1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include <tensorflow/lite/kernels/internal/optimized/optimized_ops.h>
20 #include <tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h>
21
22 #include <vector>
23
24 #include "CpuOperationUtils.h"
25 #include "HalInterfaces.h"
26 #include "OperationResolver.h"
27 #include "Tracing.h"
28
29 namespace android {
30 namespace nn {
31
32 using namespace hal;
33
34 namespace pooling {
35
36 constexpr uint32_t kInputTensor = 0;
37
38 constexpr uint32_t kNumOutputs = 1;
39 constexpr uint32_t kOutputTensor = 0;
40
41 namespace {
42
43 struct PoolingParam {
44 int32_t padding_left, padding_right;
45 int32_t padding_top, padding_bottom;
46 int32_t stride_width, stride_height;
47 int32_t filter_width, filter_height;
48 int32_t activation;
49 bool useNchw = false;
50
initializeandroid::nn::pooling::__anone89cf0810111::PoolingParam51 bool initialize(const IOperationExecutionContext* context) {
52 uint32_t inCount = context->getNumInputs();
53 int32_t padding_implicit = 0;
54 if (inCount >= 10) {
55 padding_left = context->getInputValue<int32_t>(1);
56 padding_right = context->getInputValue<int32_t>(2);
57 padding_top = context->getInputValue<int32_t>(3);
58 padding_bottom = context->getInputValue<int32_t>(4);
59 stride_width = context->getInputValue<int32_t>(5);
60 stride_height = context->getInputValue<int32_t>(6);
61 filter_width = context->getInputValue<int32_t>(7);
62 filter_height = context->getInputValue<int32_t>(8);
63 activation = context->getInputValue<int32_t>(9);
64 if (inCount == 11) {
65 useNchw = context->getInputValue<bool>(10);
66 }
67 } else {
68 padding_implicit = context->getInputValue<int32_t>(1);
69 stride_width = context->getInputValue<int32_t>(2);
70 stride_height = context->getInputValue<int32_t>(3);
71 filter_width = context->getInputValue<int32_t>(4);
72 filter_height = context->getInputValue<int32_t>(5);
73 activation = context->getInputValue<int32_t>(6);
74 if (inCount == 8) {
75 useNchw = context->getInputValue<bool>(7);
76 }
77 }
78 if (inCount <= 8) {
79 Shape inputShape = context->getInputShape(kInputTensor);
80 int32_t input_height = getSizeOfDimension(inputShape, useNchw ? 2 : 1);
81 int32_t input_width = getSizeOfDimension(inputShape, useNchw ? 3 : 2);
82 calculateExplicitPadding(input_width, stride_width, filter_width, padding_implicit,
83 &padding_left, &padding_right);
84 calculateExplicitPadding(input_height, stride_height, filter_height, padding_implicit,
85 &padding_top, &padding_bottom);
86 }
87 NN_RET_CHECK_GE(padding_left, 0);
88 NN_RET_CHECK_GE(padding_right, 0);
89 NN_RET_CHECK_GE(padding_top, 0);
90 NN_RET_CHECK_GE(padding_bottom, 0);
91 NN_RET_CHECK_GT(stride_width, 0);
92 NN_RET_CHECK_GT(stride_height, 0);
93 NN_RET_CHECK_GT(filter_width, 0);
94 NN_RET_CHECK_GT(filter_height, 0);
95 NN_RET_CHECK_GE(activation, 0);
96 NN_RET_CHECK_GT(filter_width, padding_left);
97 NN_RET_CHECK_GT(filter_width, padding_right);
98 NN_RET_CHECK_GT(filter_height, padding_top);
99 NN_RET_CHECK_GT(filter_height, padding_bottom);
100 return true;
101 }
102
toTfliteParamandroid::nn::pooling::__anone89cf0810111::PoolingParam103 tflite::PoolParams toTfliteParam(const Shape& output) const {
104 tflite::PoolParams params = {
105 .padding_values = {.width = static_cast<int16_t>(padding_left),
106 .height = static_cast<int16_t>(padding_top),
107 .width_offset = 0,
108 .height_offset = 0},
109 .stride_height = stride_height,
110 .stride_width = stride_width,
111 .filter_height = filter_height,
112 .filter_width = filter_width,
113 };
