1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 //#define LOG_NDEBUG 0
22 #undef LOG_TAG
23 #define LOG_TAG "Layer"
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include "Layer.h"
27
28 #include <android-base/stringprintf.h>
29 #include <android/native_window.h>
30 #include <binder/IPCThreadState.h>
31 #include <compositionengine/Display.h>
32 #include <compositionengine/LayerFECompositionState.h>
33 #include <compositionengine/OutputLayer.h>
34 #include <compositionengine/impl/OutputLayerCompositionState.h>
35 #include <cutils/compiler.h>
36 #include <cutils/native_handle.h>
37 #include <cutils/properties.h>
38 #include <gui/BufferItem.h>
39 #include <gui/LayerDebugInfo.h>
40 #include <gui/Surface.h>
41 #include <math.h>
42 #include <renderengine/RenderEngine.h>
43 #include <stdint.h>
44 #include <stdlib.h>
45 #include <sys/types.h>
46 #include <ui/DebugUtils.h>
47 #include <ui/GraphicBuffer.h>
48 #include <ui/PixelFormat.h>
49 #include <utils/Errors.h>
50 #include <utils/Log.h>
51 #include <utils/NativeHandle.h>
52 #include <utils/StopWatch.h>
53 #include <utils/Trace.h>
54
55 #include <algorithm>
56 #include <mutex>
57 #include <sstream>
58
59 #include "BufferLayer.h"
60 #include "Colorizer.h"
61 #include "DisplayDevice.h"
62 #include "DisplayHardware/HWComposer.h"
63 #include "EffectLayer.h"
64 #include "FrameTracer/FrameTracer.h"
65 #include "LayerProtoHelper.h"
66 #include "LayerRejecter.h"
67 #include "MonitoredProducer.h"
68 #include "SurfaceFlinger.h"
69 #include "TimeStats/TimeStats.h"
70
71 #define DEBUG_RESIZE 0
72
73 namespace android {
74
75 using base::StringAppendF;
76
77 std::atomic<int32_t> Layer::sSequence{1};
78
Layer(const LayerCreationArgs & args)79 Layer::Layer(const LayerCreationArgs& args)
80 : mFlinger(args.flinger),
81 mName(args.name),
82 mClientRef(args.client),
83 mWindowType(args.metadata.getInt32(METADATA_WINDOW_TYPE, 0)) {
84 uint32_t layerFlags = 0;
85 if (args.flags & ISurfaceComposerClient::eHidden) layerFlags |= layer_state_t::eLayerHidden;
86 if (args.flags & ISurfaceComposerClient::eOpaque) layerFlags |= layer_state_t::eLayerOpaque;
87 if (args.flags & ISurfaceComposerClient::eSecure) layerFlags |= layer_state_t::eLayerSecure;
88
89 mCurrentState.active_legacy.w = args.w;
90 mCurrentState.active_legacy.h = args.h;
91 mCurrentState.flags = layerFlags;
92 mCurrentState.active_legacy.transform.set(0, 0);
93 mCurrentState.crop_legacy.makeInvalid();
94 mCurrentState.requestedCrop_legacy = mCurrentState.crop_legacy;
95 mCurrentState.z = 0;
96 mCurrentState.color.a = 1.0f;
97 mCurrentState.layerStack = 0;
98 mCurrentState.sequence = 0;
99 mCurrentState.requested_legacy = mCurrentState.active_legacy;
100 mCurrentState.active.w = UINT32_MAX;
101 mCurrentState.active.h = UINT32_MAX;
102 mCurrentState.active.transform.set(0, 0);
103 mCurrentState.frameNumber = 0;
104 mCurrentState.transform = 0;
105 mCurrentState.transformToDisplayInverse = false;
106 mCurrentState.crop.makeInvalid();
107 mCurrentState.acquireFence = new Fence(-1);
108 mCurrentState.dataspace = ui::Dataspace::UNKNOWN;
109 mCurrentState.hdrMetadata.validTypes = 0;
110 mCurrentState.surfaceDamageRegion = Region::INVALID_REGION;
111 mCurrentState.cornerRadius = 0.0f;
112 mCurrentState.backgroundBlurRadius = 0;
113 mCurrentState.api = -1;
114 mCurrentState.hasColorTransform = false;
115 mCurrentState.colorSpaceAgnostic = false;
116 mCurrentState.frameRateSelectionPriority = PRIORITY_UNSET;
117 mCurrentState.metadata = args.metadata;
118 mCurrentState.shadowRadius = 0.f;
119 mCurrentState.treeHasFrameRateVote = false;
120 mCurrentState.fixedTransformHint = ui::Transform::ROT_INVALID;
121
122 if (args.flags & ISurfaceComposerClient::eNoColorFill) {
123 // Set an invalid color so there is no color fill.
124 mCurrentState.color.r = -1.0_hf;
125 mCurrentState.color.g = -1.0_hf;
126 mCurrentState.color.b = -1.0_hf;
127 }
128
129 // drawing state & current state are identical
130 mDrawingState = mCurrentState;
131
132 CompositorTiming compositorTiming;
133 args.flinger->getCompositorTiming(&compositorTiming);
134 mFrameEventHistory.initializeCompositorTiming(compositorTiming);
135 mFrameTracker.setDisplayRefreshPeriod(compositorTiming.interval);
136
137 mCallingPid = args.callingPid;
138 mCallingUid = args.callingUid;
139 }
140
onFirstRef()141 void Layer::onFirstRef() {
142 mFlinger->onLayerFirstRef(this);
143 }
144
~Layer()145 Layer::~Layer() {
146 sp<Client> c(mClientRef.promote());
147 if (c != 0) {
148 c->detachLayer(this);
149 }
150
151 mFrameTracker.logAndResetStats(mName);
152 mFlinger->onLayerDestroyed(this);
153 }
154
LayerCreationArgs(SurfaceFlinger * flinger,sp<Client> client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata)155 LayerCreationArgs::LayerCreationArgs(SurfaceFlinger* flinger, sp<Client> client, std::string name,
156 uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata)
157 : flinger(flinger),
158 client(std::move(client)),
159 name(std::move(name)),
160 w(w),
161 h(h),
162 flags(flags),
163 metadata(std::move(metadata)) {
164 IPCThreadState* ipc = IPCThreadState::self();
165 callingPid = ipc->getCallingPid();
166 callingUid = ipc->getCallingUid();
167 }
168
169 // ---------------------------------------------------------------------------
170 // callbacks
171 // ---------------------------------------------------------------------------
172
173 /*
174 * onLayerDisplayed is only meaningful for BufferLayer, but, is called through
175 * Layer. So, the implementation is done in BufferLayer. When called on a
176 * EffectLayer object, it's essentially a NOP.
177 */
onLayerDisplayed(const sp<Fence> &)178 void Layer::onLayerDisplayed(const sp<Fence>& /*releaseFence*/) {}
179
removeRemoteSyncPoints()180 void Layer::removeRemoteSyncPoints() {
181 for (auto& point : mRemoteSyncPoints) {
182 point->setTransactionApplied();
183 }
184 mRemoteSyncPoints.clear();
185
186 {
187 for (State pendingState : mPendingStates) {
188 pendingState.barrierLayer_legacy = nullptr;
189 }
190 }
191 }
192
removeRelativeZ(const std::vector<Layer * > & layersInTree)193 void Layer::removeRelativeZ(const std::vector<Layer*>& layersInTree) {
194 if (mCurrentState.zOrderRelativeOf == nullptr) {
195 return;
196 }
197
198 sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
199 if (strongRelative == nullptr) {
200 setZOrderRelativeOf(nullptr);
201 return;
202 }
203
204 if (!std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
205 strongRelative->removeZOrderRelative(this);
206 mFlinger->setTransactionFlags(eTraversalNeeded);
207 setZOrderRelativeOf(nullptr);
208 }
209 }
210
removeFromCurrentState()211 void Layer::removeFromCurrentState() {
212 mRemovedFromCurrentState = true;
213
214 // Since we are no longer reachable from CurrentState SurfaceFlinger
215 // will no longer invoke doTransaction for us, and so we will
216 // never finish applying transactions. We signal the sync point
217 // now so that another layer will not become indefinitely
218 // blocked.
219 removeRemoteSyncPoints();
220
221 {
222 Mutex::Autolock syncLock(mLocalSyncPointMutex);
223 for (auto& point : mLocalSyncPoints) {
224 point->setFrameAvailable();
225 }
226 mLocalSyncPoints.clear();
227 }
228
229 mFlinger->markLayerPendingRemovalLocked(this);
230 }
231
getRootLayer()232 sp<Layer> Layer::getRootLayer() {
233 sp<Layer> parent = getParent();
234 if (parent == nullptr) {
235 return this;
236 }
237 return parent->getRootLayer();
238 }
239
onRemovedFromCurrentState()240 void Layer::onRemovedFromCurrentState() {
241 // Use the root layer since we want to maintain the hierarchy for the entire subtree.
242 auto layersInTree = getRootLayer()->getLayersInTree(LayerVector::StateSet::Current);
243 std::sort(layersInTree.begin(), layersInTree.end());
244
245 traverse(LayerVector::StateSet::Current, [&](Layer* layer) {
246 layer->removeFromCurrentState();
247 layer->removeRelativeZ(layersInTree);
248 });
249 }
250
addToCurrentState()251 void Layer::addToCurrentState() {
252 mRemovedFromCurrentState = false;
253
254 for (const auto& child : mCurrentChildren) {
255 child->addToCurrentState();
256 }
257 }
258
259 // ---------------------------------------------------------------------------
260 // set-up
261 // ---------------------------------------------------------------------------
262
getPremultipledAlpha() const263 bool Layer::getPremultipledAlpha() const {
264 return mPremultipliedAlpha;
265 }
266
getHandle()267 sp<IBinder> Layer::getHandle() {
268 Mutex::Autolock _l(mLock);
269 if (mGetHandleCalled) {
270 ALOGE("Get handle called twice" );
271 return nullptr;
272 }
273 mGetHandleCalled = true;
274 return new Handle(mFlinger, this);
275 }
276
277 // ---------------------------------------------------------------------------
278 // h/w composer set-up
279 // ---------------------------------------------------------------------------
280
reduce(const Rect & win,const Region & exclude)281 static Rect reduce(const Rect& win, const Region& exclude) {
282 if (CC_LIKELY(exclude.isEmpty())) {
283 return win;
284 }
285 if (exclude.isRect()) {
286 return win.reduce(exclude.getBounds());
287 }
288 return Region(win).subtract(exclude).getBounds();
289 }
290
reduce(const FloatRect & win,const Region & exclude)291 static FloatRect reduce(const FloatRect& win, const Region& exclude) {
292 if (CC_LIKELY(exclude.isEmpty())) {
293 return win;
294 }
295 // Convert through Rect (by rounding) for lack of FloatRegion
296 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
297 }
298
getScreenBounds(bool reduceTransparentRegion) const299 Rect Layer::getScreenBounds(bool reduceTransparentRegion) const {
300 if (!reduceTransparentRegion) {
301 return Rect{mScreenBounds};
302 }
303
304 FloatRect bounds = getBounds();
305 ui::Transform t = getTransform();
306 // Transform to screen space.
