1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "SensorDevice.h"
18
19 #include "android/hardware/sensors/2.0/types.h"
20 #include "android/hardware/sensors/2.1/ISensorsCallback.h"
21 #include "android/hardware/sensors/2.1/types.h"
22 #include "convertV2_1.h"
23
24 #include <android-base/logging.h>
25 #include <android/util/ProtoOutputStream.h>
26 #include <frameworks/base/core/proto/android/service/sensor_service.proto.h>
27 #include <sensors/convert.h>
28 #include <cutils/atomic.h>
29 #include <utils/Errors.h>
30 #include <utils/Singleton.h>
31
32 #include <cstddef>
33 #include <chrono>
34 #include <cinttypes>
35 #include <thread>
36
37 using namespace android::hardware::sensors;
38 using namespace android::hardware::sensors::V1_0;
39 using namespace android::hardware::sensors::V1_0::implementation;
40 using android::hardware::sensors::V2_0::EventQueueFlagBits;
41 using android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
42 using android::hardware::sensors::V2_1::ISensorsCallback;
43 using android::hardware::sensors::V2_1::implementation::convertToOldSensorInfo;
44 using android::hardware::sensors::V2_1::implementation::convertToNewSensorInfos;
45 using android::hardware::sensors::V2_1::implementation::convertToNewEvents;
46 using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV1_0;
47 using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_0;
48 using android::hardware::sensors::V2_1::implementation::ISensorsWrapperV2_1;
49 using android::hardware::hidl_vec;
50 using android::hardware::Return;
51 using android::SensorDeviceUtils::HidlServiceRegistrationWaiter;
52 using android::util::ProtoOutputStream;
53
54 namespace android {
55 // ---------------------------------------------------------------------------
56
57 ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice)
58
59 namespace {
60
statusFromResult(Result result)61 status_t statusFromResult(Result result) {
62 switch (result) {
63 case Result::OK:
64 return OK;
65 case Result::BAD_VALUE:
66 return BAD_VALUE;
67 case Result::PERMISSION_DENIED:
68 return PERMISSION_DENIED;
69 case Result::INVALID_OPERATION:
70 return INVALID_OPERATION;
71 case Result::NO_MEMORY:
72 return NO_MEMORY;
73 }
74 }
75
76 template<typename EnumType>
asBaseType(EnumType value)77 constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
78 return static_cast<typename std::underlying_type<EnumType>::type>(value);
79 }
80
81 // Used internally by the framework to wake the Event FMQ. These values must start after
82 // the last value of EventQueueFlagBits
83 enum EventQueueFlagBitsInternal : uint32_t {
84 INTERNAL_WAKE = 1 << 16,
85 };
86
87 } // anonymous namespace
88
serviceDied(uint64_t,const wp<::android::hidl::base::V1_0::IBase> &)89 void SensorsHalDeathReceivier::serviceDied(
90 uint64_t /* cookie */,
91 const wp<::android::hidl::base::V1_0::IBase>& /* service */) {
92 ALOGW("Sensors HAL died, attempting to reconnect.");
93 SensorDevice::getInstance().prepareForReconnect();
94 }
95
96 struct SensorsCallback : public ISensorsCallback {
97 using Result = ::android::hardware::sensors::V1_0::Result;
98 using SensorInfo = ::android::hardware::sensors::V2_1::SensorInfo;
99
onDynamicSensorsConnected_2_1android::SensorsCallback100 Return<void> onDynamicSensorsConnected_2_1(
101 const hidl_vec<SensorInfo> &dynamicSensorsAdded) override {
102 return SensorDevice::getInstance().onDynamicSensorsConnected(dynamicSensorsAdded);
103 }
104
onDynamicSensorsConnectedandroid::SensorsCallback105 Return<void> onDynamicSensorsConnected(
106 const hidl_vec<V1_0::SensorInfo> &dynamicSensorsAdded) override {
107 return SensorDevice::getInstance().onDynamicSensorsConnected(
108 convertToNewSensorInfos(dynamicSensorsAdded));
109 }
110
onDynamicSensorsDisconnectedandroid::SensorsCallback111 Return<void> onDynamicSensorsDisconnected(
112 const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) override {
113 return SensorDevice::getInstance().onDynamicSensorsDisconnected(
114 dynamicSensorHandlesRemoved);
115 }
116 };
117
SensorDevice()118 SensorDevice::SensorDevice()
119 : mHidlTransportErrors(20),
120 mRestartWaiter(new HidlServiceRegistrationWaiter()),
121 mEventQueueFlag(nullptr),
122 mWakeLockQueueFlag(nullptr),
123 mReconnecting(false) {
124 if (!connectHidlService()) {
125 return;
126 }
127
128 initializeSensorList();
129
130 mIsDirectReportSupported =
131 (checkReturnAndGetStatus(mSensors->unregisterDirectChannel(-1)) != INVALID_OPERATION);
132 }
133
initializeSensorList()134 void SensorDevice::initializeSensorList() {
135 float minPowerMa = 0.001; // 1 microAmp
136
137 checkReturn(mSensors->getSensorsList(
138 [&](const auto &list) {
139 const size_t count = list.size();
140
141 mActivationCount.setCapacity(count);
142 Info model;
143 for (size_t i=0 ; i < count; i++) {
144 sensor_t sensor;
145 convertToSensor(convertToOldSensorInfo(list[i]), &sensor);
146
147 if (sensor.type < static_cast<int>(SensorType::DEVICE_PRIVATE_BASE)) {
148 if(sensor.resolution == 0) {
149 // Don't crash here or the device will go into a crashloop.
150 ALOGW("%s must have a non-zero resolution", sensor.name);
151 // For simple algos, map their resolution to 1 if it's not specified
152 sensor.resolution =
153 SensorDeviceUtils::defaultResolutionForType(sensor.type);
154 }
155
156 // Some sensors don't have a default resolution and will be left at 0.