114 if (output.type == OperandType::TENSOR_QUANT8_ASYMM) {
115 int32_t output_activation_min = 0;
116 int32_t output_activation_max = 0;
117 CalculateActivationRangeUint8(activation, output, &output_activation_min,
118 &output_activation_max);
119 params.quantized_activation_min = output_activation_min;
120 params.quantized_activation_max = output_activation_max;
121 } else if (output.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
122 int32_t output_activation_min = 0;
123 int32_t output_activation_max = 0;
124 CalculateActivationRangeInt8(activation, output, &output_activation_min,
125 &output_activation_max);
126 params.quantized_activation_min = output_activation_min;
127 params.quantized_activation_max = output_activation_max;
128 } else {
129 float output_activation_min, output_activation_max;
130 CalculateActivationRangeFloat(activation, &output_activation_min,
131 &output_activation_max);
132 params.float_activation_min = output_activation_min;
133 params.float_activation_max = output_activation_max;
134 }
135 return params;
136 }
137 };
138
averagePoolNhwc(const float * inputData,const Shape & inputShape,const PoolingParam & param,float * outputData,const Shape & outputShape)139 bool averagePoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param,
140 float* outputData, const Shape& outputShape) {
141 NNTRACE_TRANS("averagePoolFloat32");
142 auto op_params = param.toTfliteParam(outputShape);
143 NNTRACE_COMP_SWITCH("optimized_ops::AveragePool");
144 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData,
145 convertShapeToTflshape(outputShape), outputData);
146 return true;
147 }
148
averagePoolNhwc(const _Float16 * inputData,const Shape & inputShape,const PoolingParam & param,_Float16 * outputData,const Shape & outputShape)149 bool averagePoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param,
150 _Float16* outputData, const Shape& outputShape) {
151 NNTRACE_TRANS("averagePoolFloat16");
152 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
153 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
154
155 convertFloat16ToFloat32(inputData, &inputDataFloat32);
156 averagePoolNhwc(inputDataFloat32.data(), inputShape, param, outputDataFloat32.data(),
157 outputShape);
158 convertFloat32ToFloat16(outputDataFloat32, outputData);
159 return true;
160 }
161
averagePoolNhwc(const uint8_t * inputData,const Shape & inputShape,const PoolingParam & param,uint8_t * outputData,const Shape & outputShape)162 bool averagePoolNhwc(const uint8_t* inputData, const Shape& inputShape, const PoolingParam& param,
163 uint8_t* outputData, const Shape& outputShape) {
164 NNTRACE_TRANS("averagePoolQuant8");
165 auto op_params = param.toTfliteParam(outputShape);
166 NNTRACE_COMP_SWITCH("optimized_ops::AveragePool");
167 tflite::optimized_ops::AveragePool(op_params, convertShapeToTflshape(inputShape), inputData,
168 convertShapeToTflshape(outputShape), outputData);
169 return true;
170 }
171
averagePoolNhwc(const int8_t * inputData,const Shape & inputShape,const PoolingParam & param,int8_t * outputData,const Shape & outputShape)172 bool averagePoolNhwc(const int8_t* inputData, const Shape& inputShape, const PoolingParam& param,
173 int8_t* outputData, const Shape& outputShape) {
174 NNTRACE_TRANS("averagePoolQuant8Signed");
175 auto op_params = param.toTfliteParam(outputShape);
176 NNTRACE_COMP_SWITCH("optimized_integer_ops::AveragePool");
177 // We are using reference implementation of the AveragePool op because the
178 // optimized version fails to pass some of the quantization coupling tests.