307 bounds = t.transform(bounds);
308 return Rect{bounds};
309 }
310
getBounds() const311 FloatRect Layer::getBounds() const {
312 const State& s(getDrawingState());
313 return getBounds(getActiveTransparentRegion(s));
314 }
315
getBounds(const Region & activeTransparentRegion) const316 FloatRect Layer::getBounds(const Region& activeTransparentRegion) const {
317 // Subtract the transparent region and snap to the bounds.
318 return reduce(mBounds, activeTransparentRegion);
319 }
320
getBufferScaleTransform() const321 ui::Transform Layer::getBufferScaleTransform() const {
322 // If the layer is not using NATIVE_WINDOW_SCALING_MODE_FREEZE (e.g.
323 // it isFixedSize) then there may be additional scaling not accounted
324 // for in the layer transform.
325 if (!isFixedSize() || getBuffer() == nullptr) {
326 return {};
327 }
328
329 // If the layer is a buffer state layer, the active width and height
330 // could be infinite. In that case, return the effective transform.
331 const uint32_t activeWidth = getActiveWidth(getDrawingState());
332 const uint32_t activeHeight = getActiveHeight(getDrawingState());
333 if (activeWidth >= UINT32_MAX && activeHeight >= UINT32_MAX) {
334 return {};
335 }
336
337 int bufferWidth = getBuffer()->getWidth();
338 int bufferHeight = getBuffer()->getHeight();
339
340 if (getBufferTransform() & NATIVE_WINDOW_TRANSFORM_ROT_90) {
341 std::swap(bufferWidth, bufferHeight);
342 }
343
344 float sx = activeWidth / static_cast<float>(bufferWidth);
345 float sy = activeHeight / static_cast<float>(bufferHeight);
346
347 ui::Transform extraParentScaling;
348 extraParentScaling.set(sx, 0, 0, sy);
349 return extraParentScaling;
350 }
351
getTransformWithScale(const ui::Transform & bufferScaleTransform) const352 ui::Transform Layer::getTransformWithScale(const ui::Transform& bufferScaleTransform) const {
353 // We need to mirror this scaling to child surfaces or we will break the contract where WM can
354 // treat child surfaces as pixels in the parent surface.
355 if (!isFixedSize() || getBuffer() == nullptr) {
356 return mEffectiveTransform;
357 }
358 return mEffectiveTransform * bufferScaleTransform;
359 }
360
getBoundsPreScaling(const ui::Transform & bufferScaleTransform) const361 FloatRect Layer::getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const {
362 // We need the pre scaled layer bounds when computing child bounds to make sure the child is
363 // cropped to its parent layer after any buffer transform scaling is applied.
364 if (!isFixedSize() || getBuffer() == nullptr) {
365 return mBounds;
366 }
367 return bufferScaleTransform.inverse().transform(mBounds);
368 }
369
computeBounds(FloatRect parentBounds,ui::Transform parentTransform,float parentShadowRadius)370 void Layer::computeBounds(FloatRect parentBounds, ui::Transform parentTransform,
371 float parentShadowRadius) {
372 const State& s(getDrawingState());
373
374 // Calculate effective layer transform
375 mEffectiveTransform = parentTransform * getActiveTransform(s);
376
377 // Transform parent bounds to layer space
378 parentBounds = getActiveTransform(s).inverse().transform(parentBounds);
379
380 // Calculate source bounds
381 mSourceBounds = computeSourceBounds(parentBounds);
382
383 // Calculate bounds by croping diplay frame with layer crop and parent bounds
384 FloatRect bounds = mSourceBounds;
385 const Rect layerCrop = getCrop(s);
386 if (!layerCrop.isEmpty()) {
387 bounds = mSourceBounds.intersect(layerCrop.toFloatRect());
388 }
389 bounds = bounds.intersect(parentBounds);
390
391 mBounds = bounds;
392 mScreenBounds = mEffectiveTransform.transform(mBounds);
393
394 // Use the layer's own shadow radius if set. Otherwise get the radius from
395 // parent.
396 if (s.shadowRadius > 0.f) {
397 mEffectiveShadowRadius = s.shadowRadius;
398 } else {
399 mEffectiveShadowRadius = parentShadowRadius;
400 }
401
402 // Shadow radius is passed down to only one layer so if the layer can draw shadows,
403 // don't pass it to its children.
404 const float childShadowRadius = canDrawShadows() ? 0.f : mEffectiveShadowRadius;
405
406 // Add any buffer scaling to the layer's children.
407 ui::Transform bufferScaleTransform = getBufferScaleTransform();
408 for (const sp<Layer>& child : mDrawingChildren) {
409 child->computeBounds(getBoundsPreScaling(bufferScaleTransform),
410 getTransformWithScale(bufferScaleTransform), childShadowRadius);
411 }
412 }
413
getCroppedBufferSize(const State & s) const414 Rect Layer::getCroppedBufferSize(const State& s) const {
415 Rect size = getBufferSize(s);
416 Rect crop = getCrop(s);
417 if (!crop.isEmpty() && size.isValid()) {
418 size.intersect(crop, &size);
419 } else if (!crop.isEmpty()) {
420 size = crop;
421 }
422 return size;
423 }
424
setupRoundedCornersCropCoordinates(Rect win,const FloatRect & roundedCornersCrop) const425 void Layer::setupRoundedCornersCropCoordinates(Rect win,
426 const FloatRect& roundedCornersCrop) const {
427 // Translate win by the rounded corners rect coordinates, to have all values in
428 // layer coordinate space.
429 win.left -= roundedCornersCrop.left;
430 win.right -= roundedCornersCrop.left;
431 win.top -= roundedCornersCrop.top;
432 win.bottom -= roundedCornersCrop.top;
433 }
434
prepareBasicGeometryCompositionState()435 void Layer::prepareBasicGeometryCompositionState() {
436 const auto& drawingState{getDrawingState()};
437 const uint32_t layerStack = getLayerStack();
438 const auto alpha = static_cast<float>(getAlpha());
439 const bool opaque = isOpaque(drawingState);
440 const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
441
442 auto blendMode = Hwc2::IComposerClient::BlendMode::NONE;
443 if (!opaque || alpha != 1.0f) {
444 blendMode = mPremultipliedAlpha ? Hwc2::IComposerClient::BlendMode::PREMULTIPLIED
445 : Hwc2::IComposerClient::BlendMode::COVERAGE;
446 }
447
448 auto* compositionState = editCompositionState();
449 compositionState->layerStackId =
450 (layerStack != ~0u) ? std::make_optional(layerStack) : std::nullopt;
451 compositionState->internalOnly = getPrimaryDisplayOnly();
452 compositionState->isVisible = isVisible();
453 compositionState->isOpaque = opaque && !usesRoundedCorners && alpha == 1.f;
454 compositionState->shadowRadius = mEffectiveShadowRadius;
455
456 compositionState->contentDirty = contentDirty;
457 contentDirty = false;
458
459 compositionState->geomLayerBounds = mBounds;
460 compositionState->geomLayerTransform = getTransform();
461 compositionState->geomInverseLayerTransform = compositionState->geomLayerTransform.inverse();
462 compositionState->transparentRegionHint = getActiveTransparentRegion(drawingState);
463
464 compositionState->blendMode = static_cast<Hwc2::IComposerClient::BlendMode>(blendMode);
465 compositionState->alpha = alpha;
466 compositionState->backgroundBlurRadius = drawingState.backgroundBlurRadius;
467 }
468
prepareGeometryCompositionState()469 void Layer::prepareGeometryCompositionState() {
470 const auto& drawingState{getDrawingState()};
471
472 int type = drawingState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
473 int appId = drawingState.metadata.getInt32(METADATA_OWNER_UID, 0);
474 sp<Layer> parent = mDrawingParent.promote();
475 if (parent.get()) {
476 auto& parentState = parent->getDrawingState();
477 const int parentType = parentState.metadata.getInt32(METADATA_WINDOW_TYPE, 0);
478 const int parentAppId = parentState.metadata.getInt32(METADATA_OWNER_UID, 0);
479 if (parentType > 0 && parentAppId > 0) {
480 type = parentType;
481 appId = parentAppId;
482 }
483 }
484
485 auto* compositionState = editCompositionState();
486
487 compositionState->geomBufferSize = getBufferSize(drawingState);
488 compositionState->geomContentCrop = getBufferCrop();
489 compositionState->geomCrop = getCrop(drawingState);
490 compositionState->geomBufferTransform = getBufferTransform();
491 compositionState->geomBufferUsesDisplayInverseTransform = getTransformToDisplayInverse();
492 compositionState->geomUsesSourceCrop = usesSourceCrop();
493 compositionState->isSecure = isSecure();
494
495 compositionState->type = type;
496 compositionState->appId = appId;
497
498 compositionState->metadata.clear();
499 const auto& supportedMetadata = mFlinger->getHwComposer().getSupportedLayerGenericMetadata();
500 for (const auto& [key, mandatory] : supportedMetadata) {
501 const auto& genericLayerMetadataCompatibilityMap =
502 mFlinger->getGenericLayerMetadataKeyMap();
503 auto compatIter = genericLayerMetadataCompatibilityMap.find(key);
504 if (compatIter == std::end(genericLayerMetadataCompatibilityMap)) {
505 continue;
506 }
507 const uint32_t id = compatIter->second;
508
509 auto it = drawingState.metadata.mMap.find(id);
510 if (it == std::end(drawingState.metadata.mMap)) {
511 continue;
512 }
513
514 compositionState->metadata
515 .emplace(key, compositionengine::GenericLayerMetadataEntry{mandatory, it->second});
516 }
517 }
518
preparePerFrameCompositionState()519 void Layer::preparePerFrameCompositionState() {
520 const auto& drawingState{getDrawingState()};
521 auto* compositionState = editCompositionState();
522
523 compositionState->forceClientComposition = false;
524
525 compositionState->isColorspaceAgnostic = isColorSpaceAgnostic();
526 compositionState->dataspace = getDataSpace();
527 compositionState->colorTransform = getColorTransform();
528 compositionState->colorTransformIsIdentity = !hasColorTransform();
529 compositionState->surfaceDamage = surfaceDamageRegion;
530 compositionState->hasProtectedContent = isProtected();
531
532 const bool usesRoundedCorners = getRoundedCornerState().radius != 0.f;
533
534 compositionState->isOpaque =
535 isOpaque(drawingState) && !usesRoundedCorners && getAlpha() == 1.0_hf;
536
537 // Force client composition for special cases known only to the front-end.
