameCount > 0) {
298                 buffer->raw = (char *)mAddr + mFrameSize * mNextFrame;
299                 return NO_ERROR;
300             } else {
301                 buffer->raw = NULL;
302                 return NOT_ENOUGH_DATA;
303             }
304         }
305         virtual void releaseBuffer(Buffer* buffer) {
306             if (buffer->frameCount > mUnrel) {
307                 fprintf(stderr, "ERROR releaseBuffer() released %zu frames but only %zu available "
308                         "to release\n", buffer->frameCount, mUnrel);
309                 mNextFrame += mUnrel;
310                 mUnrel = 0;
311             } else {
312                 if (gVerbose) {
313                     printf("releaseBuffer() released %zu frames out of %zu frames available "
314                             "to release\n", buffer->frameCount, mUnrel);
315                 }
316                 mNextFrame += buffer->frameCount;
317                 mUnrel -= buffer->frameCount;
318             }
319             buffer->frameCount = 0;
320             buffer->raw = NULL;
321         }
322         void reset() {
323             mNextFrame = 0;
324         }
325     } provider(input_vaddr, input_frames, input_framesize, Pvalues);
326 
327     if (gVerbose) {
328         printf("%zu input frames\n", input_frames);
329     }
330 
331     audio_format_t format = useFloat ? AUDIO_FORMAT_PCM_FLOAT : AUDIO_FORMAT_PCM_16_BIT;
332     int output_channels = channels > 2 ? channels : 2; // output is at least stereo samples
333     size_t output_framesize = output_channels * (useFloat ? sizeof(float) : sizeof(int32_t));
334     size_t output_frames = ((int64_t) input_frames * output_freq) / input_freq;
335     size_t output_size = output_frames * output_framesize;
336 
337     if (profileFilter) {
338         // Check how fast sample rate changes are that require filter changes.
339         // The delta sample rate changes must indicate a downsampling ratio,
340         // and must be larger than 10% changes.
341         //
342         // On fast devices, filters should be generated between 0.1ms - 1ms.
343         // (single threaded).
344         AudioResampler* resampler = AudioResampler::create(format, channels,
345                 8000, quality);
346         int looplimit = 100;
347         timespec start, end;
348         clock_gettime(CLOCK_MONOTONIC, &start);
349         for (int i = 0; i < looplimit; ++i) {
350             resampler->setSampleRate(9000);
351             resampler->setSampleRate(12000);
352             resampler->setSampleRate(20000);
353             resampler->setSampleRate(30000);
354         }
355         clock_gettime(CLOCK_MONOTONIC, &end);
356         int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
357         int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
358         int64_t time = end_ns - start_ns;
359         printf("%.2f sample rate changes with filter calculation/sec\n",
360                 looplimit * 4 / (time / 1e9));
361 
362         // Check how fast sample rate changes are without filter changes.
363         // This should be very fast, probably 0.1us - 1us per sample rate
364         // change.
365         resampler->setSampleRate(1000);
366         looplimit = 1000;
367         clock_gettime(CLOCK_MONOTONIC, &start);
368         for (int i = 0; i < looplimit; ++i) {
369             resampler->setSampleRate(1000+i);
370         }
371         clock_gettime(CLOCK_MONOTONIC, &end);
372         start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
373         end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
374         time = end_ns - start_ns;
375         printf("%.2f sample rate changes without filter calculation/sec\n",
376                 looplimit / (time / 1e9));
377         resampler->reset();
378         delete resampler;
379     }
380 
381     void* output_vaddr = malloc(output_size);
382     AudioResampler* resampler = AudioResampler::create(format, channels,
383             output_freq, quality);
384 
385     resampler->setSampleRate(input_freq);
386     resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT);
387 
388     if (profileResample) {
389         /*
390          * For profiling on mobile devices, upon experimentation
391          * it is better to run a few trials with a shorter loop limit,
392          * and take the minimum time.
393          *
394          * Long tests can cause CPU temperature to build up and thermal throttling
395          * to reduce CPU frequency.
396          *
397          * For frequency checks (index=0, or 1, etc.):
398          * "cat /sys/devices/system/cpu/cpu${index}/cpufreq/scaling_*_freq"
399          *
400          * For temperature checks (index=0, or 1, etc.):
401          * "cat /sys/class/thermal/thermal_zone${index}/temp"
402          *
403          * Another way to avoid thermal throttling is to fix the CPU frequency
404          * at a lower level which prevents excessive temperatures.
