1 /*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "RenderEngine"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include <sched.h>
23 #include <cmath>
24 #include <fstream>
25 #include <sstream>
26 #include <unordered_set>
27
28 #include <GLES2/gl2.h>
29 #include <GLES2/gl2ext.h>
30 #include <android-base/stringprintf.h>
31 #include <cutils/compiler.h>
32 #include <cutils/properties.h>
33 #include <gui/DebugEGLImageTracker.h>
34 #include <renderengine/Mesh.h>
35 #include <renderengine/Texture.h>
36 #include <renderengine/private/Description.h>
37 #include <sync/sync.h>
38 #include <ui/ColorSpace.h>
39 #include <ui/DebugUtils.h>
40 #include <ui/GraphicBuffer.h>
41 #include <ui/Rect.h>
42 #include <ui/Region.h>
43 #include <utils/KeyedVector.h>
44 #include <utils/Trace.h>
45 #include "GLESRenderEngine.h"
46 #include "GLExtensions.h"
47 #include "GLFramebuffer.h"
48 #include "GLImage.h"
49 #include "GLShadowVertexGenerator.h"
50 #include "Program.h"
51 #include "ProgramCache.h"
52 #include "filters/BlurFilter.h"
53
54 extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
55
checkGlError(const char * op,int lineNumber)56 bool checkGlError(const char* op, int lineNumber) {
57 bool errorFound = false;
58 GLint error = glGetError();
59 while (error != GL_NO_ERROR) {
60 errorFound = true;
61 error = glGetError();
62 ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error);
63 }
64 return errorFound;
65 }
66
67 static constexpr bool outputDebugPPMs = false;
68
writePPM(const char * basename,GLuint width,GLuint height)69 void writePPM(const char* basename, GLuint width, GLuint height) {
70 ALOGV("writePPM #%s: %d x %d", basename, width, height);
71
72 std::vector<GLubyte> pixels(width * height * 4);
73 std::vector<GLubyte> outBuffer(width * height * 3);
74
75 // TODO(courtneygo): We can now have float formats, need
76 // to remove this code or update to support.
77 // Make returned pixels fit in uint32_t, one byte per component
78 glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
79 if (checkGlError(__FUNCTION__, __LINE__)) {
80 return;
81 }
82
83 std::string filename(basename);
84 filename.append(".ppm");
85 std::ofstream file(filename.c_str(), std::ios::binary);
86 if (!file.is_open()) {
87 ALOGE("Unable to open file: %s", filename.c_str());
88 ALOGE("You may need to do: \"adb shell setenforce 0\" to enable "
89 "surfaceflinger to write debug images");
90 return;
91 }
92
93 file << "P6\n";
94 file << width << "\n";
95 file << height << "\n";
96 file << 255 << "\n";
97
98 auto ptr = reinterpret_cast<char*>(pixels.data());
99 auto outPtr = reinterpret_cast<char*>(outBuffer.data());
100 for (int y = height - 1; y >= 0; y--) {
101 char* data = ptr + y * width * sizeof(uint32_t);
102
103 for (GLuint x = 0; x < width; x++) {
104 // Only copy R, G and B components
105 outPtr[0] = data[0];
106 outPtr[1] = data[1];
107 outPtr[2] = data[2];
108 data += sizeof(uint32_t);
109 outPtr += 3;
110 }
111 }
112 file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size());
113 }
114
115 namespace android {
116 namespace renderengine {
117 namespace gl {
118
119 using base::StringAppendF;
120 using ui::Dataspace;
121
selectConfigForAttribute(EGLDisplay dpy,EGLint const * attrs,EGLint attribute,EGLint wanted,EGLConfig * outConfig)122 static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
123 EGLint wanted, EGLConfig* outConfig) {
124 EGLint numConfigs = -1, n = 0;
125 eglGetConfigs(dpy, nullptr, 0, &numConfigs);
126 std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
127 eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
128 configs.resize(n);
129
130 if (!configs.empty()) {
131 if (attribute != EGL_NONE) {
132 for (EGLConfig config : configs) {
133 EGLint value = 0;
134 eglGetConfigAttrib(dpy, config, attribute, &value);
135 if (wanted == value) {
136 *outConfig = config;
137 return NO_ERROR;
138 }
139 }
140 } else {
141 // just pick the first one
142 *outConfig = configs[0];
143 return NO_ERROR;
144 }
145 }
146
147 return NAME_NOT_FOUND;
148 }
149
selectEGLConfig(EGLDisplay display,EGLint format,EGLint renderableType,EGLConfig * config)150 static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
151 EGLConfig* config) {
152 // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
153 // it is to be used with WIFI displays
154 status_t err;
155 EGLint wantedAttribute;
156 EGLint wantedAttributeValue;
157
158 std::vector<EGLint> attribs;
159 if (renderableType) {
160 const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format);
161 const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102;
162
163 // Default to 8 bits per channel.
164 const EGLint tmpAttribs[] = {
165 EGL_RENDERABLE_TYPE,
166 renderableType,
167 EGL_RECORDABLE_ANDROID,
168 EGL_TRUE,
169 EGL_SURFACE_TYPE,
170 EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
171 EGL_FRAMEBUFFER_TARGET_ANDROID,
172 EGL_TRUE,
173 EGL_RED_SIZE,
174 is1010102 ? 10 : 8,
175 EGL_GREEN_SIZE,
176 is1010102 ? 10 : 8,
177 EGL_BLUE_SIZE,
178 is1010102 ? 10 : 8,
179 EGL_ALPHA_SIZE,
180 is1010102 ? 2 : 8,
181 EGL_NONE,
182 };
183 std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)),
184 std::back_inserter(attribs));
185 wantedAttribute = EGL_NONE;
186 wantedAttributeValue = EGL_NONE;
187 } else {
188 // if no renderable type specified, fallback to a simplified query
189 wantedAttribute = EGL_NATIVE_VISUAL_ID;
190 wantedAttributeValue = format;
191 }
192
193 err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue,
194 config);
195 if (err == NO_ERROR) {
196 EGLint caveat;
197 if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
198 ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
199 }
200
201 return err;
202 }
203
create(const RenderEngineCreationArgs & args)204 std::unique_ptr<GLESRenderEngine> GLESRenderEngine::create(const RenderEngineCreationArgs& args) {
205 // initialize EGL for the default display
206 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
207 if (!eglInitialize(display, nullptr, nullptr)) {
208 LOG_ALWAYS_FATAL("failed to initialize EGL");
209 }
210
211 const auto eglVersion = eglQueryStringImplementationANDROID(display, EGL_VERSION);
212 if (!eglVersion) {
213 checkGlError(__FUNCTION__, __LINE__);
214 LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_VERSION) failed");
215 }
216
217 const auto eglExtensions = eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS);
218 if (!eglExtensions) {
219 checkGlError(__FUNCTION__, __LINE__);
220 LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_EXTENSIONS) failed");
221 }
222
223 GLExtensions& extensions = GLExtensions::getInstance();
224 extensions.initWithEGLStrings(eglVersion, eglExtensions);
225
226 // The code assumes that ES2 or later is available if this extension is
227 // supported.
228 EGLConfig config = EGL_NO_CONFIG;
229 if (!extensions.hasNoConfigContext()) {
230 config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true);
231 }
232
233 bool useContextPriority =
234 extensions.hasContextPriority() && args.contextPriority == ContextPriority::HIGH;
235 EGLContext protectedContext = EGL_NO_CONTEXT;
236 if (args.enableProtectedContext && extensions.hasProtectedContent()) {
237 protectedContext = createEglContext(display, config, nullptr, useContextPriority,
238 Protection::PROTECTED);
239 ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
240 }
241
242 EGLContext ctxt = createEglContext(display, config, protectedContext, useContextPriority,
243 Protection::UNPROTECTED);
244
245 // if can't create a GL context, we can only abort.