157 // Don't crash in this case since CTS will verify that devices don't go to
158 // production with a resolution of 0.
159 if (sensor.resolution != 0) {
160 double promotedResolution = sensor.resolution;
161 double promotedMaxRange = sensor.maxRange;
162 if (fmod(promotedMaxRange, promotedResolution) != 0) {
163 ALOGW("%s's max range %f is not a multiple of the resolution %f",
164 sensor.name, sensor.maxRange, sensor.resolution);
165 SensorDeviceUtils::quantizeValue(
166 &sensor.maxRange, promotedResolution);
167 }
168 }
169 }
170
171 // Sanity check and clamp power if it is 0 (or close)
172 if (sensor.power < minPowerMa) {
173 ALOGI("Reported power %f not deemed sane, clamping to %f",
174 sensor.power, minPowerMa);
175 sensor.power = minPowerMa;
176 }
177 mSensorList.push_back(sensor);
178
179 mActivationCount.add(list[i].sensorHandle, model);
180
181 // Only disable all sensors on HAL 1.0 since HAL 2.0
182 // handles this in its initialize method
183 if (!mSensors->supportsMessageQueues()) {
184 checkReturn(mSensors->activate(list[i].sensorHandle,
185 0 /* enabled */));
186 }
187 }
188 }));
189 }
190
~SensorDevice()191 SensorDevice::~SensorDevice() {
192 if (mEventQueueFlag != nullptr) {
193 hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
194 mEventQueueFlag = nullptr;
195 }
196
197 if (mWakeLockQueueFlag != nullptr) {
198 hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
199 mWakeLockQueueFlag = nullptr;
200 }
201 }
202
connectHidlService()203 bool SensorDevice::connectHidlService() {
204 HalConnectionStatus status = connectHidlServiceV2_1();
205 if (status == HalConnectionStatus::DOES_NOT_EXIST) {
206 status = connectHidlServiceV2_0();
207 }
208
209 if (status == HalConnectionStatus::DOES_NOT_EXIST) {
210 status = connectHidlServiceV1_0();
211 }
212 return (status == HalConnectionStatus::CONNECTED);
213 }
214
connectHidlServiceV1_0()215 SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV1_0() {
216 // SensorDevice will wait for HAL service to start if HAL is declared in device manifest.
217 size_t retry = 10;
218 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
219
220 while (retry-- > 0) {
221 sp<V1_0::ISensors> sensors = V1_0::ISensors::getService();
222 if (sensors == nullptr) {
223 // no sensor hidl service found
224 connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
225 break;
226 }
227
228 mSensors = new ISensorsWrapperV1_0(sensors);
229 mRestartWaiter->reset();
230 // Poke ISensor service. If it has lingering connection from previous generation of
231 // system server, it will kill itself. There is no intention to handle the poll result,
232 // which will be done since the size is 0.
233 if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) {
234 // ok to continue
235 connectionStatus = HalConnectionStatus::CONNECTED;
236 break;
237 }
238
239 // hidl service is restarting, pointer is invalid.
240 mSensors = nullptr;
241 connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
242 ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry);
243 mRestartWaiter->wait();
244 }
245
246 return connectionStatus;
247 }
248
connectHidlServiceV2_0()249 SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_0() {
250 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
251 sp<V2_0::ISensors> sensors = V2_0::ISensors::getService();
252
253 if (sensors == nullptr) {
254 connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
255 } else {
256 mSensors = new ISensorsWrapperV2_0(sensors);
257 connectionStatus = initializeHidlServiceV2_X();
258 }
259
260 return connectionStatus;
261 }
262
connectHidlServiceV2_1()263 SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_1() {
264 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
265 sp<V2_1::ISensors> sensors = V2_1::ISensors::getService();
266
267 if (sensors == nullptr) {
268 connectionStatus = HalConnectionStatus::DOES_NOT_EXIST;
269 } else {
270 mSensors = new ISensorsWrapperV2_1(sensors);
271 connectionStatus = initializeHidlServiceV2_X();
272 }
273
274 return connectionStatus;
275 }
276
initializeHidlServiceV2_X()277 SensorDevice::HalConnectionStatus SensorDevice::initializeHidlServiceV2_X() {
278 HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN;
279
280 mWakeLockQueue = std::make_unique<WakeLockQueue>(
281 SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT,
282 true /* configureEventFlagWord */);
283
284 hardware::EventFlag::deleteEventFlag(&mEventQueueFlag);
285 hardware::EventFlag::createEventFlag(mSensors->getEventQueue()->getEventFlagWord(), &mEventQueueFlag);
286
287 hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
288 hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(),
289 &mWakeLockQueueFlag);
290
291 CHECK(mSensors != nullptr && mWakeLockQueue != nullptr &&
292 mEventQueueFlag != nullptr && mWakeLockQueueFlag != nullptr);
293
294 status_t status = checkReturnAndGetStatus(mSensors->initialize(
295 *mWakeLockQueue->getDesc(),
296 new SensorsCallback()));
297
298 if (status != NO_ERROR) {
299 connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT;
300 ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status));
301 } else {
302 connectionStatus = HalConnectionStatus::CONNECTED;
303 mSensorsHalDeathReceiver = new SensorsHalDeathReceivier();
304 mSensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */);
305 }
306
307 return connectionStatus;
308 }
309
prepareForReconnect()310 void SensorDevice::prepareForReconnect() {
311 mReconnecting = true;
312
313 // Wake up the polling thread so it returns and allows the SensorService to initiate
314 // a reconnect.