405          */
406         const int trials = 4;
407         const int looplimit = 4;
408         timespec start, end;
409         int64_t time = 0;
410 
411         for (int n = 0; n < trials; ++n) {
412             clock_gettime(CLOCK_MONOTONIC, &start);
413             for (int i = 0; i < looplimit; ++i) {
414                 resampler->resample((int*) output_vaddr, output_frames, &provider);
415                 provider.reset(); //  during benchmarking reset only the provider
416             }
417             clock_gettime(CLOCK_MONOTONIC, &end);
418             int64_t start_ns = start.tv_sec * 1000000000LL + start.tv_nsec;
419             int64_t end_ns = end.tv_sec * 1000000000LL + end.tv_nsec;
420             int64_t diff_ns = end_ns - start_ns;
421             if (n == 0 || diff_ns < time) {
422                 time = diff_ns;   // save the best out of our trials.
423             }
424         }
425         // Mfrms/s is "Millions of output frames per second".
426         printf("quality: %d  channels: %d  msec: %" PRId64 "  Mfrms/s: %.2lf\n",
427                 quality, channels, time/1000000, output_frames * looplimit / (time / 1e9) / 1e6);
428         resampler->reset();
429 
430         // TODO fix legacy bug: reset does not clear buffers.
431         // delete and recreate resampler here.
432         delete resampler;
433         resampler = AudioResampler::create(format, channels,
434                     output_freq, quality);
435         resampler->setSampleRate(input_freq);
436         resampler->setVolume(AudioResampler::UNITY_GAIN_FLOAT, AudioResampler::UNITY_GAIN_FLOAT);
437     }
438 
439     memset(output_vaddr, 0, output_size);
440     if (gVerbose) {
441         printf("resample() %zu output frames\n", output_frames);
442     }
443     if (Ovalues.isEmpty()) {
444         Ovalues.push(output_frames);
445     }
446     for (size_t i = 0, j = 0; i < output_frames; ) {
447         size_t thisFrames = Ovalues[j++];
448         if (j >= Ovalues.size()) {
449             j = 0;
450         }
451         if (thisFrames == 0 || thisFrames > output_frames - i) {
452             thisFrames = output_frames - i;
453         }
454         resampler->resample((int*) output_vaddr + output_channels*i, thisFrames, &provider);
455         i += thisFrames;
456     }
457     if (gVerbose) {
458         printf("resample() complete\n");
459     }
460     resampler->reset();
461     if (gVerbose) {
462         printf("reset() complete\n");
463     }
464     delete resampler;
465     resampler = NULL;
466 
467     // For float processing, convert output format from float to Q4.27,
468     // which is then converted to int16_t for final storage.
469     if (useFloat) {
470         memcpy_to_q4_27_from_float(reinterpret_cast<int32_t*>(output_vaddr),
471                 reinterpret_cast<float*>(output_vaddr), output_frames * output_channels);
472     }
473 
474     // mono takes left channel only (out of stereo output pair)
475     // stereo and multichannel preserve all channels.
476     int32_t* out = (int32_t*) output_vaddr;
477     int16_t* convert = (int16_t*) malloc(output_frames * channels * sizeof(int16_t));
478 
479     const int volumeShift = 12; // shift requirement for Q4.27 to Q.15
480     // round to half towards zero and saturate at int16 (non-dithered)
481     const int roundVal = (1<<(volumeShift-1)) - 1; // volumePrecision > 0
482 
483     for (size_t i = 0; i < output_frames; i++) {
484         for (int j = 0; j < channels; j++) {
485             int32_t s = out[i * output_channels + j] + roundVal; // add offset here
486             if (s < 0) {
487                 s = (s + 1) >> volumeShift; // round to 0
488                 if (s < -32768) {
489                     s = -32768;
490                 }
491             } else {
492                 s = s >> volumeShift;
493                 if (s > 32767) {
494                     s = 32767;
495                 }
496             }
497             convert[i * channels + j] = int16_t(s);
498         }
499     }
500 
501     // write output to disk
502     SF_INFO info;
503     info.frames = 0;
504     info.samplerate = output_freq;
505     info.channels = channels;
506     info.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
507     SNDFILE *sf = sf_open(file_out, SFM_WRITE, &info);
508     if (sf == NULL) {
509         perror(file_out);
510         return EXIT_FAILURE;
511     }
512     (void) sf_writef_short(sf, convert, output_frames);
513     sf_close(sf);
514 
515     return EXIT_SUCCESS;
516 }
517