538 if (isHdrY410() || usesRoundedCorners || drawShadows()) {
539 compositionState->forceClientComposition = true;
540 }
541 }
542
prepareCursorCompositionState()543 void Layer::prepareCursorCompositionState() {
544 const State& drawingState{getDrawingState()};
545 auto* compositionState = editCompositionState();
546
547 // Apply the layer's transform, followed by the display's global transform
548 // Here we're guaranteed that the layer's transform preserves rects
549 Rect win = getCroppedBufferSize(drawingState);
550 // Subtract the transparent region and snap to the bounds
551 Rect bounds = reduce(win, getActiveTransparentRegion(drawingState));
552 Rect frame(getTransform().transform(bounds));
553
554 compositionState->cursorFrame = frame;
555 }
556
asLayerFE() const557 sp<compositionengine::LayerFE> Layer::asLayerFE() const {
558 return const_cast<compositionengine::LayerFE*>(
559 static_cast<const compositionengine::LayerFE*>(this));
560 }
561
getCompositionEngineLayerFE() const562 sp<compositionengine::LayerFE> Layer::getCompositionEngineLayerFE() const {
563 return nullptr;
564 }
565
editCompositionState()566 compositionengine::LayerFECompositionState* Layer::editCompositionState() {
567 return nullptr;
568 }
569
getCompositionState() const570 const compositionengine::LayerFECompositionState* Layer::getCompositionState() const {
571 return nullptr;
572 }
573
onPreComposition(nsecs_t)574 bool Layer::onPreComposition(nsecs_t) {
575 return false;
576 }
577
prepareCompositionState(compositionengine::LayerFE::StateSubset subset)578 void Layer::prepareCompositionState(compositionengine::LayerFE::StateSubset subset) {
579 using StateSubset = compositionengine::LayerFE::StateSubset;
580
581 switch (subset) {
582 case StateSubset::BasicGeometry:
583 prepareBasicGeometryCompositionState();
584 break;
585
586 case StateSubset::GeometryAndContent:
587 prepareBasicGeometryCompositionState();
588 prepareGeometryCompositionState();
589 preparePerFrameCompositionState();
590 break;
591
592 case StateSubset::Content:
593 preparePerFrameCompositionState();
594 break;
595
596 case StateSubset::Cursor:
597 prepareCursorCompositionState();
598 break;
599 }
600 }
601
getDebugName() const602 const char* Layer::getDebugName() const {
603 return mName.c_str();
604 }
605
606 // ---------------------------------------------------------------------------
607 // drawing...
608 // ---------------------------------------------------------------------------
609
prepareClientComposition(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)610 std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareClientComposition(
611 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
612 if (!getCompositionState()) {
613 return {};
614 }
615
616 FloatRect bounds = getBounds();
617 half alpha = getAlpha();
618
619 compositionengine::LayerFE::LayerSettings layerSettings;
620 layerSettings.geometry.boundaries = bounds;
621 if (targetSettings.useIdentityTransform) {
622 layerSettings.geometry.positionTransform = mat4();
623 } else {
624 layerSettings.geometry.positionTransform = getTransform().asMatrix4();
625 }
626
627 if (hasColorTransform()) {
628 layerSettings.colorTransform = getColorTransform();
629 }
630
631 const auto roundedCornerState = getRoundedCornerState();
632 layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius;
633 layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect;
634
635 layerSettings.alpha = alpha;
636 layerSettings.sourceDataspace = getDataSpace();
637 layerSettings.backgroundBlurRadius = getBackgroundBlurRadius();
638 return layerSettings;
639 }
640
prepareShadowClientComposition(const LayerFE::LayerSettings & casterLayerSettings,const Rect & displayViewport,ui::Dataspace outputDataspace)641 std::optional<compositionengine::LayerFE::LayerSettings> Layer::prepareShadowClientComposition(
642 const LayerFE::LayerSettings& casterLayerSettings, const Rect& displayViewport,
643 ui::Dataspace outputDataspace) {
644 renderengine::ShadowSettings shadow = getShadowSettings(displayViewport);
645 if (shadow.length <= 0.f) {
646 return {};
647 }
648
649 const float casterAlpha = casterLayerSettings.alpha;
650 const bool casterIsOpaque = ((casterLayerSettings.source.buffer.buffer != nullptr) &&
651 casterLayerSettings.source.buffer.isOpaque);
652
653 compositionengine::LayerFE::LayerSettings shadowLayer = casterLayerSettings;
654
655 shadowLayer.shadow = shadow;
656 shadowLayer.geometry.boundaries = mBounds; // ignore transparent region
657
658 // If the casting layer is translucent, we need to fill in the shadow underneath the layer.
659 // Otherwise the generated shadow will only be shown around the casting layer.
660 shadowLayer.shadow.casterIsTranslucent = !casterIsOpaque || (casterAlpha < 1.0f);
661 shadowLayer.shadow.ambientColor *= casterAlpha;
662 shadowLayer.shadow.spotColor *= casterAlpha;
663 shadowLayer.sourceDataspace = outputDataspace;
664 shadowLayer.source.buffer.buffer = nullptr;
665 shadowLayer.source.buffer.fence = nullptr;
666 shadowLayer.frameNumber = 0;
667 shadowLayer.bufferId = 0;
668
669 if (shadowLayer.shadow.ambientColor.a <= 0.f && shadowLayer.shadow.spotColor.a <= 0.f) {
670 return {};
671 }
672
673 float casterCornerRadius = shadowLayer.geometry.roundedCornersRadius;
674 const FloatRect& cornerRadiusCropRect = shadowLayer.geometry.roundedCornersCrop;
675 const FloatRect& casterRect = shadowLayer.geometry.boundaries;
676
677 // crop used to set the corner radius may be larger than the content rect. Adjust the corner
678 // radius accordingly.
679 if (casterCornerRadius > 0.f) {
680 float cropRectOffset = std::max(std::abs(cornerRadiusCropRect.top - casterRect.top),
681 std::abs(cornerRadiusCropRect.left - casterRect.left));
682 if (cropRectOffset > casterCornerRadius) {
683 casterCornerRadius = 0;
684 } else {
685 casterCornerRadius -= cropRectOffset;
686 }
687 shadowLayer.geometry.roundedCornersRadius = casterCornerRadius;
688 }
689
690 return shadowLayer;
691 }
692
prepareClearClientComposition(LayerFE::LayerSettings & layerSettings,bool blackout) const693 void Layer::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings,
694 bool blackout) const {
695 layerSettings.source.buffer.buffer = nullptr;
696 layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
697 layerSettings.disableBlending = true;
698 layerSettings.bufferId = 0;
699 layerSettings.frameNumber = 0;
700
701 // If layer is blacked out, force alpha to 1 so that we draw a black color layer.
702 layerSettings.alpha = blackout ? 1.0f : 0.0f;
703 }
704
prepareClientCompositionList(compositionengine::LayerFE::ClientCompositionTargetSettings & targetSettings)705 std::vector<compositionengine::LayerFE::LayerSettings> Layer::prepareClientCompositionList(
706 compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) {
707 std::optional<compositionengine::LayerFE::LayerSettings> layerSettings =
708 prepareClientComposition(targetSettings);
709 // Nothing to render.
710 if (!layerSettings) {
711 return {};
712 }
713
714 // HWC requests to clear this layer.
715 if (targetSettings.clearContent) {
716 prepareClearClientComposition(*layerSettings, false /* blackout */);
717 return {*layerSettings};
718 }
719
720 std::optional<compositionengine::LayerFE::LayerSettings> shadowSettings =
721 prepareShadowClientComposition(*layerSettings, targetSettings.viewport,
722 targetSettings.dataspace);
723 // There are no shadows to render.
724 if (!shadowSettings) {
725 return {*layerSettings};
726 }
727
728 // If the layer casts a shadow but the content casting the shadow is occluded, skip
729 // composing the non-shadow content and only draw the shadows.
730 if (targetSettings.realContentIsVisible) {
731 return {*shadowSettings, *layerSettings};
732 }
733
734 return {*shadowSettings};
735 }
736
getCompositionType(const DisplayDevice & display) const737 Hwc2::IComposerClient::Composition Layer::getCompositionType(const DisplayDevice& display) const {
738 const auto outputLayer = findOutputLayerForDisplay(&display);
739 if (outputLayer == nullptr) {
740 return Hwc2::IComposerClient::Composition::INVALID;
741 }
742 if (outputLayer->getState().hwc) {
743 return (*outputLayer->getState().hwc).hwcCompositionType;
744 } else {
745 return Hwc2::IComposerClient::Composition::CLIENT;
746 }
747 }
748
addSyncPoint(const std::shared_ptr<SyncPoint> & point)749 bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
750 if (point->getFrameNumber() <= mCurrentFrameNumber) {
751 // Don't bother with a SyncPoint, since we've already latched the
752 // relevant frame
753 return false;
754 }
755 if (isRemovedFromCurrentState()) {
756 return false;
757 }
758
759 Mutex::Autolock lock(mLocalSyncPointMutex);
760 mLocalSyncPoints.push_back(point);
761 return true;
762 }
763
764 // ----------------------------------------------------------------------------
765 // local state
766 // ----------------------------------------------------------------------------
767
isSecure() const768 bool Layer::isSecure() const {
769 const State& s(mDrawingState);
770 return (s.flags & layer_state_t::eLayerSecure);
771 }
772
773 // ----------------------------------------------------------------------------
774 // transaction
775 // ----------------------------------------------------------------------------
776
pushPendingState()777 void Layer::pushPendingState() {
778 if (!mCurrentState.modified) {
779 return;
780 }
781 ATRACE_CALL();
782
783 // If this transaction is waiting on the receipt of a frame, generate a sync
784 // point and send it to the remote layer.