315 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
316 }
317
reconnect()318 void SensorDevice::reconnect() {
319 Mutex::Autolock _l(mLock);
320 mSensors = nullptr;
321
322 auto previousActivations = mActivationCount;
323 auto previousSensorList = mSensorList;
324
325 mActivationCount.clear();
326 mSensorList.clear();
327
328 if (connectHidlServiceV2_0() == HalConnectionStatus::CONNECTED) {
329 initializeSensorList();
330
331 if (sensorHandlesChanged(previousSensorList, mSensorList)) {
332 LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors.");
333 } else {
334 reactivateSensors(previousActivations);
335 }
336 }
337 mReconnecting = false;
338 }
339
sensorHandlesChanged(const Vector<sensor_t> & oldSensorList,const Vector<sensor_t> & newSensorList)340 bool SensorDevice::sensorHandlesChanged(const Vector<sensor_t>& oldSensorList,
341 const Vector<sensor_t>& newSensorList) {
342 bool didChange = false;
343
344 if (oldSensorList.size() != newSensorList.size()) {
345 ALOGI("Sensor list size changed from %zu to %zu", oldSensorList.size(),
346 newSensorList.size());
347 didChange = true;
348 }
349
350 for (size_t i = 0; i < newSensorList.size() && !didChange; i++) {
351 bool found = false;
352 const sensor_t& newSensor = newSensorList[i];
353 for (size_t j = 0; j < oldSensorList.size() && !found; j++) {
354 const sensor_t& prevSensor = oldSensorList[j];
355 if (prevSensor.handle == newSensor.handle) {
356 found = true;
357 if (!sensorIsEquivalent(prevSensor, newSensor)) {
358 ALOGI("Sensor %s not equivalent to previous version", newSensor.name);
359 didChange = true;
360 }
361 }
362 }
363
364 if (!found) {
365 // Could not find the new sensor in the old list of sensors, the lists must
366 // have changed.
367 ALOGI("Sensor %s (handle %d) did not exist before", newSensor.name, newSensor.handle);
368 didChange = true;
369 }
370 }
371 return didChange;
372 }
373
sensorIsEquivalent(const sensor_t & prevSensor,const sensor_t & newSensor)374 bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) {
375 bool equivalent = true;
376 if (prevSensor.handle != newSensor.handle ||
377 (strcmp(prevSensor.vendor, newSensor.vendor) != 0) ||
378 (strcmp(prevSensor.stringType, newSensor.stringType) != 0) ||
379 (strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) ||
380 (prevSensor.version != newSensor.version) ||
381 (prevSensor.type != newSensor.type) ||
382 (std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) ||
383 (std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) ||
384 (std::abs(prevSensor.power - newSensor.power) > 0.001f) ||
385 (prevSensor.minDelay != newSensor.minDelay) ||
386 (prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) ||
387 (prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) ||
388 (prevSensor.maxDelay != newSensor.maxDelay) ||
389 (prevSensor.flags != newSensor.flags)) {
390 equivalent = false;
391 }
392 return equivalent;
393 }
394
reactivateSensors(const DefaultKeyedVector<int,Info> & previousActivations)395 void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) {
396 for (size_t i = 0; i < mSensorList.size(); i++) {
397 int handle = mSensorList[i].handle;
398 ssize_t activationIndex = previousActivations.indexOfKey(handle);
399 if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) {
400 continue;
401 }
402
403 const Info& info = previousActivations[activationIndex];
404 for (size_t j = 0; j < info.batchParams.size(); j++) {
405 const BatchParams& batchParams = info.batchParams[j];
406 status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */,
407 batchParams.mTSample, batchParams.mTBatch);
408
409 if (res == NO_ERROR) {
410 activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */);
411 }
412 }
413 }
414 }
415
handleDynamicSensorConnection(int handle,bool connected)416 void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) {
417 // not need to check mSensors because this is is only called after successful poll()
418 if (connected) {
419 Info model;
420 mActivationCount.add(handle, model);
421 checkReturn(mSensors->activate(handle, 0 /* enabled */));
422 } else {
423 mActivationCount.removeItem(handle);
424 }
425 }
426
dump() const427 std::string SensorDevice::dump() const {
428 if (mSensors == nullptr) return "HAL not initialized\n";
429
430 String8 result;
431 result.appendFormat("Total %zu h/w sensors, %zu running %zu disabled clients:\n",
432 mSensorList.size(), mActivationCount.size(), mDisabledClients.size());
433
434 Mutex::Autolock _l(mLock);
435 for (const auto & s : mSensorList) {
436 int32_t handle = s.handle;
437 const Info& info = mActivationCount.valueFor(handle);
438 if (info.numActiveClients() == 0) continue;
439
440 result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size());
441
442 result.append("sampling_period(ms) = {");
443 for (size_t j = 0; j < info.batchParams.size(); j++) {
444 const BatchParams& params = info.batchParams[j];
445 result.appendFormat("%.1f%s%s", params.mTSample / 1e6f,
446 isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)" : "",
447 (j < info.batchParams.size() - 1) ? ", " : "");
448 }
449 result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f);
450
451 result.append("batching_period(ms) = {");
452 for (size_t j = 0; j < info.batchParams.size(); j++) {
453 const BatchParams& params = info.batchParams[j];
454 result.appendFormat("%.1f%s%s", params.mTBatch / 1e6f,
455 isClientDisabledLocked(info.batchParams.keyAt(j)) ? "(disabled)" : "",
456 (j < info.batchParams.size() - 1) ? ", " : "");
457 }
458 result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f);
459 }
460
461 return result.string();
462 }
463
464 /**
465 * Dump debugging information as android.service.SensorDeviceProto protobuf message using
466 * ProtoOutputStream.