246 LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
247
248 EGLSurface dummy = EGL_NO_SURFACE;
249 if (!extensions.hasSurfacelessContext()) {
250 dummy = createDummyEglPbufferSurface(display, config, args.pixelFormat,
251 Protection::UNPROTECTED);
252 LOG_ALWAYS_FATAL_IF(dummy == EGL_NO_SURFACE, "can't create dummy pbuffer");
253 }
254 EGLBoolean success = eglMakeCurrent(display, dummy, dummy, ctxt);
255 LOG_ALWAYS_FATAL_IF(!success, "can't make dummy pbuffer current");
256 extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
257 glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
258
259 EGLSurface protectedDummy = EGL_NO_SURFACE;
260 if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
261 protectedDummy = createDummyEglPbufferSurface(display, config, args.pixelFormat,
262 Protection::PROTECTED);
263 ALOGE_IF(protectedDummy == EGL_NO_SURFACE, "can't create protected dummy pbuffer");
264 }
265
266 // now figure out what version of GL did we actually get
267 GlesVersion version = parseGlesVersion(extensions.getVersion());
268
269 LOG_ALWAYS_FATAL_IF(args.supportsBackgroundBlur && version < GLES_VERSION_3_0,
270 "Blurs require OpenGL ES 3.0. Please unset ro.surface_flinger.supports_background_blur");
271
272 // initialize the renderer while GL is current
273 std::unique_ptr<GLESRenderEngine> engine;
274 switch (version) {
275 case GLES_VERSION_1_0:
276 case GLES_VERSION_1_1:
277 LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run.");
278 break;
279 case GLES_VERSION_2_0:
280 case GLES_VERSION_3_0:
281 engine = std::make_unique<GLESRenderEngine>(args, display, config, ctxt, dummy,
282 protectedContext, protectedDummy);
283 break;
284 }
285
286 ALOGI("OpenGL ES informations:");
287 ALOGI("vendor : %s", extensions.getVendor());
288 ALOGI("renderer : %s", extensions.getRenderer());
289 ALOGI("version : %s", extensions.getVersion());
290 ALOGI("extensions: %s", extensions.getExtensions());
291 ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
292 ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
293
294 return engine;
295 }
296
chooseEglConfig(EGLDisplay display,int format,bool logConfig)297 EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
298 status_t err;
299 EGLConfig config;
300
301 // First try to get an ES3 config
302 err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
303 if (err != NO_ERROR) {
304 // If ES3 fails, try to get an ES2 config
305 err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
306 if (err != NO_ERROR) {
307 // If ES2 still doesn't work, probably because we're on the emulator.
308 // try a simplified query
309 ALOGW("no suitable EGLConfig found, trying a simpler query");
310 err = selectEGLConfig(display, format, 0, &config);
311 if (err != NO_ERROR) {
312 // this EGL is too lame for android
313 LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
314 }
315 }
316 }
317
318 if (logConfig) {
319 // print some debugging info
320 EGLint r, g, b, a;
321 eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
322 eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
323 eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
324 eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
325 ALOGI("EGL information:");
326 ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
327 ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
328 ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
329 ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
330 ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
331 }
332
333 return config;
334 }
335
GLESRenderEngine(const RenderEngineCreationArgs & args,EGLDisplay display,EGLConfig config,EGLContext ctxt,EGLSurface dummy,EGLContext protectedContext,EGLSurface protectedDummy)336 GLESRenderEngine::GLESRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display,
337 EGLConfig config, EGLContext ctxt, EGLSurface dummy,
338 EGLContext protectedContext, EGLSurface protectedDummy)
339 : renderengine::impl::RenderEngine(args),
340 mEGLDisplay(display),
341 mEGLConfig(config),
342 mEGLContext(ctxt),
343 mDummySurface(dummy),
344 mProtectedEGLContext(protectedContext),
345 mProtectedDummySurface(protectedDummy),
346 mVpWidth(0),
347 mVpHeight(0),
348 mFramebufferImageCacheSize(args.imageCacheSize),
349 mUseColorManagement(args.useColorManagement) {
350 glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
351 glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
352
353 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
354 glPixelStorei(GL_PACK_ALIGNMENT, 4);
355
356 // Initialize protected EGL Context.
357 if (mProtectedEGLContext != EGL_NO_CONTEXT) {
358 EGLBoolean success = eglMakeCurrent(display, mProtectedDummySurface, mProtectedDummySurface,
359 mProtectedEGLContext);
360 ALOGE_IF(!success, "can't make protected context current");
361 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
362 glPixelStorei(GL_PACK_ALIGNMENT, 4);
363 success = eglMakeCurrent(display, mDummySurface, mDummySurface, mEGLContext);
364 LOG_ALWAYS_FATAL_IF(!success, "can't make default context current");
365 }
366
367 // mColorBlindnessCorrection = M;
368
369 if (mUseColorManagement) {
370 const ColorSpace srgb(ColorSpace::sRGB());
371 const ColorSpace displayP3(ColorSpace::DisplayP3());
372 const ColorSpace bt2020(ColorSpace::BT2020());
373
374 // no chromatic adaptation needed since all color spaces use D65 for their white points.
375 mSrgbToXyz = mat4(srgb.getRGBtoXYZ());
376 mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ());
377 mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ());
378 mXyzToSrgb = mat4(srgb.getXYZtoRGB());
379 mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB());
380 mXyzToBt2020 = mat4(bt2020.getXYZtoRGB());
381
382 // Compute sRGB to Display P3 and BT2020 transform matrix.
383 // NOTE: For now, we are limiting output wide color space support to
384 // Display-P3 and BT2020 only.
385 mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz;
386 mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz;
387
388 // Compute Display P3 to sRGB and BT2020 transform matrix.
389 mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz;
390 mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz;
391
392 // Compute BT2020 to sRGB and Display P3 transform matrix
393 mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz;
394 mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz;
395 }
396
397 char value[PROPERTY_VALUE_MAX];
398 property_get("debug.egl.traceGpuCompletion", value, "0");
399 if (atoi(value)) {
400 mTraceGpuCompletion = true;
401 mFlushTracer = std::make_unique<FlushTracer>(this);
402 }
403
404 if (args.supportsBackgroundBlur) {
405 mBlurFilter = new BlurFilter(*this);
406 checkErrors("BlurFilter creation");
407 }
408
409 mImageManager = std::make_unique<ImageManager>(this);
410 mImageManager->initThread();
411 mDrawingBuffer = createFramebuffer();
412 sp<GraphicBuffer> buf =
413 new GraphicBuffer(1, 1, PIXEL_FORMAT_RGBA_8888, 1,
414 GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE, "placeholder");
415
416 const status_t err = buf->initCheck();
417 if (err != OK) {
418 ALOGE("Error allocating placeholder buffer: %d", err);
419 return;
420 }
421 mPlaceholderBuffer = buf.get();
422 EGLint attributes[] = {
423 EGL_NONE,
424 };
425 mPlaceholderImage = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
426 mPlaceholderBuffer, attributes);
427 ALOGE_IF(mPlaceholderImage == EGL_NO_IMAGE_KHR, "Failed to create placeholder image: %#x",
428 eglGetError());
429 }
430
~GLESRenderEngine()431 GLESRenderEngine::~GLESRenderEngine() {
432 // Destroy the image manager first.
433 mImageManager = nullptr;
434 std::lock_guard<std::mutex> lock(mRenderingMutex);
435 unbindFrameBuffer(mDrawingBuffer.get());
436 mDrawingBuffer = nullptr;
437 while (!mFramebufferImageCache.empty()) {
438 EGLImageKHR expired = mFramebufferImageCache.front().second;
439 mFramebufferImageCache.pop_front();
440 eglDestroyImageKHR(mEGLDisplay, expired);
441 DEBUG_EGL_IMAGE_TRACKER_DESTROY();
442 }
443 eglDestroyImageKHR(mEGLDisplay, mPlaceholderImage);
444 mImageCache.clear();
445 eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
446 eglTerminate(mEGLDisplay);
447 }
448
createFramebuffer()449 std::unique_ptr<Framebuffer> GLESRenderEngine::createFramebuffer() {
450 return std::make_unique<GLFramebuffer>(*this);
451 }
452
createImage()453 std::unique_ptr<Image> GLESRenderEngine::createImage() {
454 return std::make_unique<GLImage>(*this);
455 }
456
getFramebufferForDrawing()457 Framebuffer* GLESRenderEngine::getFramebufferForDrawing() {
458 return mDrawingBuffer.get();
459 }
460
primeCache() const461 void GLESRenderEngine::primeCache() const {
462 ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext,
463 mArgs.useColorManagement,
464 mArgs.precacheToneMapperShaderOnly);
465 }
466
flush()467 base::unique_fd GLESRenderEngine::flush() {
468 ATRACE_CALL();
469 if (!GLExtensions::getInstance().hasNativeFenceSync()) {
470 return base::unique_fd();
471 }
472
473 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
474 if (sync == EGL_NO_SYNC_KHR) {
475 ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
476 return base::unique_fd();
477 }
478
479 // native fence fd will not be populated until flush() is done.