785 // We don't allow installing sync points after we are removed from the current state
786 // as we won't be able to signal our end.
787 if (mCurrentState.barrierLayer_legacy != nullptr && !isRemovedFromCurrentState()) {
788 sp<Layer> barrierLayer = mCurrentState.barrierLayer_legacy.promote();
789 if (barrierLayer == nullptr) {
790 ALOGE("[%s] Unable to promote barrier Layer.", getDebugName());
791 // If we can't promote the layer we are intended to wait on,
792 // then it is expired or otherwise invalid. Allow this transaction
793 // to be applied as per normal (no synchronization).
794 mCurrentState.barrierLayer_legacy = nullptr;
795 } else {
796 auto syncPoint = std::make_shared<SyncPoint>(mCurrentState.frameNumber_legacy, this);
797 if (barrierLayer->addSyncPoint(syncPoint)) {
798 std::stringstream ss;
799 ss << "Adding sync point " << mCurrentState.frameNumber_legacy;
800 ATRACE_NAME(ss.str().c_str());
801 mRemoteSyncPoints.push_back(std::move(syncPoint));
802 } else {
803 // We already missed the frame we're supposed to synchronize
804 // on, so go ahead and apply the state update
805 mCurrentState.barrierLayer_legacy = nullptr;
806 }
807 }
808
809 // Wake us up to check if the frame has been received
810 setTransactionFlags(eTransactionNeeded);
811 mFlinger->setTransactionFlags(eTraversalNeeded);
812 }
813 mPendingStates.push_back(mCurrentState);
814 ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
815 }
816
popPendingState(State * stateToCommit)817 void Layer::popPendingState(State* stateToCommit) {
818 ATRACE_CALL();
819 *stateToCommit = mPendingStates[0];
820
821 mPendingStates.removeAt(0);
822 ATRACE_INT(mTransactionName.c_str(), mPendingStates.size());
823 }
824
applyPendingStates(State * stateToCommit)825 bool Layer::applyPendingStates(State* stateToCommit) {
826 bool stateUpdateAvailable = false;
827 while (!mPendingStates.empty()) {
828 if (mPendingStates[0].barrierLayer_legacy != nullptr) {
829 if (mRemoteSyncPoints.empty()) {
830 // If we don't have a sync point for this, apply it anyway. It
831 // will be visually wrong, but it should keep us from getting
832 // into too much trouble.
833 ALOGE("[%s] No local sync point found", getDebugName());
834 popPendingState(stateToCommit);
835 stateUpdateAvailable = true;
836 continue;
837 }
838
839 if (mRemoteSyncPoints.front()->getFrameNumber() !=
840 mPendingStates[0].frameNumber_legacy) {
841 ALOGE("[%s] Unexpected sync point frame number found", getDebugName());
842
843 // Signal our end of the sync point and then dispose of it
844 mRemoteSyncPoints.front()->setTransactionApplied();
845 mRemoteSyncPoints.pop_front();
846 continue;
847 }
848
849 if (mRemoteSyncPoints.front()->frameIsAvailable()) {
850 ATRACE_NAME("frameIsAvailable");
851 // Apply the state update
852 popPendingState(stateToCommit);
853 stateUpdateAvailable = true;
854
855 // Signal our end of the sync point and then dispose of it
856 mRemoteSyncPoints.front()->setTransactionApplied();
857 mRemoteSyncPoints.pop_front();
858 } else {
859 ATRACE_NAME("!frameIsAvailable");
860 break;
861 }
862 } else {
863 popPendingState(stateToCommit);
864 stateUpdateAvailable = true;
865 }
866 }
867
868 // If we still have pending updates, we need to ensure SurfaceFlinger
869 // will keep calling doTransaction, and so we force a traversal.
870 // However, our pending states won't clear until a frame is available,
871 // and so there is no need to specifically trigger a wakeup.
872 if (!mPendingStates.empty()) {
873 setTransactionFlags(eTransactionNeeded);
874 mFlinger->setTraversalNeeded();
875 }
876
877 mCurrentState.modified = false;
878 return stateUpdateAvailable;
879 }
880
doTransactionResize(uint32_t flags,State * stateToCommit)881 uint32_t Layer::doTransactionResize(uint32_t flags, State* stateToCommit) {
882 const State& s(getDrawingState());
883
884 const bool sizeChanged = (stateToCommit->requested_legacy.w != s.requested_legacy.w) ||
885 (stateToCommit->requested_legacy.h != s.requested_legacy.h);
886
887 if (sizeChanged) {
888 // the size changed, we need to ask our client to request a new buffer
889 ALOGD_IF(DEBUG_RESIZE,
890 "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
891 " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
892 " requested={ wh={%4u,%4u} }}\n"
893 " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
894 " requested={ wh={%4u,%4u} }}\n",
895 this, getName().c_str(), getBufferTransform(), getEffectiveScalingMode(),
896 stateToCommit->active_legacy.w, stateToCommit->active_legacy.h,
897 stateToCommit->crop_legacy.left, stateToCommit->crop_legacy.top,
898 stateToCommit->crop_legacy.right, stateToCommit->crop_legacy.bottom,
899 stateToCommit->crop_legacy.getWidth(), stateToCommit->crop_legacy.getHeight(),
900 stateToCommit->requested_legacy.w, stateToCommit->requested_legacy.h,
901 s.active_legacy.w, s.active_legacy.h, s.crop_legacy.left, s.crop_legacy.top,
902 s.crop_legacy.right, s.crop_legacy.bottom, s.crop_legacy.getWidth(),
903 s.crop_legacy.getHeight(), s.requested_legacy.w, s.requested_legacy.h);
904 }
905
906 // Don't let Layer::doTransaction update the drawing state
907 // if we have a pending resize, unless we are in fixed-size mode.
908 // the drawing state will be updated only once we receive a buffer
909 // with the correct size.
910 //
911 // In particular, we want to make sure the clip (which is part
912 // of the geometry state) is latched together with the size but is
913 // latched immediately when no resizing is involved.
914 //
915 // If a sideband stream is attached, however, we want to skip this
916 // optimization so that transactions aren't missed when a buffer
917 // never arrives
918 //
919 // In the case that we don't have a buffer we ignore other factors
920 // and avoid entering the resizePending state. At a high level the
921 // resizePending state is to avoid applying the state of the new buffer
922 // to the old buffer. However in the state where we don't have an old buffer
923 // there is no such concern but we may still be being used as a parent layer.
924 const bool resizePending =
925 ((stateToCommit->requested_legacy.w != stateToCommit->active_legacy.w) ||
926 (stateToCommit->requested_legacy.h != stateToCommit->active_legacy.h)) &&
927 (getBuffer() != nullptr);
928 if (!isFixedSize()) {
929 if (resizePending && mSidebandStream == nullptr) {
930 flags |= eDontUpdateGeometryState;
931 }
932 }
933
934 // Here we apply various requested geometry states, depending on our
935 // latching configuration. See Layer.h for a detailed discussion of
936 // how geometry latching is controlled.
937 if (!(flags & eDontUpdateGeometryState)) {
938 State& editCurrentState(getCurrentState());
939
940 // There is an awkward asymmetry in the handling of the crop states in the position
941 // states, as can be seen below. Largely this arises from position and transform
942 // being stored in the same data structure while having different latching rules.
943 // b/38182305
944 //
945 // Careful that "stateToCommit" and editCurrentState may not begin as equivalent due to
946 // applyPendingStates in the presence of deferred transactions.
947 editCurrentState.active_legacy = editCurrentState.requested_legacy;
948 stateToCommit->active_legacy = stateToCommit->requested_legacy;
949 }
950
951 return flags;
952 }
953
doTransaction(uint32_t flags)954 uint32_t Layer::doTransaction(uint32_t flags) {
955 ATRACE_CALL();
956
957 if (mLayerDetached) {
958 // Ensure BLAST buffer callbacks are processed.
959 // detachChildren and mLayerDetached were implemented to avoid geometry updates
960 // to layers in the cases of animation. For BufferQueue layers buffers are still
961 // consumed as normal. This is useful as otherwise the client could get hung
962 // inevitably waiting on a buffer to return. We recreate this semantic for BufferQueue
963 // even though it is a little consistent. detachChildren is shortly slated for removal
964 // by the hierarchy mirroring work so we don't need to worry about it too much.
965 forceSendCallbacks();
966 mCurrentState.callbackHandles = {};
967 return flags;
968 }
969
970 if (mChildrenChanged) {
971 flags |= eVisibleRegion;
972 mChildrenChanged = false;
973 }
974
975 pushPendingState();
976 State c = getCurrentState();
977 if (!applyPendingStates(&c)) {
978 return flags;
979 }
980
981 flags = doTransactionResize(flags, &c);
982
983 const State& s(getDrawingState());
984
985 if (getActiveGeometry(c) != getActiveGeometry(s)) {
986 // invalidate and recompute the visible regions if needed
987 flags |= Layer::eVisibleRegion;
988 }
989
990 if (c.sequence != s.sequence) {
991 // invalidate and recompute the visible regions if needed
992 flags |= eVisibleRegion;
993 this->contentDirty = true;
994
995 // we may use linear filtering, if the matrix scales us
996 const uint8_t type = getActiveTransform(c).getType();
997 mNeedsFiltering = (!getActiveTransform(c).preserveRects() || type >= ui::Transform::SCALE);
998 }
999
1000 if (mCurrentState.inputInfoChanged) {
1001 flags |= eInputInfoChanged;
1002 mCurrentState.inputInfoChanged = false;
1003 }
1004
1005 // Commit the transaction
1006 commitTransaction(c);
1007 mPendingStatesSnapshot = mPendingStates;
1008 mCurrentState.callbackHandles = {};
1009
1010 return flags;
1011 }
1012
commitTransaction(const State & stateToCommit)1013 void Layer::commitTransaction(const State& stateToCommit) {
1014 mDrawingState = stateToCommit;
1015 }
1016
getTransactionFlags(uint32_t flags)1017 uint32_t Layer::getTransactionFlags(uint32_t flags) {
1018 return mTransactionFlags.fetch_and(~flags) & flags;
1019 }
1020
setTransactionFlags(uint32_t flags)1021 uint32_t Layer::setTransactionFlags(uint32_t flags) {
1022 return mTransactionFlags.fetch_or(flags);
1023 }
1024
setPosition(float x,float y)1025 bool Layer::setPosition(float x, float y) {
1026 if (mCurrentState.requested_legacy.transform.tx() == x &&
1027 mCurrentState.requested_legacy.transform.ty() == y)
1028 return false;
1029 mCurrentState.sequence++;
1030
1031 // We update the requested and active position simultaneously because
1032 // we want to apply the position portion of the transform matrix immediately,
1033 // but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
1034 mCurrentState.requested_legacy.transform.set(x, y);
1035 // Here we directly update the active state
1036 // unlike other setters, because we store it within
1037 // the transform, but use different latching rules.