467 *
468 * See proto definition and some notes about ProtoOutputStream in
469 * frameworks/base/core/proto/android/service/sensor_service.proto
470 */
dump(ProtoOutputStream * proto) const471 void SensorDevice::dump(ProtoOutputStream* proto) const {
472 using namespace service::SensorDeviceProto;
473 if (mSensors == nullptr) {
474 proto->write(INITIALIZED , false);
475 return;
476 }
477 proto->write(INITIALIZED , true);
478 proto->write(TOTAL_SENSORS , int(mSensorList.size()));
479 proto->write(ACTIVE_SENSORS , int(mActivationCount.size()));
480
481 Mutex::Autolock _l(mLock);
482 for (const auto & s : mSensorList) {
483 int32_t handle = s.handle;
484 const Info& info = mActivationCount.valueFor(handle);
485 if (info.numActiveClients() == 0) continue;
486
487 uint64_t token = proto->start(SENSORS);
488 proto->write(SensorProto::HANDLE , handle);
489 proto->write(SensorProto::ACTIVE_COUNT , int(info.batchParams.size()));
490 for (size_t j = 0; j < info.batchParams.size(); j++) {
491 const BatchParams& params = info.batchParams[j];
492 proto->write(SensorProto::SAMPLING_PERIOD_MS , params.mTSample / 1e6f);
493 proto->write(SensorProto::BATCHING_PERIOD_MS , params.mTBatch / 1e6f);
494 }
495 proto->write(SensorProto::SAMPLING_PERIOD_SELECTED , info.bestBatchParams.mTSample / 1e6f);
496 proto->write(SensorProto::BATCHING_PERIOD_SELECTED , info.bestBatchParams.mTBatch / 1e6f);
497 proto->end(token);
498 }
499 }
500
getSensorList(sensor_t const ** list)501 ssize_t SensorDevice::getSensorList(sensor_t const** list) {
502 *list = &mSensorList[0];
503
504 return mSensorList.size();
505 }
506
initCheck() const507 status_t SensorDevice::initCheck() const {
508 return mSensors != nullptr ? NO_ERROR : NO_INIT;
509 }
510
poll(sensors_event_t * buffer,size_t count)511 ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
512 if (mSensors == nullptr) return NO_INIT;
513
514 ssize_t eventsRead = 0;
515 if (mSensors->supportsMessageQueues()) {
516 eventsRead = pollFmq(buffer, count);
517 } else if (mSensors->supportsPolling()) {
518 eventsRead = pollHal(buffer, count);
519 } else {
520 ALOGE("Must support polling or FMQ");
521 eventsRead = -1;
522 }
523 return eventsRead;
524 }
525
pollHal(sensors_event_t * buffer,size_t count)526 ssize_t SensorDevice::pollHal(sensors_event_t* buffer, size_t count) {
527 ssize_t err;
528 int numHidlTransportErrors = 0;
529 bool hidlTransportError = false;
530
531 do {
532 auto ret = mSensors->poll(
533 count,
534 [&](auto result,
535 const auto &events,
536 const auto &dynamicSensorsAdded) {
537 if (result == Result::OK) {
538 convertToSensorEventsAndQuantize(convertToNewEvents(events),
539 convertToNewSensorInfos(dynamicSensorsAdded), buffer);
540 err = (ssize_t)events.size();
541 } else {
542 err = statusFromResult(result);
543 }
544 });
545
546 if (ret.isOk()) {
547 hidlTransportError = false;
548 } else {
549 hidlTransportError = true;
550 numHidlTransportErrors++;
551 if (numHidlTransportErrors > 50) {
552 // Log error and bail
553 ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors);
554 handleHidlDeath(ret.description());
555 } else {
556 std::this_thread::sleep_for(std::chrono::milliseconds(10));
557 }
558 }
559 } while (hidlTransportError);
560
561 if(numHidlTransportErrors > 0) {
562 ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors);
563 HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors);
564 mHidlTransportErrors.add(errLog);
565 mTotalHidlTransportErrors++;
566 }
567
568 return err;
569 }
570
pollFmq(sensors_event_t * buffer,size_t maxNumEventsToRead)571 ssize_t SensorDevice::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) {
572 ssize_t eventsRead = 0;
573 size_t availableEvents = mSensors->getEventQueue()->availableToRead();
574
575 if (availableEvents == 0) {
576 uint32_t eventFlagState = 0;
577
578 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
579 // able to be called with the correct number of events to read. If the specified number of
580 // events is not available, then read() would return no events, possibly introducing
581 // additional latency in delivering events to applications.
582 mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) |
583 asBaseType(INTERNAL_WAKE), &eventFlagState);
584 availableEvents = mSensors->getEventQueue()->availableToRead();
585
586 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
587 ALOGD("Event FMQ internal wake, returning from poll with no events");
588 return DEAD_OBJECT;
589 }
590 }
591
592 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
593 if (eventsToRead > 0) {
594 if (mSensors->getEventQueue()->read(mEventBuffer.data(), eventsToRead)) {
595 // Notify the Sensors HAL that sensor events have been read. This is required to support
596 // the use of writeBlocking by the Sensors HAL.
597 mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ));
598
599 for (size_t i = 0; i < eventsToRead; i++) {
600 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
601 android::SensorDeviceUtils::quantizeSensorEventValues(&buffer[i],
602 getResolutionForSensor(buffer[i].sensor));
603 }
604 eventsRead = eventsToRead;
605 } else {
606 ALOGW("Failed to read %zu events, currently %zu events available",
607 eventsToRead, availableEvents);
608 }
609 }
610
611 return eventsRead;
612 }
613
onDynamicSensorsConnected(const hidl_vec<SensorInfo> & dynamicSensorsAdded)614 Return<void> SensorDevice::onDynamicSensorsConnected(
615 const hidl_vec<SensorInfo> &dynamicSensorsAdded) {
616 // Allocate a sensor_t structure for each dynamic sensor added and insert
617 // it into the dictionary of connected dynamic sensors keyed by handle.