480 glFlush();
481
482 // get the fence fd
483 base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
484 eglDestroySyncKHR(mEGLDisplay, sync);
485 if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
486 ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
487 }
488
489 // Only trace if we have a valid fence, as current usage falls back to
490 // calling finish() if the fence fd is invalid.
491 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) {
492 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
493 }
494
495 return fenceFd;
496 }
497
finish()498 bool GLESRenderEngine::finish() {
499 ATRACE_CALL();
500 if (!GLExtensions::getInstance().hasFenceSync()) {
501 ALOGW("no synchronization support");
502 return false;
503 }
504
505 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr);
506 if (sync == EGL_NO_SYNC_KHR) {
507 ALOGW("failed to create EGL fence sync: %#x", eglGetError());
508 return false;
509 }
510
511 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) {
512 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
513 }
514
515 return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR);
516 }
517
waitSync(EGLSyncKHR sync,EGLint flags)518 bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) {
519 EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/);
520 EGLint error = eglGetError();
521 eglDestroySyncKHR(mEGLDisplay, sync);
522 if (result != EGL_CONDITION_SATISFIED_KHR) {
523 if (result == EGL_TIMEOUT_EXPIRED_KHR) {
524 ALOGW("fence wait timed out");
525 } else {
526 ALOGW("error waiting on EGL fence: %#x", error);
527 }
528 return false;
529 }
530
531 return true;
532 }
533
waitFence(base::unique_fd fenceFd)534 bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) {
535 if (!GLExtensions::getInstance().hasNativeFenceSync() ||
536 !GLExtensions::getInstance().hasWaitSync()) {
537 return false;
538 }
539
540 // release the fd and transfer the ownership to EGLSync
541 EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE};
542 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
543 if (sync == EGL_NO_SYNC_KHR) {
544 ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
545 return false;
546 }
547
548 // XXX: The spec draft is inconsistent as to whether this should return an
549 // EGLint or void. Ignore the return value for now, as it's not strictly
550 // needed.
551 eglWaitSyncKHR(mEGLDisplay, sync, 0);
552 EGLint error = eglGetError();
553 eglDestroySyncKHR(mEGLDisplay, sync);
554 if (error != EGL_SUCCESS) {
555 ALOGE("failed to wait for EGL native fence sync: %#x", error);
556 return false;
557 }
558
559 return true;
560 }
561
clearWithColor(float red,float green,float blue,float alpha)562 void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) {
563 ATRACE_CALL();
564 glDisable(GL_BLEND);
565 glClearColor(red, green, blue, alpha);
566 glClear(GL_COLOR_BUFFER_BIT);
567 }
568
fillRegionWithColor(const Region & region,float red,float green,float blue,float alpha)569 void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue,
570 float alpha) {
571 size_t c;
572 Rect const* r = region.getArray(&c);
573 Mesh mesh = Mesh::Builder()
574 .setPrimitive(Mesh::TRIANGLES)
575 .setVertices(c * 6 /* count */, 2 /* size */)
576 .build();
577 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
578 for (size_t i = 0; i < c; i++, r++) {
579 position[i * 6 + 0].x = r->left;
580 position[i * 6 + 0].y = r->top;
581 position[i * 6 + 1].x = r->left;
582 position[i * 6 + 1].y = r->bottom;
583 position[i * 6 + 2].x = r->right;
584 position[i * 6 + 2].y = r->bottom;
585 position[i * 6 + 3].x = r->left;
586 position[i * 6 + 3].y = r->top;
587 position[i * 6 + 4].x = r->right;
588 position[i * 6 + 4].y = r->bottom;
589 position[i * 6 + 5].x = r->right;
590 position[i * 6 + 5].y = r->top;
591 }
592 setupFillWithColor(red, green, blue, alpha);
593 drawMesh(mesh);
594 }
595
setScissor(const Rect & region)596 void GLESRenderEngine::setScissor(const Rect& region) {
597 glScissor(region.left, region.top, region.getWidth(), region.getHeight());
598 glEnable(GL_SCISSOR_TEST);
599 }
600
disableScissor()601 void GLESRenderEngine::disableScissor() {
602 glDisable(GL_SCISSOR_TEST);
603 }
604
genTextures(size_t count,uint32_t * names)605 void GLESRenderEngine::genTextures(size_t count, uint32_t* names) {
606 glGenTextures(count, names);
607 }
608
deleteTextures(size_t count,uint32_t const * names)609 void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) {
610 for (int i = 0; i < count; ++i) {
611 mTextureView.erase(names[i]);
612 }
613 glDeleteTextures(count, names);
614 }
615
bindExternalTextureImage(uint32_t texName,const Image & image)616 void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) {
617 ATRACE_CALL();
618 const GLImage& glImage = static_cast<const GLImage&>(image);
619 const GLenum target = GL_TEXTURE_EXTERNAL_OES;
620
621 glBindTexture(target, texName);
622 if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) {
623 glEGLImageTargetTexture2DOES(target, static_cast<GLeglImageOES>(glImage.getEGLImage()));
624 }
625 }
626
bindExternalTextureBuffer(uint32_t texName,const sp<GraphicBuffer> & buffer,const sp<Fence> & bufferFence)627 status_t GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName,
628 const sp<GraphicBuffer>& buffer,
629 const sp<Fence>& bufferFence) {
630 if (buffer == nullptr) {
631 return BAD_VALUE;
632 }
633
634 ATRACE_CALL();
635
636 bool found = false;
637 {
638 std::lock_guard<std::mutex> lock(mRenderingMutex);
639 auto cachedImage = mImageCache.find(buffer->getId());
640 found = (cachedImage != mImageCache.end());
641 }
642
643 // If we couldn't find the image in the cache at this time, then either
644 // SurfaceFlinger messed up registering the buffer ahead of time or we got
645 // backed up creating other EGLImages.
646 if (!found) {
647 status_t cacheResult = mImageManager->cache(buffer);
648 if (cacheResult != NO_ERROR) {
649 return cacheResult;
650 }
651 }
652
653 // Whether or not we needed to cache, re-check mImageCache to make sure that
654 // there's an EGLImage. The current threading model guarantees that we don't
655 // destroy a cached image until it's really not needed anymore (i.e. this
656 // function should not be called), so the only possibility is that something
657 // terrible went wrong and we should just bind something and move on.
658 {
659 std::lock_guard<std::mutex> lock(mRenderingMutex);
660 auto cachedImage = mImageCache.find(buffer->getId());
661
662 if (cachedImage == mImageCache.end()) {
663 // We failed creating the image if we got here, so bail out.
664 ALOGE("Failed to create an EGLImage when rendering");
665 bindExternalTextureImage(texName, *createImage());
666 return NO_INIT;
667 }
668
669 bindExternalTextureImage(texName, *cachedImage->second);
670 mTextureView.insert_or_assign(texName, buffer->getId());
671 }
672
673 // Wait for the new buffer to be ready.
674 if (bufferFence != nullptr && bufferFence->isValid()) {
675 if (GLExtensions::getInstance().hasWaitSync()) {
676 base::unique_fd fenceFd(bufferFence->dup());
677 if (fenceFd == -1) {
678 ALOGE("error dup'ing fence fd: %d", errno);
679 return -errno;
680 }
681 if (!waitFence(std::move(fenceFd))) {
682 ALOGE("failed to wait on fence fd");
683 return UNKNOWN_ERROR;
684 }
685 } else {
686 status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer");
687 if (err != NO_ERROR) {
688 ALOGE("error waiting for fence: %d", err);
689 return err;
690 }
691 }
692 }
693
694 return NO_ERROR;
695 }
696
cacheExternalTextureBuffer(const sp<GraphicBuffer> & buffer)697 void GLESRenderEngine::cacheExternalTextureBuffer(const sp<GraphicBuffer>& buffer) {
698 mImageManager->cacheAsync(buffer, nullptr);
699 }
700
cacheExternalTextureBufferForTesting(const sp<GraphicBuffer> & buffer)701 std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::cacheExternalTextureBufferForTesting(
702 const sp<GraphicBuffer>& buffer) {
703 auto barrier = std::make_shared<ImageManager::Barrier>();
704 mImageManager->cacheAsync(buffer, barrier);
705 return barrier;
706 }
707
cacheExternalTextureBufferInternal(const sp<GraphicBuffer> & buffer)708 status_t GLESRenderEngine::cacheExternalTextureBufferInternal(const sp<GraphicBuffer>& buffer) {
709 if (buffer == nullptr) {
710 return BAD_VALUE;
711 }
712
713 {
714 std::lock_guard<std::mutex> lock(mRenderingMutex);
715 if (mImageCache.count(buffer->getId()) > 0) {
716 // If there's already an image then fail fast here.