179 tflite::reference_integer_ops::AveragePool(op_params, convertShapeToTflshape(inputShape),
180 inputData, convertShapeToTflshape(outputShape),
181 outputData);
182 return true;
183 }
184
l2PoolNhwc(const float * inputData,const Shape & inputShape,const PoolingParam & param,float * outputData,const Shape & outputShape)185 bool l2PoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param,
186 float* outputData, const Shape& outputShape) {
187 NNTRACE_TRANS("l2PoolFloat32");
188 auto op_params = param.toTfliteParam(outputShape);
189 NNTRACE_COMP_SWITCH("optimized_ops::L2Pool");
190 tflite::optimized_ops::L2Pool(op_params, convertShapeToTflshape(inputShape), inputData,
191 convertShapeToTflshape(outputShape), outputData);
192 return true;
193 }
194
l2PoolNhwc(const _Float16 * inputData,const Shape & inputShape,const PoolingParam & param,_Float16 * outputData,const Shape & outputShape)195 bool l2PoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param,
196 _Float16* outputData, const Shape& outputShape) {
197 NNTRACE_TRANS("l2PoolFloat16");
198 std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
199 std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
200
201 convertFloat16ToFloat32(inputData, &inputDataFloat32);
202 l2PoolNhwc(inputDataFloat32.data(), inputShape, param, outputDataFloat32.data(), outputShape);
203 convertFloat32ToFloat16(outputDataFloat32, outputData);
204 return true;
205 }
206
maxPoolNhwc(const float * inputData,const Shape & inputShape,const PoolingParam & param,float * outputData,const Shape & outputShape)207 bool maxPoolNhwc(const float* inputData, const Shape& inputShape, const PoolingParam& param,
208 float* outputData, const Shape& outputShape) {
209 NNTRACE_TRANS("maxPoolFloat32");
210 auto op_params = param.toTfliteParam(outputShape);
211 NNTRACE_COMP_SWITCH("optimized_ops::MaxPool");
212 tflite::optimized_ops::MaxPool(op_params, convertShapeToTflshape(inputShape), inputData,
213 convertShapeToTflshape(outputShape), outputData);
214 return true;
215 }
216
maxPoolNhwc(const uint8_t * inputData,const Shape & inputShape,const PoolingParam & param,uint8_t * outputData,const Shape & outputShape)217 bool maxPoolNhwc(const uint8_t* inputData, const Shape& inputShape, const PoolingParam& param,
218 uint8_t* outputData, const Shape& outputShape) {
219 NNTRACE_TRANS("maxPoolQuant8");
220 auto op_params = param.toTfliteParam(outputShape);
221 NNTRACE_COMP_SWITCH("optimized_ops::MaxPool");
222 tflite::optimized_ops::MaxPool(op_params, convertShapeToTflshape(inputShape), inputData,
223 convertShapeToTflshape(outputShape), outputData);
224 return true;
225 }
226
maxPoolNhwc(const int8_t * inputData,const Shape & inputShape,const PoolingParam & param,int8_t * outputData,const Shape & outputShape)227 bool maxPoolNhwc(const int8_t* inputData, const Shape& inputShape, const PoolingParam& param,
228 int8_t* outputData, const Shape& outputShape) {
229 NNTRACE_TRANS("maxPoolQuant8Signed");
230 auto op_params = param.toTfliteParam(outputShape);
231 NNTRACE_COMP_SWITCH("optimized_integer_ops::MaxPool");
232 // We are using reference implementation of the MaxPool op because the
233 // optimized version fails to pass some of the quantization coupling tests.
234 tflite::reference_integer_ops::MaxPool(op_params, convertShapeToTflshape(inputShape), inputData,
235 convertShapeToTflshape(outputShape), outputData);
236 return true;
237 }
238
maxPoolNhwc(const _Float16 * inputData,const Shape & inputShape,const PoolingParam & param,_Float16 * outputData,const Shape & outputShape)239 bool maxPoolNhwc(const _Float16* inputData, const Shape& inputShape, const PoolingParam& param,
240 _Float16* outputData, const Shape& outputShape) {
241 NNTRACE_TRANS("maxPoolFloat16");
242 std::vector<float> inputData_float32(getNumberOfElements(inputShape));
243 std::vector<float> outputData_float32(getNumberOfElements(outputShape));
244
245 convertFloat16ToFloat32(inputData, &inputData_float32);
246 maxPoolNhwc(inputData_float32.data(), inputShape, param, outputData_float32.data(),
247 outputShape);
248 convertFloat32ToFloat16(outputData_float32, outputData);
249 return true;
250 }
251
252 template <typename T>
averagePool(const T * inputData,const Shape & inputShape,const PoolingParam & param,T * outputData,const Shape & outputShape)253 bool averagePool(const T* inputData, const Shape& inputShape, const PoolingParam& param,
254 T* outputData, const Shape& outputShape) {
255 InputWithLayout<T> input(param.useNchw);
256 OutputWithLayout<T> output(param.useNchw);