618 for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) {
619 const SensorInfo &info = dynamicSensorsAdded[i];
620
621 auto it = mConnectedDynamicSensors.find(info.sensorHandle);
622 CHECK(it == mConnectedDynamicSensors.end());
623
624 sensor_t *sensor = new sensor_t();
625 convertToSensor(convertToOldSensorInfo(info), sensor);
626
627 mConnectedDynamicSensors.insert(
628 std::make_pair(sensor->handle, sensor));
629 }
630
631 return Return<void>();
632 }
633
onDynamicSensorsDisconnected(const hidl_vec<int32_t> & dynamicSensorHandlesRemoved)634 Return<void> SensorDevice::onDynamicSensorsDisconnected(
635 const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) {
636 (void) dynamicSensorHandlesRemoved;
637 // TODO: Currently dynamic sensors do not seem to be removed
638 return Return<void>();
639 }
640
writeWakeLockHandled(uint32_t count)641 void SensorDevice::writeWakeLockHandled(uint32_t count) {
642 if (mSensors != nullptr && mSensors->supportsMessageQueues()) {
643 if (mWakeLockQueue->write(&count)) {
644 mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN));
645 } else {
646 ALOGW("Failed to write wake lock handled");
647 }
648 }
649 }
650
autoDisable(void * ident,int handle)651 void SensorDevice::autoDisable(void *ident, int handle) {
652 Mutex::Autolock _l(mLock);
653 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
654 if (activationIndex < 0) {
655 ALOGW("Handle %d cannot be found in activation record", handle);
656 return;
657 }
658 Info& info(mActivationCount.editValueAt(activationIndex));
659 info.removeBatchParamsForIdent(ident);
660 if (info.numActiveClients() == 0) {
661 info.isActive = false;
662 }
663 }
664
activate(void * ident,int handle,int enabled)665 status_t SensorDevice::activate(void* ident, int handle, int enabled) {
666 if (mSensors == nullptr) return NO_INIT;
667
668 Mutex::Autolock _l(mLock);
669 return activateLocked(ident, handle, enabled);
670 }
671
activateLocked(void * ident,int handle,int enabled)672 status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) {
673 bool activateHardware = false;
674
675 status_t err(NO_ERROR);
676
677 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
678 if (activationIndex < 0) {
679 ALOGW("Handle %d cannot be found in activation record", handle);
680 return BAD_VALUE;
681 }
682 Info& info(mActivationCount.editValueAt(activationIndex));
683
684 ALOGD_IF(DEBUG_CONNECTIONS,
685 "SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu",
686 ident, handle, enabled, info.batchParams.size());
687
688 if (enabled) {
689 ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident));
690
691 if (isClientDisabledLocked(ident)) {
692 ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d",
693 ident, handle);
694 return INVALID_OPERATION;
695 }
696
697 if (info.batchParams.indexOfKey(ident) >= 0) {
698 if (info.numActiveClients() > 0 && !info.isActive) {
699 activateHardware = true;
700 }
701 } else {
702 // Log error. Every activate call should be preceded by a batch() call.
703 ALOGE("\t >>>ERROR: activate called without batch");
704 }
705 } else {
706 ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident));
707
708 // If a connected dynamic sensor is deactivated, remove it from the
709 // dictionary.
710 auto it = mConnectedDynamicSensors.find(handle);
711 if (it != mConnectedDynamicSensors.end()) {
712 delete it->second;
713 mConnectedDynamicSensors.erase(it);
714 }
715
716 if (info.removeBatchParamsForIdent(ident) >= 0) {
717 if (info.numActiveClients() == 0) {
718 // This is the last connection, we need to de-activate the underlying h/w sensor.
719 activateHardware = true;
720 } else {
721 // Call batch for this sensor with the previously calculated best effort
722 // batch_rate and timeout. One of the apps has unregistered for sensor
723 // events, and the best effort batch parameters might have changed.
724 ALOGD_IF(DEBUG_CONNECTIONS,
725 "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle,
726 info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
727 checkReturn(mSensors->batch(
728 handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
729 }
730 } else {
731 // sensor wasn't enabled for this ident
732 }
733
734 if (isClientDisabledLocked(ident)) {
735 return NO_ERROR;
736 }
737 }
738
739 if (activateHardware) {
740 err = doActivateHardwareLocked(handle, enabled);
741
742 if (err != NO_ERROR && enabled) {
743 // Failure when enabling the sensor. Clean up on failure.
744 info.removeBatchParamsForIdent(ident);
745 } else {
746 // Update the isActive flag if there is no error. If there is an error when disabling a
747 // sensor, still set the flag to false since the batch parameters have already been
748 // removed. This ensures that everything remains in-sync.
749 info.isActive = enabled;
750 }
751 }
752
753 return err;
754 }
755
doActivateHardwareLocked(int handle,bool enabled)756 status_t SensorDevice::doActivateHardwareLocked(int handle, bool enabled) {
757 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle,
758 enabled);
759 status_t err = checkReturnAndGetStatus(mSensors->activate(handle, enabled));
760 ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle,
761 strerror(-err));
762 return err;
763 }
764
batch(void * ident,int handle,int flags,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)765 status_t SensorDevice::batch(
766 void* ident,
767 int handle,
768 int flags,
769 int64_t samplingPeriodNs,
770 int64_t maxBatchReportLatencyNs) {
771 if (mSensors == nullptr) return NO_INIT;
772
773 if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) {
774 samplingPeriodNs = MINIMUM_EVENTS_PERIOD;
775 }
776 if (maxBatchReportLatencyNs < 0) {
777 maxBatchReportLatencyNs = 0;
778 }
779
780 ALOGD_IF(DEBUG_CONNECTIONS,
781 "SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64,
782 ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
783
784 Mutex::Autolock _l(mLock);
785 return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs);
786 }
787
batchLocked(void * ident,int handle,int flags,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)788 status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs,
789 int64_t maxBatchReportLatencyNs) {
790 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
791 if (activationIndex < 0) {
792 ALOGW("Handle %d cannot be found in activation record", handle);
793 return BAD_VALUE;
794 }
795 Info& info(mActivationCount.editValueAt(activationIndex));
796
797 if (info.batchParams.indexOfKey(ident) < 0) {
798 BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs);
799 info.batchParams.add(ident, params);
800 } else {
801 // A batch has already been called with this ident. Update the batch parameters.