717 return NO_ERROR;
718 }
719 }
720 ATRACE_CALL();
721
722 // Create the image without holding a lock so that we don't block anything.
723 std::unique_ptr<Image> newImage = createImage();
724
725 bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(),
726 buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
727 if (!created) {
728 ALOGE("Failed to create image. size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d",
729 buffer->getWidth(), buffer->getHeight(), buffer->getStride(), buffer->getUsage(),
730 buffer->getPixelFormat());
731 return NO_INIT;
732 }
733
734 {
735 std::lock_guard<std::mutex> lock(mRenderingMutex);
736 if (mImageCache.count(buffer->getId()) > 0) {
737 // In theory it's possible for another thread to recache the image,
738 // so bail out if another thread won.
739 return NO_ERROR;
740 }
741 mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage)));
742 }
743
744 return NO_ERROR;
745 }
746
unbindExternalTextureBuffer(uint64_t bufferId)747 void GLESRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) {
748 mImageManager->releaseAsync(bufferId, nullptr);
749 }
750
unbindExternalTextureBufferForTesting(uint64_t bufferId)751 std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::unbindExternalTextureBufferForTesting(
752 uint64_t bufferId) {
753 auto barrier = std::make_shared<ImageManager::Barrier>();
754 mImageManager->releaseAsync(bufferId, barrier);
755 return barrier;
756 }
757
unbindExternalTextureBufferInternal(uint64_t bufferId)758 void GLESRenderEngine::unbindExternalTextureBufferInternal(uint64_t bufferId) {
759 std::unique_ptr<Image> image;
760 {
761 std::lock_guard<std::mutex> lock(mRenderingMutex);
762 const auto& cachedImage = mImageCache.find(bufferId);
763
764 if (cachedImage != mImageCache.end()) {
765 ALOGV("Destroying image for buffer: %" PRIu64, bufferId);
766 // Move the buffer out of cache first, so that we can destroy
767 // without holding the cache's lock.
768 image = std::move(cachedImage->second);
769 mImageCache.erase(bufferId);
770 return;
771 }
772 }
773 ALOGV("Failed to find image for buffer: %" PRIu64, bufferId);
774 }
775
setupLayerCropping(const LayerSettings & layer,Mesh & mesh)776 FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) {
777 // Translate win by the rounded corners rect coordinates, to have all values in
778 // layer coordinate space.
779 FloatRect cropWin = layer.geometry.boundaries;
780 const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop;
781 cropWin.left -= roundedCornersCrop.left;
782 cropWin.right -= roundedCornersCrop.left;
783 cropWin.top -= roundedCornersCrop.top;
784 cropWin.bottom -= roundedCornersCrop.top;
785 Mesh::VertexArray<vec2> cropCoords(mesh.getCropCoordArray<vec2>());
786 cropCoords[0] = vec2(cropWin.left, cropWin.top);
787 cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight());
788 cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight());
789 cropCoords[3] = vec2(cropWin.right, cropWin.top);
790
791 setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight());
792 return cropWin;
793 }
794
handleRoundedCorners(const DisplaySettings & display,const LayerSettings & layer,const Mesh & mesh)795 void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display,
796 const LayerSettings& layer, const Mesh& mesh) {
797 // We separate the layer into 3 parts essentially, such that we only turn on blending for the
798 // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle.
799 FloatRect bounds = layer.geometry.roundedCornersCrop;
800
801 // Explicitly compute the transform from the clip rectangle to the physical
802 // display. Normally, this is done in glViewport but we explicitly compute
803 // it here so that we can get the scissor bounds correct.
804 const Rect& source = display.clip;
805 const Rect& destination = display.physicalDisplay;
806 // Here we compute the following transform:
807 // 1. Translate the top left corner of the source clip to (0, 0)
808 // 2. Rotate the clip rectangle about the origin in accordance with the
809 // orientation flag
810 // 3. Translate the top left corner back to the origin.
811 // 4. Scale the clip rectangle to the destination rectangle dimensions
812 // 5. Translate the top left corner to the destination rectangle's top left
813 // corner.
814 const mat4 translateSource = mat4::translate(vec4(-source.left, -source.top, 0, 1));
815 mat4 rotation;
816 int displacementX = 0;
817 int displacementY = 0;
818 float destinationWidth = static_cast<float>(destination.getWidth());
819 float destinationHeight = static_cast<float>(destination.getHeight());
820 float sourceWidth = static_cast<float>(source.getWidth());
821 float sourceHeight = static_cast<float>(source.getHeight());
822 const float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
823 switch (display.orientation) {
824 case ui::Transform::ROT_90:
825 rotation = mat4::rotate(rot90InRadians, vec3(0, 0, 1));
826 displacementX = source.getHeight();
827 std::swap(sourceHeight, sourceWidth);
828 break;
829 case ui::Transform::ROT_180:
830 rotation = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1));
831 displacementY = source.getHeight();
832 displacementX = source.getWidth();
833 break;
834 case ui::Transform::ROT_270:
835 rotation = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1));
836 displacementY = source.getWidth();
837 std::swap(sourceHeight, sourceWidth);
838 break;
839 default:
840 break;
841 }
842
843 const mat4 intermediateTranslation = mat4::translate(vec4(displacementX, displacementY, 0, 1));
844 const mat4 scale = mat4::scale(
845 vec4(destinationWidth / sourceWidth, destinationHeight / sourceHeight, 1, 1));
846 const mat4 translateDestination =
847 mat4::translate(vec4(destination.left, destination.top, 0, 1));
848 const mat4 globalTransform =
849 translateDestination * scale * intermediateTranslation * rotation * translateSource;
850
851 const mat4 transformMatrix = globalTransform * layer.geometry.positionTransform;
852 const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0);
853 const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0);
854 const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate;
855 const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate;
856 bounds = FloatRect(std::min(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]),
857 std::min(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]),
858 std::max(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]),
859 std::max(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]));
860
861 // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners
862 // and the middle part without rounded corners.
863 const int32_t radius = ceil(layer.geometry.roundedCornersRadius);
864 const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius);
865 setScissor(topRect);
866 drawMesh(mesh);
867 const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom);
868 setScissor(bottomRect);
869 drawMesh(mesh);
870
871 // The middle part of the layer can turn off blending.
872 if (topRect.bottom < bottomRect.top) {
873 const Rect middleRect(bounds.left, bounds.top + radius, bounds.right,
874 bounds.bottom - radius);
875 setScissor(middleRect);
876 mState.cornerRadius = 0.0;
877 disableBlending();
878 drawMesh(mesh);
879 }
880 disableScissor();
881 }
882
bindFrameBuffer(Framebuffer * framebuffer)883 status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) {
884 ATRACE_CALL();
885 GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer);
886 EGLImageKHR eglImage = glFramebuffer->getEGLImage();
887 uint32_t textureName = glFramebuffer->getTextureName();
888 uint32_t framebufferName = glFramebuffer->getFramebufferName();
889
890 // Bind the texture and turn our EGLImage into a texture
891 glBindTexture(GL_TEXTURE_2D, textureName);
892 glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage);
893
894 // Bind the Framebuffer to render into
895 glBindFramebuffer(GL_FRAMEBUFFER, framebufferName);
896 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0);
897
898 uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
899 ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d",
900 glStatus);
901
902 return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE;
903 }
904
unbindFrameBuffer(Framebuffer *)905 void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /*framebuffer*/) {
906 ATRACE_CALL();
907
908 // back to main framebuffer
909 glBindFramebuffer(GL_FRAMEBUFFER, 0);
910 }
911
cleanupPostRender(CleanupMode mode)912 bool GLESRenderEngine::cleanupPostRender(CleanupMode mode) {
913 ATRACE_CALL();
914
915 if (mPriorResourcesCleaned ||
916 (mLastDrawFence != nullptr && mLastDrawFence->getStatus() != Fence::Status::Signaled)) {
917 // If we don't have a prior frame needing cleanup, then don't do anything.
918 return false;
919 }
920
921 // This is a bit of a band-aid fix for FrameCaptureProcessor, as we should
922 // not need to keep memory around if we don't need to do so.
923 if (mode == CleanupMode::CLEAN_ALL) {
924 // TODO: SurfaceFlinger memory utilization may benefit from resetting
925 // texture bindings as well. Assess if it does and there's no performance regression
926 // when rebinding the same image data to the same texture, and if so then its mode
927 // behavior can be tweaked.