1038 // b/38182305
1039 mCurrentState.active_legacy.transform.set(x, y);
1040
1041 mCurrentState.modified = true;
1042 setTransactionFlags(eTransactionNeeded);
1043 return true;
1044 }
1045
setChildLayer(const sp<Layer> & childLayer,int32_t z)1046 bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) {
1047 ssize_t idx = mCurrentChildren.indexOf(childLayer);
1048 if (idx < 0) {
1049 return false;
1050 }
1051 if (childLayer->setLayer(z)) {
1052 mCurrentChildren.removeAt(idx);
1053 mCurrentChildren.add(childLayer);
1054 return true;
1055 }
1056 return false;
1057 }
1058
setChildRelativeLayer(const sp<Layer> & childLayer,const sp<IBinder> & relativeToHandle,int32_t relativeZ)1059 bool Layer::setChildRelativeLayer(const sp<Layer>& childLayer,
1060 const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
1061 ssize_t idx = mCurrentChildren.indexOf(childLayer);
1062 if (idx < 0) {
1063 return false;
1064 }
1065 if (childLayer->setRelativeLayer(relativeToHandle, relativeZ)) {
1066 mCurrentChildren.removeAt(idx);
1067 mCurrentChildren.add(childLayer);
1068 return true;
1069 }
1070 return false;
1071 }
1072
setLayer(int32_t z)1073 bool Layer::setLayer(int32_t z) {
1074 if (mCurrentState.z == z && !usingRelativeZ(LayerVector::StateSet::Current)) return false;
1075 mCurrentState.sequence++;
1076 mCurrentState.z = z;
1077 mCurrentState.modified = true;
1078
1079 // Discard all relative layering.
1080 if (mCurrentState.zOrderRelativeOf != nullptr) {
1081 sp<Layer> strongRelative = mCurrentState.zOrderRelativeOf.promote();
1082 if (strongRelative != nullptr) {
1083 strongRelative->removeZOrderRelative(this);
1084 }
1085 setZOrderRelativeOf(nullptr);
1086 }
1087 setTransactionFlags(eTransactionNeeded);
1088 return true;
1089 }
1090
removeZOrderRelative(const wp<Layer> & relative)1091 void Layer::removeZOrderRelative(const wp<Layer>& relative) {
1092 mCurrentState.zOrderRelatives.remove(relative);
1093 mCurrentState.sequence++;
1094 mCurrentState.modified = true;
1095 setTransactionFlags(eTransactionNeeded);
1096 }
1097
addZOrderRelative(const wp<Layer> & relative)1098 void Layer::addZOrderRelative(const wp<Layer>& relative) {
1099 mCurrentState.zOrderRelatives.add(relative);
1100 mCurrentState.modified = true;
1101 mCurrentState.sequence++;
1102 setTransactionFlags(eTransactionNeeded);
1103 }
1104
setZOrderRelativeOf(const wp<Layer> & relativeOf)1105 void Layer::setZOrderRelativeOf(const wp<Layer>& relativeOf) {
1106 mCurrentState.zOrderRelativeOf = relativeOf;
1107 mCurrentState.sequence++;
1108 mCurrentState.modified = true;
1109 mCurrentState.isRelativeOf = relativeOf != nullptr;
1110
1111 setTransactionFlags(eTransactionNeeded);
1112 }
1113
setRelativeLayer(const sp<IBinder> & relativeToHandle,int32_t relativeZ)1114 bool Layer::setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ) {
1115 sp<Handle> handle = static_cast<Handle*>(relativeToHandle.get());
1116 if (handle == nullptr) {
1117 return false;
1118 }
1119 sp<Layer> relative = handle->owner.promote();
1120 if (relative == nullptr) {
1121 return false;
1122 }
1123
1124 if (mCurrentState.z == relativeZ && usingRelativeZ(LayerVector::StateSet::Current) &&
1125 mCurrentState.zOrderRelativeOf == relative) {
1126 return false;
1127 }
1128
1129 mCurrentState.sequence++;
1130 mCurrentState.modified = true;
1131 mCurrentState.z = relativeZ;
1132
1133 auto oldZOrderRelativeOf = mCurrentState.zOrderRelativeOf.promote();
1134 if (oldZOrderRelativeOf != nullptr) {
1135 oldZOrderRelativeOf->removeZOrderRelative(this);
1136 }
1137 setZOrderRelativeOf(relative);
1138 relative->addZOrderRelative(this);
1139
1140 setTransactionFlags(eTransactionNeeded);
1141
1142 return true;
1143 }
1144
setSize(uint32_t w,uint32_t h)1145 bool Layer::setSize(uint32_t w, uint32_t h) {
1146 if (mCurrentState.requested_legacy.w == w && mCurrentState.requested_legacy.h == h)
1147 return false;
1148 mCurrentState.requested_legacy.w = w;
1149 mCurrentState.requested_legacy.h = h;
1150 mCurrentState.modified = true;
1151 setTransactionFlags(eTransactionNeeded);
1152
1153 // record the new size, from this point on, when the client request
1154 // a buffer, it'll get the new size.
1155 setDefaultBufferSize(mCurrentState.requested_legacy.w, mCurrentState.requested_legacy.h);
1156 return true;
1157 }
setAlpha(float alpha)1158 bool Layer::setAlpha(float alpha) {
1159 if (mCurrentState.color.a == alpha) return false;
1160 mCurrentState.sequence++;
1161 mCurrentState.color.a = alpha;
1162 mCurrentState.modified = true;
1163 setTransactionFlags(eTransactionNeeded);
1164 return true;
1165 }
1166
setBackgroundColor(const half3 & color,float alpha,ui::Dataspace dataspace)1167 bool Layer::setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) {
1168 if (!mCurrentState.bgColorLayer && alpha == 0) {
1169 return false;
1170 }
1171 mCurrentState.sequence++;
1172 mCurrentState.modified = true;
1173 setTransactionFlags(eTransactionNeeded);
1174
1175 if (!mCurrentState.bgColorLayer && alpha != 0) {
1176 // create background color layer if one does not yet exist
1177 uint32_t flags = ISurfaceComposerClient::eFXSurfaceEffect;
1178 std::string name = mName + "BackgroundColorLayer";
1179 mCurrentState.bgColorLayer = mFlinger->getFactory().createEffectLayer(
1180 LayerCreationArgs(mFlinger.get(), nullptr, std::move(name), 0, 0, flags,
1181 LayerMetadata()));
1182
1183 // add to child list
1184 addChild(mCurrentState.bgColorLayer);
1185 mFlinger->mLayersAdded = true;
1186 // set up SF to handle added color layer
1187 if (isRemovedFromCurrentState()) {
1188 mCurrentState.bgColorLayer->onRemovedFromCurrentState();
1189 }
1190 mFlinger->setTransactionFlags(eTransactionNeeded);
1191 } else if (mCurrentState.bgColorLayer && alpha == 0) {
1192 mCurrentState.bgColorLayer->reparent(nullptr);
1193 mCurrentState.bgColorLayer = nullptr;
1194 return true;
1195 }
1196
1197 mCurrentState.bgColorLayer->setColor(color);
1198 mCurrentState.bgColorLayer->setLayer(std::numeric_limits<int32_t>::min());
1199 mCurrentState.bgColorLayer->setAlpha(alpha);
1200 mCurrentState.bgColorLayer->setDataspace(dataspace);
1201
1202 return true;
1203 }
1204
setCornerRadius(float cornerRadius)1205 bool Layer::setCornerRadius(float cornerRadius) {
1206 if (mCurrentState.cornerRadius == cornerRadius) return false;
1207
1208 mCurrentState.sequence++;
1209 mCurrentState.cornerRadius = cornerRadius;
1210 mCurrentState.modified = true;
1211 setTransactionFlags(eTransactionNeeded);
1212 return true;
1213 }
1214
setBackgroundBlurRadius(int backgroundBlurRadius)1215 bool Layer::setBackgroundBlurRadius(int backgroundBlurRadius) {
1216 if (mCurrentState.backgroundBlurRadius == backgroundBlurRadius) return false;
1217
1218 mCurrentState.sequence++;
1219 mCurrentState.backgroundBlurRadius = backgroundBlurRadius;
1220 mCurrentState.modified = true;
1221 setTransactionFlags(eTransactionNeeded);
1222 return true;
1223 }
1224
setMatrix(const layer_state_t::matrix22_t & matrix,bool allowNonRectPreservingTransforms)1225 bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix,
1226 bool allowNonRectPreservingTransforms) {
1227 ui::Transform t;
1228 t.set(matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy);
1229
1230 if (!allowNonRectPreservingTransforms && !t.preserveRects()) {
1231 ALOGW("Attempt to set rotation matrix without permission ACCESS_SURFACE_FLINGER ignored");
1232 return false;
1233 }
1234 mCurrentState.sequence++;
1235 mCurrentState.requested_legacy.transform.set(matrix.dsdx, matrix.dtdy, matrix.dtdx,
1236 matrix.dsdy);
1237 mCurrentState.modified = true;
1238 setTransactionFlags(eTransactionNeeded);
1239 return true;
1240 }
1241
setTransparentRegionHint(const Region & transparent)1242 bool Layer::setTransparentRegionHint(const Region& transparent) {
1243 mCurrentState.requestedTransparentRegion_legacy = transparent;
1244 mCurrentState.modified = true;
1245 setTransactionFlags(eTransactionNeeded);
1246 return true;
1247 }
1248
setFlags(uint8_t flags,uint8_t mask)1249 bool Layer::setFlags(uint8_t flags, uint8_t mask) {
1250 const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
1251 if (mCurrentState.flags == newFlags) return false;
1252 mCurrentState.sequence++;
1253 mCurrentState.flags = newFlags;
1254 mCurrentState.modified = true;