802 info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs);
803 }
804
805 status_t err = updateBatchParamsLocked(handle, info);
806 if (err != NO_ERROR) {
807 ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s",
808 mSensors.get(), handle, info.bestBatchParams.mTSample,
809 info.bestBatchParams.mTBatch, strerror(-err));
810 info.removeBatchParamsForIdent(ident);
811 }
812
813 return err;
814 }
815
updateBatchParamsLocked(int handle,Info & info)816 status_t SensorDevice::updateBatchParamsLocked(int handle, Info &info) {
817 BatchParams prevBestBatchParams = info.bestBatchParams;
818 // Find the minimum of all timeouts and batch_rates for this sensor.
819 info.selectBatchParams();
820
821 ALOGD_IF(DEBUG_CONNECTIONS,
822 "\t>>> curr_period=%" PRId64 " min_period=%" PRId64
823 " curr_timeout=%" PRId64 " min_timeout=%" PRId64,
824 prevBestBatchParams.mTSample, info.bestBatchParams.mTSample,
825 prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch);
826
827 status_t err(NO_ERROR);
828 // If the min period or min timeout has changed since the last batch call, call batch.
829 if (prevBestBatchParams != info.bestBatchParams && info.numActiveClients() > 0) {
830 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle,
831 info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch);
832 err = checkReturnAndGetStatus(mSensors->batch(
833 handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch));
834 }
835
836 return err;
837 }
838
setDelay(void * ident,int handle,int64_t samplingPeriodNs)839 status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) {
840 return batch(ident, handle, 0, samplingPeriodNs, 0);
841 }
842
getHalDeviceVersion() const843 int SensorDevice::getHalDeviceVersion() const {
844 if (mSensors == nullptr) return -1;
845 return SENSORS_DEVICE_API_VERSION_1_4;
846 }
847
flush(void * ident,int handle)848 status_t SensorDevice::flush(void* ident, int handle) {
849 if (mSensors == nullptr) return NO_INIT;
850 if (isClientDisabled(ident)) return INVALID_OPERATION;
851 ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle);
852 return checkReturnAndGetStatus(mSensors->flush(handle));
853 }
854
isClientDisabled(void * ident) const855 bool SensorDevice::isClientDisabled(void* ident) const {
856 Mutex::Autolock _l(mLock);
857 return isClientDisabledLocked(ident);
858 }
859
isClientDisabledLocked(void * ident) const860 bool SensorDevice::isClientDisabledLocked(void* ident) const {
861 return mDisabledClients.count(ident) > 0;
862 }
863
getDisabledClientsLocked() const864 std::vector<void *> SensorDevice::getDisabledClientsLocked() const {
865 std::vector<void *> vec;
866 for (const auto& it : mDisabledClients) {
867 vec.push_back(it.first);
868 }
869
870 return vec;
871 }
872
addDisabledReasonForIdentLocked(void * ident,DisabledReason reason)873 void SensorDevice::addDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
874 mDisabledClients[ident] |= 1 << reason;
875 }
876
removeDisabledReasonForIdentLocked(void * ident,DisabledReason reason)877 void SensorDevice::removeDisabledReasonForIdentLocked(void* ident, DisabledReason reason) {
878 if (isClientDisabledLocked(ident)) {
879 mDisabledClients[ident] &= ~(1 << reason);
880 if (mDisabledClients[ident] == 0) {
881 mDisabledClients.erase(ident);
882 }
883 }
884 }
885
setUidStateForConnection(void * ident,SensorService::UidState state)886 void SensorDevice::setUidStateForConnection(void* ident, SensorService::UidState state) {
887 Mutex::Autolock _l(mLock);
888 if (state == SensorService::UID_STATE_ACTIVE) {
889 removeDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
890 } else {
891 addDisabledReasonForIdentLocked(ident, DisabledReason::DISABLED_REASON_UID_IDLE);
892 }
893
894 for (size_t i = 0; i< mActivationCount.size(); ++i) {
895 int handle = mActivationCount.keyAt(i);
896 Info& info = mActivationCount.editValueAt(i);
897
898 if (info.hasBatchParamsForIdent(ident)) {
899 updateBatchParamsLocked(handle, info);
900 bool disable = info.numActiveClients() == 0 && info.isActive;
901 bool enable = info.numActiveClients() > 0 && !info.isActive;
902
903 if ((enable || disable) &&
904 doActivateHardwareLocked(handle, enable) == NO_ERROR) {
905 info.isActive = enable;
906 }
907 }
908 }
909 }
910
isSensorActive(int handle) const911 bool SensorDevice::isSensorActive(int handle) const {
912 Mutex::Autolock _l(mLock);
913 ssize_t activationIndex = mActivationCount.indexOfKey(handle);
914 if (activationIndex < 0) {
915 return false;
916 }
917 return mActivationCount.valueAt(activationIndex).numActiveClients() > 0;
918 }
919
enableAllSensors()920 void SensorDevice::enableAllSensors() {
921 if (mSensors == nullptr) return;
922 Mutex::Autolock _l(mLock);
923
924 for (void *client : getDisabledClientsLocked()) {
925 removeDisabledReasonForIdentLocked(
926 client, DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
927 }
928
929 for (size_t i = 0; i< mActivationCount.size(); ++i) {
930 Info& info = mActivationCount.editValueAt(i);
931 if (info.batchParams.isEmpty()) continue;
932 info.selectBatchParams();
933 const int sensor_handle = mActivationCount.keyAt(i);
934 ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ",
935 sensor_handle);
936 status_t err = checkReturnAndGetStatus(mSensors->batch(
937 sensor_handle,
938 info.bestBatchParams.mTSample,
939 info.bestBatchParams.mTBatch));
940 ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err));
941
942 if (err == NO_ERROR) {
943 err = checkReturnAndGetStatus(mSensors->activate(sensor_handle, 1 /* enabled */));
944 ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err));
945 }
946
947 if (err == NO_ERROR) {
948 info.isActive = true;
949 }
950 }
951 }
952
disableAllSensors()953 void SensorDevice::disableAllSensors() {
954 if (mSensors == nullptr) return;
955 Mutex::Autolock _l(mLock);
956 for (size_t i = 0; i< mActivationCount.size(); ++i) {
957 Info& info = mActivationCount.editValueAt(i);
958 // Check if this sensor has been activated previously and disable it.