928 if (mPlaceholderImage != EGL_NO_IMAGE_KHR) {
929 for (auto [textureName, bufferId] : mTextureView) {
930 if (bufferId && mPlaceholderImage != EGL_NO_IMAGE_KHR) {
931 glBindTexture(GL_TEXTURE_EXTERNAL_OES, textureName);
932 glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES,
933 static_cast<GLeglImageOES>(mPlaceholderImage));
934 mTextureView[textureName] = std::nullopt;
935 checkErrors();
936 }
937 }
938 }
939 {
940 std::lock_guard<std::mutex> lock(mRenderingMutex);
941 mImageCache.clear();
942 }
943 }
944
945 // Bind the texture to dummy data so that backing image data can be freed.
946 GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing());
947 glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer);
948 // Release the cached fence here, so that we don't churn reallocations when
949 // we could no-op repeated calls of this method instead.
950 mLastDrawFence = nullptr;
951 mPriorResourcesCleaned = true;
952 return true;
953 }
954
checkErrors() const955 void GLESRenderEngine::checkErrors() const {
956 checkErrors(nullptr);
957 }
958
checkErrors(const char * tag) const959 void GLESRenderEngine::checkErrors(const char* tag) const {
960 do {
961 // there could be more than one error flag
962 GLenum error = glGetError();
963 if (error == GL_NO_ERROR) break;
964 if (tag == nullptr) {
965 ALOGE("GL error 0x%04x", int(error));
966 } else {
967 ALOGE("GL error: %s -> 0x%04x", tag, int(error));
968 }
969 } while (true);
970 }
971
supportsProtectedContent() const972 bool GLESRenderEngine::supportsProtectedContent() const {
973 return mProtectedEGLContext != EGL_NO_CONTEXT;
974 }
975
useProtectedContext(bool useProtectedContext)976 bool GLESRenderEngine::useProtectedContext(bool useProtectedContext) {
977 if (useProtectedContext == mInProtectedContext) {
978 return true;
979 }
980 if (useProtectedContext && mProtectedEGLContext == EGL_NO_CONTEXT) {
981 return false;
982 }
983 const EGLSurface surface = useProtectedContext ? mProtectedDummySurface : mDummySurface;
984 const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext;
985 const bool success = eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE;
986 if (success) {
987 mInProtectedContext = useProtectedContext;
988 }
989 return success;
990 }
createFramebufferImageIfNeeded(ANativeWindowBuffer * nativeBuffer,bool isProtected,bool useFramebufferCache)991 EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer,
992 bool isProtected,
993 bool useFramebufferCache) {
994 sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(nativeBuffer);
995 if (useFramebufferCache) {
996 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
997 for (const auto& image : mFramebufferImageCache) {
998 if (image.first == graphicBuffer->getId()) {
999 return image.second;
1000 }
1001 }
1002 }
1003 EGLint attributes[] = {
1004 isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE,
1005 isProtected ? EGL_TRUE : EGL_NONE,
1006 EGL_NONE,
1007 };
1008 EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
1009 nativeBuffer, attributes);
1010 if (useFramebufferCache) {
1011 if (image != EGL_NO_IMAGE_KHR) {
1012 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
1013 if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) {
1014 EGLImageKHR expired = mFramebufferImageCache.front().second;
1015 mFramebufferImageCache.pop_front();
1016 eglDestroyImageKHR(mEGLDisplay, expired);
1017 DEBUG_EGL_IMAGE_TRACKER_DESTROY();
1018 }
1019 mFramebufferImageCache.push_back({graphicBuffer->getId(), image});
1020 }
1021 }
1022
1023 if (image != EGL_NO_IMAGE_KHR) {
1024 DEBUG_EGL_IMAGE_TRACKER_CREATE();
1025 }
1026 return image;
1027 }
1028
drawLayers(const DisplaySettings & display,const std::vector<const LayerSettings * > & layers,ANativeWindowBuffer * const buffer,const bool useFramebufferCache,base::unique_fd && bufferFence,base::unique_fd * drawFence)1029 status_t GLESRenderEngine::drawLayers(const DisplaySettings& display,
1030 const std::vector<const LayerSettings*>& layers,
1031 ANativeWindowBuffer* const buffer,
1032 const bool useFramebufferCache, base::unique_fd&& bufferFence,
1033 base::unique_fd* drawFence) {
1034 ATRACE_CALL();
1035 if (layers.empty()) {
1036 ALOGV("Drawing empty layer stack");
1037 return NO_ERROR;
1038 }
1039
1040 if (bufferFence.get() >= 0) {
1041 // Duplicate the fence for passing to waitFence.
1042 base::unique_fd bufferFenceDup(dup(bufferFence.get()));
1043 if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) {
1044 ATRACE_NAME("Waiting before draw");
1045 sync_wait(bufferFence.get(), -1);
1046 }
1047 }
1048
1049 if (buffer == nullptr) {
1050 ALOGE("No output buffer provided. Aborting GPU composition.");
1051 return BAD_VALUE;
1052 }
1053
1054 std::unique_ptr<BindNativeBufferAsFramebuffer> fbo;
1055 // Gathering layers that requested blur, we'll need them to decide when to render to an
1056 // offscreen buffer, and when to render to the native buffer.
1057 std::deque<const LayerSettings*> blurLayers;
1058 if (CC_LIKELY(mBlurFilter != nullptr)) {
1059 for (auto layer : layers) {
1060 if (layer->backgroundBlurRadius > 0) {
1061 blurLayers.push_back(layer);
1062 }
1063 }
1064 }
1065 const auto blurLayersSize = blurLayers.size();
1066
1067 if (blurLayersSize == 0) {
1068 fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, buffer, useFramebufferCache);
1069 if (fbo->getStatus() != NO_ERROR) {
1070 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).",
1071 buffer->handle);
1072 checkErrors();
1073 return fbo->getStatus();
1074 }
1075 setViewportAndProjection(display.physicalDisplay, display.clip);
1076 } else {
1077 setViewportAndProjection(display.physicalDisplay, display.clip);
1078 auto status =
1079 mBlurFilter->setAsDrawTarget(display, blurLayers.front()->backgroundBlurRadius);
1080 if (status != NO_ERROR) {
1081 ALOGE("Failed to prepare blur filter! Aborting GPU composition for buffer (%p).",
1082 buffer->handle);
1083 checkErrors();
1084 return status;
1085 }
1086 }
1087
1088 // clear the entire buffer, sometimes when we reuse buffers we'd persist
1089 // ghost images otherwise.
1090 // we also require a full transparent framebuffer for overlays. This is
1091 // probably not quite efficient on all GPUs, since we could filter out
1092 // opaque layers.
1093 clearWithColor(0.0, 0.0, 0.0, 0.0);
1094
1095 setOutputDataSpace(display.outputDataspace);
1096 setDisplayMaxLuminance(display.maxLuminance);
1097
1098 const mat4 projectionMatrix =
1099 ui::Transform(display.orientation).asMatrix4() * mState.projectionMatrix;
1100 if (!display.clearRegion.isEmpty()) {
1101 glDisable(GL_BLEND);
1102 fillRegionWithColor(display.clearRegion, 0.0, 0.0, 0.0, 1.0);
1103 }
1104
1105 Mesh mesh = Mesh::Builder()
1106 .setPrimitive(Mesh::TRIANGLE_FAN)
1107 .setVertices(4 /* count */, 2 /* size */)
1108 .setTexCoords(2 /* size */)
1109 .setCropCoords(2 /* size */)
1110 .build();
1111 for (auto const layer : layers) {
1112 if (blurLayers.size() > 0 && blurLayers.front() == layer) {
1113 blurLayers.pop_front();
1114
1115 auto status = mBlurFilter->prepare();
1116 if (status != NO_ERROR) {
1117 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).",
1118 buffer->handle);
1119 checkErrors("Can't render first blur pass");
1120 return status;
1121 }
1122
1123 if (blurLayers.size() == 0) {
1124 // Done blurring, time to bind the native FBO and render our blur onto it.
1125 fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, buffer,
1126 useFramebufferCache);
1127 status = fbo->getStatus();
1128 setViewportAndProjection(display.physicalDisplay, display.clip);
1129 } else {
1130 // There's still something else to blur, so let's keep rendering to our FBO
1131 // instead of to the display.