1255 setTransactionFlags(eTransactionNeeded);
1256 return true;
1257 }
1258
setCrop_legacy(const Rect & crop)1259 bool Layer::setCrop_legacy(const Rect& crop) {
1260 if (mCurrentState.requestedCrop_legacy == crop) return false;
1261 mCurrentState.sequence++;
1262 mCurrentState.requestedCrop_legacy = crop;
1263 mCurrentState.crop_legacy = crop;
1264
1265 mCurrentState.modified = true;
1266 setTransactionFlags(eTransactionNeeded);
1267 return true;
1268 }
1269
setOverrideScalingMode(int32_t scalingMode)1270 bool Layer::setOverrideScalingMode(int32_t scalingMode) {
1271 if (scalingMode == mOverrideScalingMode) return false;
1272 mOverrideScalingMode = scalingMode;
1273 setTransactionFlags(eTransactionNeeded);
1274 return true;
1275 }
1276
setMetadata(const LayerMetadata & data)1277 bool Layer::setMetadata(const LayerMetadata& data) {
1278 if (!mCurrentState.metadata.merge(data, true /* eraseEmpty */)) return false;
1279 mCurrentState.sequence++;
1280 mCurrentState.modified = true;
1281 setTransactionFlags(eTransactionNeeded);
1282 return true;
1283 }
1284
setLayerStack(uint32_t layerStack)1285 bool Layer::setLayerStack(uint32_t layerStack) {
1286 if (mCurrentState.layerStack == layerStack) return false;
1287 mCurrentState.sequence++;
1288 mCurrentState.layerStack = layerStack;
1289 mCurrentState.modified = true;
1290 setTransactionFlags(eTransactionNeeded);
1291 return true;
1292 }
1293
setColorSpaceAgnostic(const bool agnostic)1294 bool Layer::setColorSpaceAgnostic(const bool agnostic) {
1295 if (mCurrentState.colorSpaceAgnostic == agnostic) {
1296 return false;
1297 }
1298 mCurrentState.sequence++;
1299 mCurrentState.colorSpaceAgnostic = agnostic;
1300 mCurrentState.modified = true;
1301 setTransactionFlags(eTransactionNeeded);
1302 return true;
1303 }
1304
setFrameRateSelectionPriority(int32_t priority)1305 bool Layer::setFrameRateSelectionPriority(int32_t priority) {
1306 if (mCurrentState.frameRateSelectionPriority == priority) return false;
1307 mCurrentState.frameRateSelectionPriority = priority;
1308 mCurrentState.sequence++;
1309 mCurrentState.modified = true;
1310 setTransactionFlags(eTransactionNeeded);
1311 return true;
1312 }
1313
getFrameRateSelectionPriority() const1314 int32_t Layer::getFrameRateSelectionPriority() const {
1315 // Check if layer has priority set.
1316 if (mDrawingState.frameRateSelectionPriority != PRIORITY_UNSET) {
1317 return mDrawingState.frameRateSelectionPriority;
1318 }
1319 // If not, search whether its parents have it set.
1320 sp<Layer> parent = getParent();
1321 if (parent != nullptr) {
1322 return parent->getFrameRateSelectionPriority();
1323 }
1324
1325 return Layer::PRIORITY_UNSET;
1326 }
1327
isLayerFocusedBasedOnPriority(int32_t priority)1328 bool Layer::isLayerFocusedBasedOnPriority(int32_t priority) {
1329 return priority == PRIORITY_FOCUSED_WITH_MODE || priority == PRIORITY_FOCUSED_WITHOUT_MODE;
1330 };
1331
getLayerStack() const1332 uint32_t Layer::getLayerStack() const {
1333 auto p = mDrawingParent.promote();
1334 if (p == nullptr) {
1335 return getDrawingState().layerStack;
1336 }
1337 return p->getLayerStack();
1338 }
1339
setShadowRadius(float shadowRadius)1340 bool Layer::setShadowRadius(float shadowRadius) {
1341 if (mCurrentState.shadowRadius == shadowRadius) {
1342 return false;
1343 }
1344
1345 mCurrentState.sequence++;
1346 mCurrentState.shadowRadius = shadowRadius;
1347 mCurrentState.modified = true;
1348 setTransactionFlags(eTransactionNeeded);
1349 return true;
1350 }
1351
setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint)1352 bool Layer::setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint) {
1353 if (mCurrentState.fixedTransformHint == fixedTransformHint) {
1354 return false;
1355 }
1356
1357 mCurrentState.sequence++;
1358 mCurrentState.fixedTransformHint = fixedTransformHint;
1359 mCurrentState.modified = true;
1360 setTransactionFlags(eTransactionNeeded);
1361 return true;
1362 }
1363
updateTreeHasFrameRateVote()1364 void Layer::updateTreeHasFrameRateVote() {
1365 const auto traverseTree = [&](const LayerVector::Visitor& visitor) {
1366 auto parent = getParent();
1367 while (parent) {
1368 visitor(parent.get());
1369 parent = parent->getParent();
1370 }
1371
1372 traverse(LayerVector::StateSet::Current, visitor);
1373 };
1374
1375 // update parents and children about the vote
1376 // First traverse the tree and count how many layers has votes
1377 int layersWithVote = 0;
1378 traverseTree([&layersWithVote](Layer* layer) {
1379 const auto layerVotedWithDefaultCompatibility = layer->mCurrentState.frameRate.rate > 0 &&
1380 layer->mCurrentState.frameRate.type == FrameRateCompatibility::Default;
1381 const auto layerVotedWithNoVote =
1382 layer->mCurrentState.frameRate.type == FrameRateCompatibility::NoVote;
1383
1384 // We do not count layers that are ExactOrMultiple for the same reason
1385 // we are allowing touch boost for those layers. See
1386 // RefreshRateConfigs::getBestRefreshRate for more details.
1387 if (layerVotedWithDefaultCompatibility || layerVotedWithNoVote) {
1388 layersWithVote++;
1389 }
1390 });
1391
1392 // Now update the other layers
1393 bool transactionNeeded = false;
1394 traverseTree([layersWithVote, &transactionNeeded](Layer* layer) {
1395 if (layer->mCurrentState.treeHasFrameRateVote != layersWithVote > 0) {
1396 layer->mCurrentState.sequence++;
1397 layer->mCurrentState.treeHasFrameRateVote = layersWithVote > 0;
1398 layer->mCurrentState.modified = true;
1399 layer->setTransactionFlags(eTransactionNeeded);
1400 transactionNeeded = true;
1401 }
1402 });
1403
1404 if (transactionNeeded) {
1405 mFlinger->setTransactionFlags(eTraversalNeeded);
1406 }
1407 }
1408
setFrameRate(FrameRate frameRate)1409 bool Layer::setFrameRate(FrameRate frameRate) {
1410 if (!mFlinger->useFrameRateApi) {
1411 return false;
1412 }
1413 if (mCurrentState.frameRate == frameRate) {
1414 return false;
1415 }
1416
1417 // Activate the layer in Scheduler's LayerHistory
1418 mFlinger->mScheduler->recordLayerHistory(this, systemTime(),
1419 LayerHistory::LayerUpdateType::SetFrameRate);
1420
1421 mCurrentState.sequence++;
1422 mCurrentState.frameRate = frameRate;
1423 mCurrentState.modified = true;
1424
1425 updateTreeHasFrameRateVote();
1426
1427 setTransactionFlags(eTransactionNeeded);
1428 return true;
1429 }
1430
getFrameRateForLayerTree() const1431 Layer::FrameRate Layer::getFrameRateForLayerTree() const {
1432 const auto frameRate = getDrawingState().frameRate;
1433 if (frameRate.rate > 0 || frameRate.type == FrameRateCompatibility::NoVote) {
1434 return frameRate;
1435 }
1436
1437 // This layer doesn't have a frame rate. If one of its ancestors or successors
1438 // have a vote, return a NoVote for ancestors/successors to set the vote
1439 if (getDrawingState().treeHasFrameRateVote) {
1440 return {0, FrameRateCompatibility::NoVote};
1441 }
1442
1443 return frameRate;
1444 }
1445
deferTransactionUntil_legacy(const sp<Layer> & barrierLayer,uint64_t frameNumber)1446 void Layer::deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber) {
1447 ATRACE_CALL();
1448 if (mLayerDetached) {
1449 // If the layer is detached, then we don't defer this transaction since we will not
1450 // commit the pending state while the layer is detached. Adding sync points may cause
1451 // the barrier layer to wait for the states to be committed before dequeuing a buffer.
1452 return;
1453 }
1454
1455 mCurrentState.barrierLayer_legacy = barrierLayer;
1456 mCurrentState.frameNumber_legacy = frameNumber;
1457 // We don't set eTransactionNeeded, because just receiving a deferral
1458 // request without any other state updates shouldn't actually induce a delay
1459 mCurrentState.modified = true;
1460 pushPendingState();
1461 mCurrentState.barrierLayer_legacy = nullptr;
1462 mCurrentState.frameNumber_legacy = 0;
1463 mCurrentState.modified = false;
1464 }
1465
deferTransactionUntil_legacy(const sp<IBinder> & barrierHandle,uint64_t frameNumber)1466 void Layer::deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber) {
1467 sp<Handle> handle = static_cast<Handle*>(barrierHandle.get());
1468 deferTransactionUntil_legacy(handle->owner.promote(), frameNumber);
1469 }
1470
1471 // ----------------------------------------------------------------------------
1472 // pageflip handling...