959 if (info.batchParams.size() > 0) {
960 const int sensor_handle = mActivationCount.keyAt(i);
961 ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ",
962 sensor_handle);
963 checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */));
964
965 // Add all the connections that were registered for this sensor to the disabled
966 // clients list.
967 for (size_t j = 0; j < info.batchParams.size(); ++j) {
968 addDisabledReasonForIdentLocked(
969 info.batchParams.keyAt(j), DisabledReason::DISABLED_REASON_SERVICE_RESTRICTED);
970 ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j));
971 }
972
973 info.isActive = false;
974 }
975 }
976 }
977
injectSensorData(const sensors_event_t * injected_sensor_event)978 status_t SensorDevice::injectSensorData(
979 const sensors_event_t *injected_sensor_event) {
980 if (mSensors == nullptr) return NO_INIT;
981 ALOGD_IF(DEBUG_CONNECTIONS,
982 "sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f",
983 injected_sensor_event->sensor,
984 injected_sensor_event->timestamp, injected_sensor_event->data[0],
985 injected_sensor_event->data[1], injected_sensor_event->data[2],
986 injected_sensor_event->data[3], injected_sensor_event->data[4],
987 injected_sensor_event->data[5]);
988
989 Event ev;
990 V2_1::implementation::convertFromSensorEvent(*injected_sensor_event, &ev);
991
992 return checkReturnAndGetStatus(mSensors->injectSensorData(ev));
993 }
994
setMode(uint32_t mode)995 status_t SensorDevice::setMode(uint32_t mode) {
996 if (mSensors == nullptr) return NO_INIT;
997 return checkReturnAndGetStatus(mSensors->setOperationMode(
998 static_cast<hardware::sensors::V1_0::OperationMode>(mode)));
999 }
1000
registerDirectChannel(const sensors_direct_mem_t * memory)1001 int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) {
1002 if (mSensors == nullptr) return NO_INIT;
1003 Mutex::Autolock _l(mLock);
1004
1005 SharedMemType type;
1006 switch (memory->type) {
1007 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
1008 type = SharedMemType::ASHMEM;
1009 break;
1010 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
1011 type = SharedMemType::GRALLOC;
1012 break;
1013 default:
1014 return BAD_VALUE;
1015 }
1016
1017 SharedMemFormat format;
1018 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
1019 return BAD_VALUE;
1020 }
1021 format = SharedMemFormat::SENSORS_EVENT;
1022
1023 SharedMemInfo mem = {
1024 .type = type,
1025 .format = format,
1026 .size = static_cast<uint32_t>(memory->size),
1027 .memoryHandle = memory->handle,
1028 };
1029
1030 int32_t ret;
1031 checkReturn(mSensors->registerDirectChannel(mem,
1032 [&ret](auto result, auto channelHandle) {
1033 if (result == Result::OK) {
1034 ret = channelHandle;
1035 } else {
1036 ret = statusFromResult(result);
1037 }
1038 }));
1039 return ret;
1040 }
1041
unregisterDirectChannel(int32_t channelHandle)1042 void SensorDevice::unregisterDirectChannel(int32_t channelHandle) {
1043 if (mSensors == nullptr) return;
1044 Mutex::Autolock _l(mLock);
1045 checkReturn(mSensors->unregisterDirectChannel(channelHandle));
1046 }
1047
configureDirectChannel(int32_t sensorHandle,int32_t channelHandle,const struct sensors_direct_cfg_t * config)1048 int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle,
1049 int32_t channelHandle, const struct sensors_direct_cfg_t *config) {
1050 if (mSensors == nullptr) return NO_INIT;
1051 Mutex::Autolock _l(mLock);
1052
1053 RateLevel rate;
1054 switch(config->rate_level) {
1055 case SENSOR_DIRECT_RATE_STOP:
1056 rate = RateLevel::STOP;
1057 break;
1058 case SENSOR_DIRECT_RATE_NORMAL:
1059 rate = RateLevel::NORMAL;
1060 break;
1061 case SENSOR_DIRECT_RATE_FAST:
1062 rate = RateLevel::FAST;
1063 break;
1064 case SENSOR_DIRECT_RATE_VERY_FAST:
1065 rate = RateLevel::VERY_FAST;
1066 break;
1067 default:
1068 return BAD_VALUE;
1069 }
1070
1071 int32_t ret;
1072 checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate,
1073 [&ret, rate] (auto result, auto token) {
1074 if (rate == RateLevel::STOP) {
1075 ret = statusFromResult(result);
1076 } else {
1077 if (result == Result::OK) {
1078 ret = token;
1079 } else {
1080 ret = statusFromResult(result);
1081 }
1082 }
1083 }));
1084
1085 return ret;
1086 }
1087
1088 // ---------------------------------------------------------------------------
1089
numActiveClients() const1090 int SensorDevice::Info::numActiveClients() const {
1091 SensorDevice& device(SensorDevice::getInstance());
1092 int num = 0;
1093 for (size_t i = 0; i < batchParams.size(); ++i) {
1094 if (!device.isClientDisabledLocked(batchParams.keyAt(i))) {
1095 ++num;
1096 }
1097 }
1098 return num;
1099 }
1100
setBatchParamsForIdent(void * ident,int,int64_t samplingPeriodNs,int64_t maxBatchReportLatencyNs)1101 status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int,
1102 int64_t samplingPeriodNs,
1103 int64_t maxBatchReportLatencyNs) {
1104 ssize_t index = batchParams.indexOfKey(ident);
1105 if (index < 0) {
1106 ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64
1107 " timeout=%" PRId64 ") failed (%s)",
1108 ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index));
1109 return BAD_INDEX;
1110 }
1111 BatchParams& params = batchParams.editValueAt(index);
1112 params.mTSample = samplingPeriodNs;
1113 params.mTBatch = maxBatchReportLatencyNs;
1114 return NO_ERROR;
1115 }
1116
selectBatchParams()1117 void SensorDevice::Info::selectBatchParams() {
1118 BatchParams bestParams; // default to max Tsample and max Tbatch
1119 SensorDevice& device(SensorDevice::getInstance());
1120
1121 for (size_t i = 0; i < batchParams.size(); ++i) {
1122 if (device.isClientDisabledLocked(batchParams.keyAt(i))) {
1123 continue;
1124 }
1125 bestParams.merge(batchParams[i]);
1126 }
1127 // if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly.