1132 status = mBlurFilter->setAsDrawTarget(display,
1133 blurLayers.front()->backgroundBlurRadius);
1134 }
1135 if (status != NO_ERROR) {
1136 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).",
1137 buffer->handle);
1138 checkErrors("Can't bind native framebuffer");
1139 return status;
1140 }
1141
1142 status = mBlurFilter->render(blurLayersSize > 1);
1143 if (status != NO_ERROR) {
1144 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).",
1145 buffer->handle);
1146 checkErrors("Can't render blur filter");
1147 return status;
1148 }
1149 }
1150
1151 mState.maxMasteringLuminance = layer->source.buffer.maxMasteringLuminance;
1152 mState.maxContentLuminance = layer->source.buffer.maxContentLuminance;
1153 mState.projectionMatrix = projectionMatrix * layer->geometry.positionTransform;
1154
1155 const FloatRect bounds = layer->geometry.boundaries;
1156 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
1157 position[0] = vec2(bounds.left, bounds.top);
1158 position[1] = vec2(bounds.left, bounds.bottom);
1159 position[2] = vec2(bounds.right, bounds.bottom);
1160 position[3] = vec2(bounds.right, bounds.top);
1161
1162 setupLayerCropping(*layer, mesh);
1163 setColorTransform(display.colorTransform * layer->colorTransform);
1164
1165 bool usePremultipliedAlpha = true;
1166 bool disableTexture = true;
1167 bool isOpaque = false;
1168 if (layer->source.buffer.buffer != nullptr) {
1169 disableTexture = false;
1170 isOpaque = layer->source.buffer.isOpaque;
1171
1172 sp<GraphicBuffer> gBuf = layer->source.buffer.buffer;
1173 bindExternalTextureBuffer(layer->source.buffer.textureName, gBuf,
1174 layer->source.buffer.fence);
1175
1176 usePremultipliedAlpha = layer->source.buffer.usePremultipliedAlpha;
1177 Texture texture(Texture::TEXTURE_EXTERNAL, layer->source.buffer.textureName);
1178 mat4 texMatrix = layer->source.buffer.textureTransform;
1179
1180 texture.setMatrix(texMatrix.asArray());
1181 texture.setFiltering(layer->source.buffer.useTextureFiltering);
1182
1183 texture.setDimensions(gBuf->getWidth(), gBuf->getHeight());
1184 setSourceY410BT2020(layer->source.buffer.isY410BT2020);
1185
1186 renderengine::Mesh::VertexArray<vec2> texCoords(mesh.getTexCoordArray<vec2>());
1187 texCoords[0] = vec2(0.0, 0.0);
1188 texCoords[1] = vec2(0.0, 1.0);
1189 texCoords[2] = vec2(1.0, 1.0);
1190 texCoords[3] = vec2(1.0, 0.0);
1191 setupLayerTexturing(texture);
1192 }
1193
1194 const half3 solidColor = layer->source.solidColor;
1195 const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer->alpha);
1196 // Buffer sources will have a black solid color ignored in the shader,
1197 // so in that scenario the solid color passed here is arbitrary.
1198 setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color,
1199 layer->geometry.roundedCornersRadius);
1200 if (layer->disableBlending) {
1201 glDisable(GL_BLEND);
1202 }
1203 setSourceDataSpace(layer->sourceDataspace);
1204
1205 if (layer->shadow.length > 0.0f) {
1206 handleShadow(layer->geometry.boundaries, layer->geometry.roundedCornersRadius,
1207 layer->shadow);
1208 }
1209 // We only want to do a special handling for rounded corners when having rounded corners
1210 // is the only reason it needs to turn on blending, otherwise, we handle it like the
1211 // usual way since it needs to turn on blending anyway.
1212 else if (layer->geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) {
1213 handleRoundedCorners(display, *layer, mesh);
1214 } else {
1215 drawMesh(mesh);
1216 }
1217
1218 // Cleanup if there's a buffer source
1219 if (layer->source.buffer.buffer != nullptr) {
1220 disableBlending();
1221 setSourceY410BT2020(false);
1222 disableTexturing();
1223 }
1224 }
1225
1226 if (drawFence != nullptr) {
1227 *drawFence = flush();
1228 }
1229 // If flush failed or we don't support native fences, we need to force the
1230 // gl command stream to be executed.
1231 if (drawFence == nullptr || drawFence->get() < 0) {
1232 bool success = finish();
1233 if (!success) {
1234 ALOGE("Failed to flush RenderEngine commands");
1235 checkErrors();
1236 // Chances are, something illegal happened (either the caller passed
1237 // us bad parameters, or we messed up our shader generation).
1238 return INVALID_OPERATION;
1239 }
1240 mLastDrawFence = nullptr;
1241 } else {
1242 // The caller takes ownership of drawFence, so we need to duplicate the
1243 // fd here.
1244 mLastDrawFence = new Fence(dup(drawFence->get()));
1245 }
1246 mPriorResourcesCleaned = false;
1247
1248 checkErrors();
1249 return NO_ERROR;
1250 }
1251
setViewportAndProjection(Rect viewport,Rect clip)1252 void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) {
1253 ATRACE_CALL();
1254 mVpWidth = viewport.getWidth();
1255 mVpHeight = viewport.getHeight();
1256
1257 // We pass the the top left corner instead of the bottom left corner,
1258 // because since we're rendering off-screen first.
1259 glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight);
1260
1261 mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1);
1262 }
1263
setupLayerBlending(bool premultipliedAlpha,bool opaque,bool disableTexture,const half4 & color,float cornerRadius)1264 void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture,
1265 const half4& color, float cornerRadius) {
1266 mState.isPremultipliedAlpha = premultipliedAlpha;
1267 mState.isOpaque = opaque;
1268 mState.color = color;
1269 mState.cornerRadius = cornerRadius;
1270
1271 if (disableTexture) {
1272 mState.textureEnabled = false;
1273 }
1274
1275 if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) {
1276 glEnable(GL_BLEND);
1277 glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1278 } else {
1279 glDisable(GL_BLEND);
1280 }
1281 }
1282
setSourceY410BT2020(bool enable)1283 void GLESRenderEngine::setSourceY410BT2020(bool enable) {
1284 mState.isY410BT2020 = enable;
1285 }
1286
setSourceDataSpace(Dataspace source)1287 void GLESRenderEngine::setSourceDataSpace(Dataspace source) {
1288 mDataSpace = source;
1289 }
1290
setOutputDataSpace(Dataspace dataspace)1291 void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) {
1292 mOutputDataSpace = dataspace;
1293 }
1294
setDisplayMaxLuminance(const float maxLuminance)1295 void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) {
1296 mState.displayMaxLuminance = maxLuminance;
1297 }
1298
setupLayerTexturing(const Texture & texture)1299 void GLESRenderEngine::setupLayerTexturing(const Texture& texture) {
1300 GLuint target = texture.getTextureTarget();
1301 glBindTexture(target, texture.getTextureName());
1302 GLenum filter = GL_NEAREST;
1303 if (texture.getFiltering()) {
1304 filter = GL_LINEAR;
1305 }
1306 glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1307 glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1308 glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
1309 glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
1310
1311 mState.texture = texture;
1312 mState.textureEnabled = true;
1313 }
1314
setColorTransform(const mat4 & colorTransform)1315 void GLESRenderEngine::setColorTransform(const mat4& colorTransform) {
1316 mState.colorMatrix = colorTransform;
1317 }
1318
disableTexturing()1319 void GLESRenderEngine::disableTexturing() {
1320 mState.textureEnabled = false;
1321 }
1322
disableBlending()1323 void GLESRenderEngine::disableBlending() {
1324 glDisable(GL_BLEND);
1325 }
1326
setupFillWithColor(float r,float g,float b,float a)1327 void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) {
1328 mState.isPremultipliedAlpha = true;
1329 mState.isOpaque = false;
1330 mState.color = half4(r, g, b, a);
1331 mState.textureEnabled = false;
1332 glDisable(GL_BLEND);
1333 }
1334
setupCornerRadiusCropSize(float width,float height)1335 void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) {
1336 mState.cropSize = half2(width, height);
1337 }
1338
drawMesh(const Mesh & mesh)1339 void GLESRenderEngine::drawMesh(const Mesh& mesh) {
1340 ATRACE_CALL();
1341 if (mesh.getTexCoordsSize()) {
1342 glEnableVertexAttribArray(Program::texCoords);
1343 glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE,
1344 mesh.getByteStride(), mesh.getTexCoords());
1345 }
1346
1347 glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1348 mesh.getByteStride(), mesh.getPositions());
1349
1350 if (mState.cornerRadius > 0.0f) {
1351 glEnableVertexAttribArray(Program::cropCoords);
1352 glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1353 mesh.getByteStride(), mesh.getCropCoords());
1354 }
1355
1356 if (mState.drawShadows) {
1357 glEnableVertexAttribArray(Program::shadowColor);
1358 glVertexAttribPointer(Program::shadowColor, mesh.getShadowColorSize(), GL_FLOAT, GL_FALSE,
1359 mesh.getByteStride(), mesh.getShadowColor());
1360
1361 glEnableVertexAttribArray(Program::shadowParams);
1362 glVertexAttribPointer(Program::shadowParams, mesh.getShadowParamsSize(), GL_FLOAT, GL_FALSE,
1363 mesh.getByteStride(), mesh.getShadowParams());
1364 }
1365
1366 Description managedState = mState;
1367 // By default, DISPLAY_P3 is the only supported wide color output. However,
1368 // when HDR content is present, hardware composer may be able to handle
1369 // BT2020 data space, in that case, the output data space is set to be
1370 // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need
1371 // to respect this and convert non-HDR content to HDR format.