257 NN_RET_CHECK(input.initialize(inputData, inputShape));
258 NN_RET_CHECK(output.initialize(outputData, outputShape));
259 NN_RET_CHECK(averagePoolNhwc(input.getNhwcBuffer(), input.getNhwcShape(), param,
260 output.getNhwcBuffer(), output.getNhwcShape()));
261 NN_RET_CHECK(output.commit());
262 return true;
263 }
264
265 template <typename T>
l2Pool(const T * inputData,const Shape & inputShape,const PoolingParam & param,T * outputData,const Shape & outputShape)266 bool l2Pool(const T* inputData, const Shape& inputShape, const PoolingParam& param, T* outputData,
267 const Shape& outputShape) {
268 InputWithLayout<T> input(param.useNchw);
269 OutputWithLayout<T> output(param.useNchw);
270 NN_RET_CHECK(input.initialize(inputData, inputShape));
271 NN_RET_CHECK(output.initialize(outputData, outputShape));
272 NN_RET_CHECK(l2PoolNhwc(input.getNhwcBuffer(), input.getNhwcShape(), param,
273 output.getNhwcBuffer(), output.getNhwcShape()));
274 NN_RET_CHECK(output.commit());
275 return true;
276 }
277
278 template <typename T>
maxPool(const T * inputData,const Shape & inputShape,const PoolingParam & param,T * outputData,const Shape & outputShape)279 bool maxPool(const T* inputData, const Shape& inputShape, const PoolingParam& param, T* outputData,
280 const Shape& outputShape) {
281 InputWithLayout<T> input(param.useNchw);
282 OutputWithLayout<T> output(param.useNchw);
283 NN_RET_CHECK(input.initialize(inputData, inputShape));
284 NN_RET_CHECK(output.initialize(outputData, outputShape));
285 NN_RET_CHECK(maxPoolNhwc(input.getNhwcBuffer(), input.getNhwcShape(), param,
286 output.getNhwcBuffer(), output.getNhwcShape()));
287 NN_RET_CHECK(output.commit());
288 return true;
289 }
290
291 } // namespace
292
validate(OperationType opType,const IOperationValidationContext * context)293 bool validate(OperationType opType, const IOperationValidationContext* context) {
294 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
295 auto inputCount = context->getNumInputs();
296 NN_RET_CHECK(inputCount == 11 || inputCount == 10 || inputCount == 8 || inputCount == 7);
297 auto inputType = context->getInputType(kInputTensor);
298 std::vector<OperandType> inExpectedTypes;
299 if (inputType == OperandType::TENSOR_FLOAT32) {
300 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
301 inExpectedTypes = {
302 inputType, OperandType::INT32, OperandType::INT32, OperandType::INT32,
303 OperandType::INT32, OperandType::INT32, OperandType::INT32,
304 };
305 } else if (inputType == OperandType::TENSOR_FLOAT16) {
306 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
307 inExpectedTypes = {
308 OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::INT32,
309 OperandType::INT32, OperandType::INT32, OperandType::INT32,
310 OperandType::INT32,
311 };
312 } else if (opType != OperationType::L2_POOL_2D &&
313 inputType == OperandType::TENSOR_QUANT8_ASYMM) {
314 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
315 inExpectedTypes = {
316 OperandType::TENSOR_QUANT8_ASYMM,
317 OperandType::INT32,
318 OperandType::INT32,
319 OperandType::INT32,
320 OperandType::INT32,
321 OperandType::INT32,
322 OperandType::INT32,
323 };
324 } else if (opType != OperationType::L2_POOL_2D &&
325 inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
326 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3));
327 inExpectedTypes = {
328 OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
329 OperandType::INT32,
330 OperandType::INT32,
331 OperandType::INT32,
332 OperandType::INT32,
333 OperandType::INT32,
334 OperandType::INT32,
335 };
336 } else {
337 NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation "
338 << getOperationName(opType);
339 }
340
341 if (inputCount >= 10) {
342 std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
343 inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
344 explicitScalarTypes.end());
345 }
346 if (inputCount == 11 || inputCount == 8) {
347 inExpectedTypes.push_back(OperandType::BOOL);
348 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
349 } else {
350 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
351 }
352 return validateInputTypes(context, inExpectedTypes) &&
353 validateOutputTypes(context, {inputType});
354 }
355
prepare(IOperationExecutionContext * context)356 bool prepare(IOperationExecutionContext* context) {
357 Shape input = context->getInputShape(kInputTensor);
358 NN_RET_CHECK_EQ(getNumberOfDimensions(input), 4);
359
360 PoolingParam param;
361 NN_RET_CHECK(param.initialize(context));
362
363 // Only batches can be zero.