1473 // ----------------------------------------------------------------------------
1474
isHiddenByPolicy() const1475 bool Layer::isHiddenByPolicy() const {
1476 const State& s(mDrawingState);
1477 const auto& parent = mDrawingParent.promote();
1478 if (parent != nullptr && parent->isHiddenByPolicy()) {
1479 return true;
1480 }
1481 if (usingRelativeZ(LayerVector::StateSet::Drawing)) {
1482 auto zOrderRelativeOf = mDrawingState.zOrderRelativeOf.promote();
1483 if (zOrderRelativeOf != nullptr) {
1484 if (zOrderRelativeOf->isHiddenByPolicy()) {
1485 return true;
1486 }
1487 }
1488 }
1489 return s.flags & layer_state_t::eLayerHidden;
1490 }
1491
getEffectiveUsage(uint32_t usage) const1492 uint32_t Layer::getEffectiveUsage(uint32_t usage) const {
1493 // TODO: should we do something special if mSecure is set?
1494 if (mProtectedByApp) {
1495 // need a hardware-protected path to external video sink
1496 usage |= GraphicBuffer::USAGE_PROTECTED;
1497 }
1498 if (mPotentialCursor) {
1499 usage |= GraphicBuffer::USAGE_CURSOR;
1500 }
1501 usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1502 return usage;
1503 }
1504
updateTransformHint(ui::Transform::RotationFlags transformHint)1505 void Layer::updateTransformHint(ui::Transform::RotationFlags transformHint) {
1506 if (mFlinger->mDebugDisableTransformHint || transformHint & ui::Transform::ROT_INVALID) {
1507 transformHint = ui::Transform::ROT_0;
1508 }
1509
1510 setTransformHint(transformHint);
1511 }
1512
1513 // ----------------------------------------------------------------------------
1514 // debugging
1515 // ----------------------------------------------------------------------------
1516
1517 // TODO(marissaw): add new layer state info to layer debugging
getLayerDebugInfo(const DisplayDevice * display) const1518 LayerDebugInfo Layer::getLayerDebugInfo(const DisplayDevice* display) const {
1519 using namespace std::string_literals;
1520
1521 LayerDebugInfo info;
1522 const State& ds = getDrawingState();
1523 info.mName = getName();
1524 sp<Layer> parent = mDrawingParent.promote();
1525 info.mParentName = parent ? parent->getName() : "none"s;
1526 info.mType = getType();
1527 info.mTransparentRegion = ds.activeTransparentRegion_legacy;
1528
1529 info.mVisibleRegion = getVisibleRegion(display);
1530 info.mSurfaceDamageRegion = surfaceDamageRegion;
1531 info.mLayerStack = getLayerStack();
1532 info.mX = ds.active_legacy.transform.tx();
1533 info.mY = ds.active_legacy.transform.ty();
1534 info.mZ = ds.z;
1535 info.mWidth = ds.active_legacy.w;
1536 info.mHeight = ds.active_legacy.h;
1537 info.mCrop = ds.crop_legacy;
1538 info.mColor = ds.color;
1539 info.mFlags = ds.flags;
1540 info.mPixelFormat = getPixelFormat();
1541 info.mDataSpace = static_cast<android_dataspace>(getDataSpace());
1542 info.mMatrix[0][0] = ds.active_legacy.transform[0][0];
1543 info.mMatrix[0][1] = ds.active_legacy.transform[0][1];
1544 info.mMatrix[1][0] = ds.active_legacy.transform[1][0];
1545 info.mMatrix[1][1] = ds.active_legacy.transform[1][1];
1546 {
1547 sp<const GraphicBuffer> buffer = getBuffer();
1548 if (buffer != 0) {
1549 info.mActiveBufferWidth = buffer->getWidth();
1550 info.mActiveBufferHeight = buffer->getHeight();
1551 info.mActiveBufferStride = buffer->getStride();
1552 info.mActiveBufferFormat = buffer->format;
1553 } else {
1554 info.mActiveBufferWidth = 0;
1555 info.mActiveBufferHeight = 0;
1556 info.mActiveBufferStride = 0;
1557 info.mActiveBufferFormat = 0;
1558 }
1559 }
1560 info.mNumQueuedFrames = getQueuedFrameCount();
1561 info.mRefreshPending = isBufferLatched();
1562 info.mIsOpaque = isOpaque(ds);
1563 info.mContentDirty = contentDirty;
1564 return info;
1565 }
1566
miniDumpHeader(std::string & result)1567 void Layer::miniDumpHeader(std::string& result) {
1568 result.append("-------------------------------");
1569 result.append("-------------------------------");
1570 result.append("-------------------------------");
1571 result.append("-------------------------------");
1572 result.append("-------------------\n");
1573 result.append(" Layer name\n");
1574 result.append(" Z | ");
1575 result.append(" Window Type | ");
1576 result.append(" Comp Type | ");
1577 result.append(" Transform | ");
1578 result.append(" Disp Frame (LTRB) | ");
1579 result.append(" Source Crop (LTRB) | ");
1580 result.append(" Frame Rate (Explicit) [Focused]\n");
1581 result.append("-------------------------------");
1582 result.append("-------------------------------");
1583 result.append("-------------------------------");
1584 result.append("-------------------------------");
1585 result.append("-------------------\n");
1586 }
1587
frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility)1588 std::string Layer::frameRateCompatibilityString(Layer::FrameRateCompatibility compatibility) {
1589 switch (compatibility) {
1590 case FrameRateCompatibility::Default:
1591 return "Default";
1592 case FrameRateCompatibility::ExactOrMultiple:
1593 return "ExactOrMultiple";
1594 case FrameRateCompatibility::NoVote:
1595 return "NoVote";
1596 }
1597 }
1598
miniDump(std::string & result,const DisplayDevice & display) const1599 void Layer::miniDump(std::string& result, const DisplayDevice& display) const {
1600 const auto outputLayer = findOutputLayerForDisplay(&display);
1601 if (!outputLayer) {
1602 return;
1603 }
1604
1605 std::string name;
1606 if (mName.length() > 77) {
1607 std::string shortened;
1608 shortened.append(mName, 0, 36);
1609 shortened.append("[...]");
1610 shortened.append(mName, mName.length() - 36);
1611 name = std::move(shortened);
1612 } else {
1613 name = mName;
1614 }
1615
1616 StringAppendF(&result, " %s\n", name.c_str());
1617
1618 const State& layerState(getDrawingState());
1619 const auto& outputLayerState = outputLayer->getState();
1620
1621 if (layerState.zOrderRelativeOf != nullptr || mDrawingParent != nullptr) {
1622 StringAppendF(&result, " rel %6d | ", layerState.z);
1623 } else {
1624 StringAppendF(&result, " %10d | ", layerState.z);
1625 }
1626 StringAppendF(&result, " %10d | ", mWindowType);
1627 StringAppendF(&result, "%10s | ", toString(getCompositionType(display)).c_str());
1628 StringAppendF(&result, "%10s | ", toString(outputLayerState.bufferTransform).c_str());
1629 const Rect& frame = outputLayerState.displayFrame;
1630 StringAppendF(&result, "%4d %4d %4d %4d | ", frame.left, frame.top, frame.right, frame.bottom);
1631 const FloatRect& crop = outputLayerState.sourceCrop;
1632 StringAppendF(&result, "%6.1f %6.1f %6.1f %6.1f | ", crop.left, crop.top, crop.right,
1633 crop.bottom);
1634 if (layerState.frameRate.rate != 0 ||
1635 layerState.frameRate.type != FrameRateCompatibility::Default) {
1636 StringAppendF(&result, "% 6.2ffps %15s", layerState.frameRate.rate,
1637 frameRateCompatibilityString(layerState.frameRate.type).c_str());
1638 } else {
1639 StringAppendF(&result, " ");
1640 }
1641
1642 const auto focused = isLayerFocusedBasedOnPriority(getFrameRateSelectionPriority());
1643 StringAppendF(&result, " [%s]\n", focused ? "*" : " ");
1644
1645 result.append("- - - - - - - - - - - - - - - - ");
1646 result.append("- - - - - - - - - - - - - - - - ");
1647 result.append("- - - - - - - - - - - - - - - - ");
1648 result.append("- - - - - - - - - - - - - - - - ");
1649 result.append("- - - - - - - -\n");
1650 }
1651
dumpFrameStats(std::string & result) const1652 void Layer::dumpFrameStats(std::string& result) const {
1653 mFrameTracker.dumpStats(result);
1654 }
1655
clearFrameStats()1656 void Layer::clearFrameStats() {
1657 mFrameTracker.clearStats();
1658 }
1659
logFrameStats()1660 void Layer::logFrameStats() {
1661 mFrameTracker.logAndResetStats(mName);
1662 }
1663
getFrameStats(FrameStats * outStats) const1664 void Layer::getFrameStats(FrameStats* outStats) const {
1665 mFrameTracker.getStats(outStats);
1666 }
1667
dumpFrameEvents(std::string & result)1668 void Layer::dumpFrameEvents(std::string& result) {
1669 StringAppendF(&result, "- Layer %s (%s, %p)\n", getName().c_str(), getType(), this);
1670 Mutex::Autolock lock(mFrameEventHistoryMutex);
1671 mFrameEventHistory.checkFencesForCompletion();
1672 mFrameEventHistory.dump(result);
1673 }
1674
dumpCallingUidPid(std::string & result) const1675 void Layer::dumpCallingUidPid(std::string& result) const {
1676 StringAppendF(&result, "Layer %s (%s) pid:%d uid:%d\n", getName().c_str(), getType(),
1677 mCallingPid, mCallingUid);
1678 }
1679
onDisconnect()1680 void Layer::onDisconnect() {
1681 Mutex::Autolock lock(mFrameEventHistoryMutex);
1682 mFrameEventHistory.onDisconnect();
1683 const int32_t layerId = getSequence();
1684 mFlinger->mTimeStats->onDestroy(layerId);
1685 mFlinger->mFrameTracer->onDestroy(layerId);
1686 }
1687
addAndGetFrameTimestamps(const NewFrameEventsEntry * newTimestamps,FrameEventHistoryDelta * outDelta)1688 void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps,
1689 FrameEventHistoryDelta* outDelta) {
1690 if (newTimestamps) {
1691 mFlinger->mTimeStats->setPostTime(getSequence(), newTimestamps->frameNumber,
1692 getName().c_str(), newTimestamps->postedTime);
1693 mFlinger->mTimeStats->setAcquireFence(getSequence(), newTimestamps->frameNumber,
1694 newTimestamps->acquireFence);
1695 }
1696
1697 Mutex::Autolock lock(mFrameEventHistoryMutex);
1698 if (newTimestamps) {
1699 // If there are any unsignaled fences in the aquire timeline at this
1700 // point, the previously queued frame hasn't been latched yet. Go ahead
1701 // and try to get the signal time here so the syscall is taken out of
1702 // the main thread's critical path.