1372 if (mUseColorManagement) {
1373 Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK);
1374 Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1375 Dataspace outputStandard =
1376 static_cast<Dataspace>(mOutputDataSpace & Dataspace::STANDARD_MASK);
1377 Dataspace outputTransfer =
1378 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1379 bool needsXYZConversion = needsXYZTransformMatrix();
1380
1381 // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or
1382 // STANDARD_BT2020, it will be treated as STANDARD_BT709
1383 if (inputStandard != Dataspace::STANDARD_DCI_P3 &&
1384 inputStandard != Dataspace::STANDARD_BT2020) {
1385 inputStandard = Dataspace::STANDARD_BT709;
1386 }
1387
1388 if (needsXYZConversion) {
1389 // The supported input color spaces are standard RGB, Display P3 and BT2020.
1390 switch (inputStandard) {
1391 case Dataspace::STANDARD_DCI_P3:
1392 managedState.inputTransformMatrix = mDisplayP3ToXyz;
1393 break;
1394 case Dataspace::STANDARD_BT2020:
1395 managedState.inputTransformMatrix = mBt2020ToXyz;
1396 break;
1397 default:
1398 managedState.inputTransformMatrix = mSrgbToXyz;
1399 break;
1400 }
1401
1402 // The supported output color spaces are BT2020, Display P3 and standard RGB.
1403 switch (outputStandard) {
1404 case Dataspace::STANDARD_BT2020:
1405 managedState.outputTransformMatrix = mXyzToBt2020;
1406 break;
1407 case Dataspace::STANDARD_DCI_P3:
1408 managedState.outputTransformMatrix = mXyzToDisplayP3;
1409 break;
1410 default:
1411 managedState.outputTransformMatrix = mXyzToSrgb;
1412 break;
1413 }
1414 } else if (inputStandard != outputStandard) {
1415 // At this point, the input data space and output data space could be both
1416 // HDR data spaces, but they match each other, we do nothing in this case.
1417 // In addition to the case above, the input data space could be
1418 // - scRGB linear
1419 // - scRGB non-linear
1420 // - sRGB
1421 // - Display P3
1422 // - BT2020
1423 // The output data spaces could be
1424 // - sRGB
1425 // - Display P3
1426 // - BT2020
1427 switch (outputStandard) {
1428 case Dataspace::STANDARD_BT2020:
1429 if (inputStandard == Dataspace::STANDARD_BT709) {
1430 managedState.outputTransformMatrix = mSrgbToBt2020;
1431 } else if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1432 managedState.outputTransformMatrix = mDisplayP3ToBt2020;
1433 }
1434 break;
1435 case Dataspace::STANDARD_DCI_P3:
1436 if (inputStandard == Dataspace::STANDARD_BT709) {
1437 managedState.outputTransformMatrix = mSrgbToDisplayP3;
1438 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1439 managedState.outputTransformMatrix = mBt2020ToDisplayP3;
1440 }
1441 break;
1442 default:
1443 if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1444 managedState.outputTransformMatrix = mDisplayP3ToSrgb;
1445 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1446 managedState.outputTransformMatrix = mBt2020ToSrgb;
1447 }
1448 break;
1449 }
1450 }
1451
1452 // we need to convert the RGB value to linear space and convert it back when:
1453 // - there is a color matrix that is not an identity matrix, or
1454 // - there is an output transform matrix that is not an identity matrix, or
1455 // - the input transfer function doesn't match the output transfer function.
1456 if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() ||
1457 inputTransfer != outputTransfer) {
1458 managedState.inputTransferFunction =
1459 Description::dataSpaceToTransferFunction(inputTransfer);
1460 managedState.outputTransferFunction =
1461 Description::dataSpaceToTransferFunction(outputTransfer);
1462 }
1463 }
1464
1465 ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext,
1466 managedState);
1467
1468 if (mState.drawShadows) {
1469 glDrawElements(mesh.getPrimitive(), mesh.getIndexCount(), GL_UNSIGNED_SHORT,
1470 mesh.getIndices());
1471 } else {
1472 glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
1473 }
1474
1475 if (mUseColorManagement && outputDebugPPMs) {
1476 static uint64_t managedColorFrameCount = 0;
1477 std::ostringstream out;
1478 out << "/data/texture_out" << managedColorFrameCount++;
1479 writePPM(out.str().c_str(), mVpWidth, mVpHeight);
1480 }
1481
1482 if (mesh.getTexCoordsSize()) {
1483 glDisableVertexAttribArray(Program::texCoords);
1484 }
1485
1486 if (mState.cornerRadius > 0.0f) {
1487 glDisableVertexAttribArray(Program::cropCoords);
1488 }
1489
1490 if (mState.drawShadows) {
1491 glDisableVertexAttribArray(Program::shadowColor);
1492 glDisableVertexAttribArray(Program::shadowParams);
1493 }
1494 }
1495
getMaxTextureSize() const1496 size_t GLESRenderEngine::getMaxTextureSize() const {
1497 return mMaxTextureSize;
1498 }
1499
getMaxViewportDims() const1500 size_t GLESRenderEngine::getMaxViewportDims() const {
1501 return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1];
1502 }
1503
dump(std::string & result)1504 void GLESRenderEngine::dump(std::string& result) {
1505 const GLExtensions& extensions = GLExtensions::getInstance();
1506 ProgramCache& cache = ProgramCache::getInstance();
1507
1508 StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion());
1509 StringAppendF(&result, "%s\n", extensions.getEGLExtensions());
1510 StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
1511 extensions.getVersion());
1512 StringAppendF(&result, "%s\n", extensions.getExtensions());
1513 StringAppendF(&result, "RenderEngine supports protected context: %d\n",
1514 supportsProtectedContent());
1515 StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
1516 StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n",
1517 cache.getSize(mEGLContext));
1518 StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n",
1519 cache.getSize(mProtectedEGLContext));
1520 StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n",
1521 dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(),
1522 dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str());
1523 {
1524 std::lock_guard<std::mutex> lock(mRenderingMutex);
1525 StringAppendF(&result, "RenderEngine image cache size: %zu\n", mImageCache.size());
1526 StringAppendF(&result, "Dumping buffer ids...\n");
1527 for (const auto& [id, unused] : mImageCache) {
1528 StringAppendF(&result, "0x%" PRIx64 "\n", id);
1529 }
1530 }
1531 {
1532 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
1533 StringAppendF(&result, "RenderEngine framebuffer image cache size: %zu\n",
1534 mFramebufferImageCache.size());
1535 StringAppendF(&result, "Dumping buffer ids...\n");
1536 for (const auto& [id, unused] : mFramebufferImageCache) {
1537 StringAppendF(&result, "0x%" PRIx64 "\n", id);
1538 }
1539 }
1540 }
1541
parseGlesVersion(const char * str)1542 GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) {
1543 int major, minor;
1544 if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) {
1545 if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) {
1546 ALOGW("Unable to parse GL_VERSION string: \"%s\"", str);
1547 return GLES_VERSION_1_0;
1548 }
1549 }
1550
1551 if (major == 1 && minor == 0) return GLES_VERSION_1_0;
1552 if (major == 1 && minor >= 1) return GLES_VERSION_1_1;
1553 if (major == 2 && minor >= 0) return GLES_VERSION_2_0;
1554 if (major == 3 && minor >= 0) return GLES_VERSION_3_0;
1555
1556 ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor);
1557 return GLES_VERSION_1_0;
1558 }
1559
createEglContext(EGLDisplay display,EGLConfig config,EGLContext shareContext,bool useContextPriority,Protection protection)1560 EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
1561 EGLContext shareContext, bool useContextPriority,
1562 Protection protection) {
1563 EGLint renderableType = 0;
1564 if (config == EGL_NO_CONFIG) {
1565 renderableType = EGL_OPENGL_ES3_BIT;
1566 } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
1567 LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
1568 }
1569 EGLint contextClientVersion = 0;
1570 if (renderableType & EGL_OPENGL_ES3_BIT) {
1571 contextClientVersion = 3;
1572 } else if (renderableType & EGL_OPENGL_ES2_BIT) {
1573 contextClientVersion = 2;
1574 } else if (renderableType & EGL_OPENGL_ES_BIT) {
1575 contextClientVersion = 1;
1576 } else {
1577 LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
1578 }
1579
1580 std::vector<EGLint> contextAttributes;
1581 contextAttributes.reserve(7);
1582 contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
1583 contextAttributes.push_back(contextClientVersion);
1584 if (useContextPriority) {
1585 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
1586 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
1587 }
1588 if (protection == Protection::PROTECTED) {
1589 contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1590 contextAttributes.push_back(EGL_TRUE);
1591 }
1592 contextAttributes.push_back(EGL_NONE);
1593
1594 EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1595
1596 if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
1597 // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
1598 // EGL_NO_CONTEXT so that we can abort.