364 uint32_t batches = getSizeOfDimension(input, 0);
365 uint32_t height = getSizeOfDimension(input, param.useNchw ? 2 : 1);
366 uint32_t width = getSizeOfDimension(input, param.useNchw ? 3 : 2);
367 uint32_t channels = getSizeOfDimension(input, param.useNchw ? 1 : 3);
368 NN_RET_CHECK_GT(height, 0);
369 NN_RET_CHECK_GT(width, 0);
370 NN_RET_CHECK_GT(channels, 0);
371
372 uint32_t outWidth = computeOutSize(width, param.filter_width, param.stride_width,
373 param.padding_left, param.padding_right);
374 uint32_t outHeight = computeOutSize(height, param.filter_height, param.stride_height,
375 param.padding_top, param.padding_bottom);
376
377 Shape output = input;
378 if (param.useNchw) {
379 output.dimensions = {batches, channels, outHeight, outWidth};
380 } else {
381 output.dimensions = {batches, outHeight, outWidth, channels};
382 }
383 return context->setOutputShape(kOutputTensor, output);
384 }
385
386 #define POOLING_DISPATCH_INPUT_TYPE(name, type, cppType) \
387 case OperandType::type: \
388 return name(context->getInputBuffer<cppType>(kInputTensor), \
389 context->getInputShape(kInputTensor), param, \
390 context->getOutputBuffer<cppType>(kOutputTensor), \
391 context->getOutputShape(kOutputTensor))
392
executeAveragePool(IOperationExecutionContext * context)393 bool executeAveragePool(IOperationExecutionContext* context) {
394 // Bypass execution in the case of zero-sized input.
395 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
396 PoolingParam param;
397 NN_RET_CHECK(param.initialize(context));
398 switch (context->getInputType(kInputTensor)) {
399 POOLING_DISPATCH_INPUT_TYPE(averagePool, TENSOR_FLOAT32, float);
400 POOLING_DISPATCH_INPUT_TYPE(averagePool, TENSOR_FLOAT16, _Float16);
401 POOLING_DISPATCH_INPUT_TYPE(averagePool, TENSOR_QUANT8_ASYMM, uint8_t);
402 POOLING_DISPATCH_INPUT_TYPE(averagePool, TENSOR_QUANT8_ASYMM_SIGNED, int8_t);
403 default:
404 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation AVERAGE_POOL_2D";
405 }
406 }
407
executeL2Pool(IOperationExecutionContext * context)408 bool executeL2Pool(IOperationExecutionContext* context) {
409 // Bypass execution in the case of zero-sized input.
410 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
411 PoolingParam param;
412 NN_RET_CHECK(param.initialize(context));
413 switch (context->getInputType(kInputTensor)) {
414 POOLING_DISPATCH_INPUT_TYPE(l2Pool, TENSOR_FLOAT32, float);
415 POOLING_DISPATCH_INPUT_TYPE(l2Pool, TENSOR_FLOAT16, _Float16);
416 default:
417 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation L2_POOL_2D";
418 }
419 }
420
executeMaxPool(IOperationExecutionContext * context)421 bool executeMaxPool(IOperationExecutionContext* context) {
422 // Bypass execution in the case of zero-sized input.
423 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
424 PoolingParam param;
425 NN_RET_CHECK(param.initialize(context));
426 switch (context->getInputType(kInputTensor)) {
427 POOLING_DISPATCH_INPUT_TYPE(maxPool, TENSOR_FLOAT32, float);
428 POOLING_DISPATCH_INPUT_TYPE(maxPool, TENSOR_FLOAT16, _Float16);
429 POOLING_DISPATCH_INPUT_TYPE(maxPool, TENSOR_QUANT8_ASYMM, uint8_t);
430 POOLING_DISPATCH_INPUT_TYPE(maxPool, TENSOR_QUANT8_ASYMM_SIGNED, int8_t);
431 default:
432 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation MAX_POOL_2D";
433 }
434 }
435
436 #undef POOLING_DISPATCH_INPUT_TYPE
437
438 } // namespace pooling
439
440 using std::placeholders::_1;
441 NN_REGISTER_OPERATION(AVERAGE_POOL_2D, "AVERAGE_POOL_2D",
442 std::bind(pooling::validate, OperationType::AVERAGE_POOL_2D, _1),
443 pooling::prepare, pooling::executeAveragePool, .allowZeroSizedInput = true);
444 NN_REGISTER_OPERATION(L2_POOL_2D, "L2_POOL_2D",
445 std::bind(pooling::validate, OperationType::L2_POOL_2D, _1), pooling::prepare,
446 pooling::executeL2Pool, .allowZeroSizedInput = true);
447 NN_REGISTER_OPERATION(MAX_POOL_2D, "MAX_POOL_2D",
448 std::bind(pooling::validate, OperationType::MAX_POOL_2D, _1),
449 pooling::prepare, pooling::executeMaxPool, .allowZeroSizedInput = true);
450
451 } // namespace nn
452 } // namespace android
453