1128 if (bestParams.mTBatch <= bestParams.mTSample) {
1129 bestParams.mTBatch = 0;
1130 }
1131 bestBatchParams = bestParams;
1132 }
1133
removeBatchParamsForIdent(void * ident)1134 ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) {
1135 ssize_t idx = batchParams.removeItem(ident);
1136 if (idx >= 0) {
1137 selectBatchParams();
1138 }
1139 return idx;
1140 }
1141
notifyConnectionDestroyed(void * ident)1142 void SensorDevice::notifyConnectionDestroyed(void* ident) {
1143 Mutex::Autolock _l(mLock);
1144 mDisabledClients.erase(ident);
1145 }
1146
isDirectReportSupported() const1147 bool SensorDevice::isDirectReportSupported() const {
1148 return mIsDirectReportSupported;
1149 }
1150
convertToSensorEvent(const Event & src,sensors_event_t * dst)1151 void SensorDevice::convertToSensorEvent(
1152 const Event &src, sensors_event_t *dst) {
1153 V2_1::implementation::convertToSensorEvent(src, dst);
1154
1155 if (src.sensorType == V2_1::SensorType::DYNAMIC_SENSOR_META) {
1156 const DynamicSensorInfo &dyn = src.u.dynamic;
1157
1158 dst->dynamic_sensor_meta.connected = dyn.connected;
1159 dst->dynamic_sensor_meta.handle = dyn.sensorHandle;
1160 if (dyn.connected) {
1161 auto it = mConnectedDynamicSensors.find(dyn.sensorHandle);
1162 CHECK(it != mConnectedDynamicSensors.end());
1163
1164 dst->dynamic_sensor_meta.sensor = it->second;
1165
1166 memcpy(dst->dynamic_sensor_meta.uuid,
1167 dyn.uuid.data(),
1168 sizeof(dst->dynamic_sensor_meta.uuid));
1169 }
1170 }
1171 }
1172
convertToSensorEventsAndQuantize(const hidl_vec<Event> & src,const hidl_vec<SensorInfo> & dynamicSensorsAdded,sensors_event_t * dst)1173 void SensorDevice::convertToSensorEventsAndQuantize(
1174 const hidl_vec<Event> &src,
1175 const hidl_vec<SensorInfo> &dynamicSensorsAdded,
1176 sensors_event_t *dst) {
1177
1178 if (dynamicSensorsAdded.size() > 0) {
1179 onDynamicSensorsConnected(dynamicSensorsAdded);
1180 }
1181
1182 for (size_t i = 0; i < src.size(); ++i) {
1183 V2_1::implementation::convertToSensorEvent(src[i], &dst[i]);
1184 android::SensorDeviceUtils::quantizeSensorEventValues(&dst[i],
1185 getResolutionForSensor(dst[i].sensor));
1186 }
1187 }
1188
getResolutionForSensor(int sensorHandle)1189 float SensorDevice::getResolutionForSensor(int sensorHandle) {
1190 for (size_t i = 0; i < mSensorList.size(); i++) {
1191 if (sensorHandle == mSensorList[i].handle) {
1192 return mSensorList[i].resolution;
1193 }
1194 }
1195
1196 auto it = mConnectedDynamicSensors.find(sensorHandle);
1197 if (it != mConnectedDynamicSensors.end()) {
1198 return it->second->resolution;
1199 }
1200
1201 return 0;
1202 }
1203
handleHidlDeath(const std::string & detail)1204 void SensorDevice::handleHidlDeath(const std::string & detail) {
1205 if (!mSensors->supportsMessageQueues()) {
1206 // restart is the only option at present.
1207 LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str());
1208 } else {
1209 ALOGD("ISensors HAL died, death recipient will attempt reconnect");
1210 }
1211 }
1212
checkReturnAndGetStatus(const Return<Result> & ret)1213 status_t SensorDevice::checkReturnAndGetStatus(const Return<Result>& ret) {
1214 checkReturn(ret);
1215 return (!ret.isOk()) ? DEAD_OBJECT : statusFromResult(ret);
1216 }
1217
1218 // ---------------------------------------------------------------------------
1219 }; // namespace android
1220