1# 2# Copyright (C) 2018 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# 16 17batches = 2 18features = 4 19rank = 1 20units = int(features / rank) 21input_size = 3 22memory_size = 10 23 24model = Model() 25 26input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 28weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 29bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units)) 30state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 31rank_param = Int32Scalar("rank_param", rank) 32activation_param = Int32Scalar("activation_param", 0) 33state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 34output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) 35 36model = model.Operation("SVDF", input, weights_feature, weights_time, bias, state_in, 37 rank_param, activation_param).To([state_out, output]) 38model = model.RelaxedExecution(True) 39 40input0 = { 41 input: [], 42 weights_feature: [ 43 -0.31930989, -0.36118156, 0.0079667, 0.37613347, 44 0.22197971, 0.12416199, 0.27901134, 0.27557442, 45 0.3905206, -0.36137494, -0.06634006, -0.10640851 46 ], 47 weights_time: [ 48 -0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156, 49 0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199, 50 51 0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518, 52 -0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296, 53 54 -0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236, 55 0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846, 56 57 -0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166, 58 -0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657 59 ], 60 bias: [], 61 state_in: [0 for _ in range(batches * memory_size * features)], 62} 63 64test_inputs = [ 65 0.12609188, -0.46347019, -0.89598465, 66 0.12609188, -0.46347019, -0.89598465, 67 68 0.14278367, -1.64410412, -0.75222826, 69 0.14278367, -1.64410412, -0.75222826, 70 71 0.49837467, 0.19278903, 0.26584083, 72 0.49837467, 0.19278903, 0.26584083, 73 74 -0.11186574, 0.13164264, -0.05349274, 75 -0.11186574, 0.13164264, -0.05349274, 76 77 -0.68892461, 0.37783599, 0.18263303, 78 -0.68892461, 0.37783599, 0.18263303, 79 80 -0.81299269, -0.86831826, 1.43940818, 81 -0.81299269, -0.86831826, 1.43940818, 82 83 -1.45006323, -0.82251364, -1.69082689, 84 -1.45006323, -0.82251364, -1.69082689, 85 86 0.03966608, -0.24936394, -0.77526885, 87 0.03966608, -0.24936394, -0.77526885, 88 89 0.11771342, -0.23761693, -0.65898693, 90 0.11771342, -0.23761693, -0.65898693, 91 92 -0.89477462, 1.67204106, -0.53235275, 93 -0.89477462, 1.67204106, -0.53235275 94] 95 96golden_outputs = [ 97 0.014899, -0.0517661, -0.143725, -0.00271883, 98 0.014899, -0.0517661, -0.143725, -0.00271883, 99 100 0.068281, -0.162217, -0.152268, 0.00323521, 101 0.068281, -0.162217, -0.152268, 0.00323521, 102 103 -0.0317821, -0.0333089, 0.0609602, 0.0333759, 104 -0.0317821, -0.0333089, 0.0609602, 0.0333759, 105 106 -0.00623099, -0.077701, -0.391193, -0.0136691, 107 -0.00623099, -0.077701, -0.391193, -0.0136691, 108 109 0.201551, -0.164607, -0.179462, -0.0592739, 110 0.201551, -0.164607, -0.179462, -0.0592739, 111 112 0.0886511, -0.0875401, -0.269283, 0.0281379, 113 0.0886511, -0.0875401, -0.269283, 0.0281379, 114 115 -0.201174, -0.586145, -0.628624, -0.0330412, 116 -0.201174, -0.586145, -0.628624, -0.0330412, 117 118 -0.0839096, -0.299329, 0.108746, 0.109808, 119 -0.0839096, -0.299329, 0.108746, 0.109808, 120 121 0.419114, -0.237824, -0.422627, 0.175115, 122 0.419114, -0.237824, -0.422627, 0.175115, 123 124 0.36726, -0.522303, -0.456502, -0.175475, 125 0.36726, -0.522303, -0.456502, -0.175475 126] 127 128output0 = {state_out: [0 for _ in range(batches * memory_size * features)], 129 output: []} 130 131# TODO: enable more data points after fixing the reference issue 132for i in range(1): 133 batch_start = i * input_size * batches 134 batch_end = batch_start + input_size * batches 135 input0[input] = test_inputs[batch_start:batch_end] 136 golden_start = i * units * batches 137 golden_end = golden_start + units * batches 138 output0[output] = golden_outputs[golden_start:golden_end] 139 Example((input0, output0)) 140