1599 if (config != EGL_NO_CONFIG) {
1600 return context;
1601 }
1602 // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should
1603 // try to fall back to GLES 2.
1604 contextAttributes[1] = 2;
1605 context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1606 }
1607
1608 return context;
1609 }
1610
createDummyEglPbufferSurface(EGLDisplay display,EGLConfig config,int hwcFormat,Protection protection)1611 EGLSurface GLESRenderEngine::createDummyEglPbufferSurface(EGLDisplay display, EGLConfig config,
1612 int hwcFormat, Protection protection) {
1613 EGLConfig dummyConfig = config;
1614 if (dummyConfig == EGL_NO_CONFIG) {
1615 dummyConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
1616 }
1617 std::vector<EGLint> attributes;
1618 attributes.reserve(7);
1619 attributes.push_back(EGL_WIDTH);
1620 attributes.push_back(1);
1621 attributes.push_back(EGL_HEIGHT);
1622 attributes.push_back(1);
1623 if (protection == Protection::PROTECTED) {
1624 attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1625 attributes.push_back(EGL_TRUE);
1626 }
1627 attributes.push_back(EGL_NONE);
1628
1629 return eglCreatePbufferSurface(display, dummyConfig, attributes.data());
1630 }
1631
isHdrDataSpace(const Dataspace dataSpace) const1632 bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const {
1633 const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK);
1634 const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK);
1635 return standard == Dataspace::STANDARD_BT2020 &&
1636 (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG);
1637 }
1638
1639 // For convenience, we want to convert the input color space to XYZ color space first,
1640 // and then convert from XYZ color space to output color space when
1641 // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or
1642 // HDR content will be tone-mapped to SDR; Or,
1643 // - there are HDR PQ and HLG contents presented at the same time, where we want to convert
1644 // HLG content to PQ content.
1645 // In either case above, we need to operate the Y value in XYZ color space. Thus, when either
1646 // input data space or output data space is HDR data space, and the input transfer function
1647 // doesn't match the output transfer function, we would enable an intermediate transfrom to
1648 // XYZ color space.
needsXYZTransformMatrix() const1649 bool GLESRenderEngine::needsXYZTransformMatrix() const {
1650 const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace);
1651 const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace);
1652 const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1653 const Dataspace outputTransfer =
1654 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1655
1656 return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer;
1657 }
1658
isImageCachedForTesting(uint64_t bufferId)1659 bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) {
1660 std::lock_guard<std::mutex> lock(mRenderingMutex);
1661 const auto& cachedImage = mImageCache.find(bufferId);
1662 return cachedImage != mImageCache.end();
1663 }
1664
isTextureNameKnownForTesting(uint32_t texName)1665 bool GLESRenderEngine::isTextureNameKnownForTesting(uint32_t texName) {
1666 const auto& entry = mTextureView.find(texName);
1667 return entry != mTextureView.end();
1668 }
1669
getBufferIdForTextureNameForTesting(uint32_t texName)1670 std::optional<uint64_t> GLESRenderEngine::getBufferIdForTextureNameForTesting(uint32_t texName) {
1671 const auto& entry = mTextureView.find(texName);
1672 return entry != mTextureView.end() ? entry->second : std::nullopt;
1673 }
1674
isFramebufferImageCachedForTesting(uint64_t bufferId)1675 bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) {
1676 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
1677 return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(),
1678 [=](std::pair<uint64_t, EGLImageKHR> image) {
1679 return image.first == bufferId;
1680 });
1681 }
1682
1683 // FlushTracer implementation
FlushTracer(GLESRenderEngine * engine)1684 GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) {
1685 mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this);
1686 }
1687
~FlushTracer()1688 GLESRenderEngine::FlushTracer::~FlushTracer() {
1689 {
1690 std::lock_guard<std::mutex> lock(mMutex);
1691 mRunning = false;
1692 }
1693 mCondition.notify_all();
1694 if (mThread.joinable()) {
1695 mThread.join();
1696 }
1697 }
1698
queueSync(EGLSyncKHR sync)1699 void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) {
1700 std::lock_guard<std::mutex> lock(mMutex);
1701 char name[64];
1702 const uint64_t frameNum = mFramesQueued++;
1703 snprintf(name, sizeof(name), "Queueing sync for frame: %lu",
1704 static_cast<unsigned long>(frameNum));
1705 ATRACE_NAME(name);
1706 mQueue.push({sync, frameNum});
1707 ATRACE_INT("GPU Frames Outstanding", mQueue.size());
1708 mCondition.notify_one();
1709 }
1710
loop()1711 void GLESRenderEngine::FlushTracer::loop() {
1712 while (mRunning) {
1713 QueueEntry entry;
1714 {
1715 std::lock_guard<std::mutex> lock(mMutex);
1716
1717 mCondition.wait(mMutex,
1718 [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; });
1719
1720 if (!mRunning) {
1721 // if mRunning is false, then FlushTracer is being destroyed, so
1722 // bail out now.
1723 break;
1724 }
1725 entry = mQueue.front();
1726 mQueue.pop();
1727 }
1728 {
1729 char name[64];
1730 snprintf(name, sizeof(name), "waiting for frame %lu",
1731 static_cast<unsigned long>(entry.mFrameNum));
1732 ATRACE_NAME(name);
1733 mEngine->waitSync(entry.mSync, 0);
1734 }
1735 }
1736 }
1737
handleShadow(const FloatRect & casterRect,float casterCornerRadius,const ShadowSettings & settings)1738 void GLESRenderEngine::handleShadow(const FloatRect& casterRect, float casterCornerRadius,
1739 const ShadowSettings& settings) {
1740 ATRACE_CALL();
1741 const float casterZ = settings.length / 2.0f;
1742 const GLShadowVertexGenerator shadows(casterRect, casterCornerRadius, casterZ,
1743 settings.casterIsTranslucent, settings.ambientColor,
1744 settings.spotColor, settings.lightPos,
1745 settings.lightRadius);
1746
1747 // setup mesh for both shadows
1748 Mesh mesh = Mesh::Builder()
1749 .setPrimitive(Mesh::TRIANGLES)
1750 .setVertices(shadows.getVertexCount(), 2 /* size */)
1751 .setShadowAttrs()
1752 .setIndices(shadows.getIndexCount())
1753 .build();
1754
1755 Mesh::VertexArray<vec2> position = mesh.getPositionArray<vec2>();
1756 Mesh::VertexArray<vec4> shadowColor = mesh.getShadowColorArray<vec4>();
1757 Mesh::VertexArray<vec3> shadowParams = mesh.getShadowParamsArray<vec3>();
1758 shadows.fillVertices(position, shadowColor, shadowParams);
1759 shadows.fillIndices(mesh.getIndicesArray());
1760
1761 mState.cornerRadius = 0.0f;
1762 mState.drawShadows = true;
1763 setupLayerTexturing(mShadowTexture.getTexture());
1764 drawMesh(mesh);
1765 mState.drawShadows = false;
1766 }
1767
1768 } // namespace gl
1769 } // namespace renderengine
1770 } // namespace android
1771