1703 mAcquireTimeline.updateSignalTimes();
1704 // Push the new fence after updating since it's likely still pending.
1705 mAcquireTimeline.push(newTimestamps->acquireFence);
1706 mFrameEventHistory.addQueue(*newTimestamps);
1707 }
1708
1709 if (outDelta) {
1710 mFrameEventHistory.getAndResetDelta(outDelta);
1711 }
1712 }
1713
getChildrenCount() const1714 size_t Layer::getChildrenCount() const {
1715 size_t count = 0;
1716 for (const sp<Layer>& child : mCurrentChildren) {
1717 count += 1 + child->getChildrenCount();
1718 }
1719 return count;
1720 }
1721
addChild(const sp<Layer> & layer)1722 void Layer::addChild(const sp<Layer>& layer) {
1723 mChildrenChanged = true;
1724 setTransactionFlags(eTransactionNeeded);
1725
1726 mCurrentChildren.add(layer);
1727 layer->setParent(this);
1728 updateTreeHasFrameRateVote();
1729 }
1730
removeChild(const sp<Layer> & layer)1731 ssize_t Layer::removeChild(const sp<Layer>& layer) {
1732 mChildrenChanged = true;
1733 setTransactionFlags(eTransactionNeeded);
1734
1735 layer->setParent(nullptr);
1736 const auto removeResult = mCurrentChildren.remove(layer);
1737
1738 updateTreeHasFrameRateVote();
1739 layer->updateTreeHasFrameRateVote();
1740
1741 return removeResult;
1742 }
1743
reparentChildren(const sp<Layer> & newParent)1744 void Layer::reparentChildren(const sp<Layer>& newParent) {
1745 if (attachChildren()) {
1746 setTransactionFlags(eTransactionNeeded);
1747 }
1748
1749 for (const sp<Layer>& child : mCurrentChildren) {
1750 newParent->addChild(child);
1751 }
1752 mCurrentChildren.clear();
1753 updateTreeHasFrameRateVote();
1754 }
1755
reparentChildren(const sp<IBinder> & newParentHandle)1756 bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) {
1757 sp<Handle> handle = nullptr;
1758 sp<Layer> newParent = nullptr;
1759 if (newParentHandle == nullptr) {
1760 return false;
1761 }
1762 handle = static_cast<Handle*>(newParentHandle.get());
1763 newParent = handle->owner.promote();
1764 if (newParent == nullptr) {
1765 ALOGE("Unable to promote Layer handle");
1766 return false;
1767 }
1768
1769 reparentChildren(newParent);
1770
1771 return true;
1772 }
1773
setChildrenDrawingParent(const sp<Layer> & newParent)1774 void Layer::setChildrenDrawingParent(const sp<Layer>& newParent) {
1775 for (const sp<Layer>& child : mDrawingChildren) {
1776 child->mDrawingParent = newParent;
1777 child->computeBounds(newParent->mBounds,
1778 newParent->getTransformWithScale(newParent->getBufferScaleTransform()),
1779 newParent->mEffectiveShadowRadius);
1780 }
1781 }
1782
reparent(const sp<IBinder> & newParentHandle)1783 bool Layer::reparent(const sp<IBinder>& newParentHandle) {
1784 bool callSetTransactionFlags = false;
1785
1786 // While layers are detached, we allow most operations
1787 // and simply halt performing the actual transaction. However
1788 // for reparent != null we would enter the mRemovedFromCurrentState
1789 // state, regardless of whether doTransaction was called, and
1790 // so we need to prevent the update here.
1791 if (mLayerDetached && newParentHandle == nullptr) {
1792 return false;
1793 }
1794
1795 sp<Layer> newParent;
1796 if (newParentHandle != nullptr) {
1797 auto handle = static_cast<Handle*>(newParentHandle.get());
1798 newParent = handle->owner.promote();
1799 if (newParent == nullptr) {
1800 ALOGE("Unable to promote Layer handle");
1801 return false;
1802 }
1803 if (newParent == this) {
1804 ALOGE("Invalid attempt to reparent Layer (%s) to itself", getName().c_str());
1805 return false;
1806 }
1807 }
1808
1809 sp<Layer> parent = getParent();
1810 if (parent != nullptr) {
1811 parent->removeChild(this);
1812 }
1813
1814 if (newParentHandle != nullptr) {
1815 newParent->addChild(this);
1816 if (!newParent->isRemovedFromCurrentState()) {
1817 addToCurrentState();
1818 } else {
1819 onRemovedFromCurrentState();
1820 }
1821
1822 if (mLayerDetached) {
1823 mLayerDetached = false;
1824 callSetTransactionFlags = true;
1825 }
1826 } else {
1827 onRemovedFromCurrentState();
1828 }
1829
1830 if (callSetTransactionFlags || attachChildren()) {
1831 setTransactionFlags(eTransactionNeeded);
1832 }
1833 return true;
1834 }
1835
detachChildren()1836 bool Layer::detachChildren() {
1837 for (const sp<Layer>& child : mCurrentChildren) {
1838 sp<Client> parentClient = mClientRef.promote();
1839 sp<Client> client(child->mClientRef.promote());
1840 if (client != nullptr && parentClient != client) {
1841 child->mLayerDetached = true;
1842 child->detachChildren();
1843 child->removeRemoteSyncPoints();
1844 }
1845 }
1846
1847 return true;
1848 }
1849
attachChildren()1850 bool Layer::attachChildren() {
1851 bool changed = false;
1852 for (const sp<Layer>& child : mCurrentChildren) {
1853 sp<Client> parentClient = mClientRef.promote();
1854 sp<Client> client(child->mClientRef.promote());
1855 if (client != nullptr && parentClient != client) {
1856 if (child->mLayerDetached) {
1857 child->mLayerDetached = false;
1858 changed = true;
1859 }
1860 changed |= child->attachChildren();
1861 }
1862 }
1863
1864 return changed;
1865 }
1866
setColorTransform(const mat4 & matrix)1867 bool Layer::setColorTransform(const mat4& matrix) {
1868 static const mat4 identityMatrix = mat4();
1869
1870 if (mCurrentState.colorTransform == matrix) {
1871 return false;
1872 }
1873 ++mCurrentState.sequence;
1874 mCurrentState.colorTransform = matrix;
1875 mCurrentState.hasColorTransform = matrix != identityMatrix;
1876 mCurrentState.modified = true;
1877 setTransactionFlags(eTransactionNeeded);
1878 return true;
1879 }
1880
getColorTransform() const1881 mat4 Layer::getColorTransform() const {
1882 mat4 colorTransform = mat4(getDrawingState().colorTransform);
1883 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1884 colorTransform = parent->getColorTransform() * colorTransform;
1885 }
1886 return colorTransform;
1887 }
1888
hasColorTransform() const1889 bool Layer::hasColorTransform() const {
1890 bool hasColorTransform = getDrawingState().hasColorTransform;
1891 if (sp<Layer> parent = mDrawingParent.promote(); parent != nullptr) {
1892 hasColorTransform = hasColorTransform || parent->hasColorTransform();
1893 }
1894 return hasColorTransform;
1895 }
1896
isLegacyDataSpace() const1897 bool Layer::isLegacyDataSpace() const {
1898 // return true when no higher bits are set
1899 return !(getDataSpace() &
1900 (ui::Dataspace::STANDARD_MASK | ui::Dataspace::TRANSFER_MASK |
1901 ui::Dataspace::RANGE_MASK));
1902 }
1903
setParent(const sp<Layer> & layer)1904 void Layer::setParent(const sp<Layer>& layer) {
1905 mCurrentParent = layer;
1906 }
1907
getZ(LayerVector::StateSet stateSet) const1908 int32_t Layer::getZ(LayerVector::StateSet stateSet) const {
1909 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1910 const State& state = useDrawing ? mDrawingState : mCurrentState;
1911 return state.z;
1912 }
1913
usingRelativeZ(LayerVector::StateSet stateSet) const1914 bool Layer::usingRelativeZ(LayerVector::StateSet stateSet) const {
1915 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1916 const State& state = useDrawing ? mDrawingState : mCurrentState;
1917 return state.isRelativeOf;
1918 }
1919
makeTraversalList(LayerVector::StateSet stateSet,bool * outSkipRelativeZUsers)1920 __attribute__((no_sanitize("unsigned-integer-overflow"))) LayerVector Layer::makeTraversalList(
1921 LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers) {
1922 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
1923 "makeTraversalList received invalid stateSet");
1924 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
1925 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
1926 const State& state = useDrawing ? mDrawingState : mCurrentState;
1927
1928 if (state.zOrderRelatives.size() == 0) {
1929 *outSkipRelativeZUsers = true;
1930 return children;
1931 }
1932
1933 LayerVector traverse(stateSet);
1934 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
1935 sp<Layer> strongRelative = weakRelative.promote();
1936 if (strongRelative != nullptr) {
1937 traverse.add(strongRelative);
1938 }
1939 }
1940
1941 for (const sp<Layer>& child : children) {
1942 if (child->usingRelativeZ(stateSet)) {
1943 continue;
1944 }
1945 traverse.add(child);
1946 }
1947
1948 return traverse;
1949 }
1950
1951 /**
1952 * Negatively signed relatives are before 'this' in Z-order.
1953 */
traverseInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1954 void Layer::traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor) {
1955 // In the case we have other layers who are using a relative Z to us, makeTraversalList will
1956 // produce a new list for traversing, including our relatives, and not including our children
1957 // who are relatives of another surface. In the case that there are no relative Z,
1958 // makeTraversalList returns our children directly to avoid significant overhead.
1959 // However in this case we need to take the responsibility for filtering children which
1960 // are relatives of another surface here.
1961 bool skipRelativeZUsers = false;
1962 const LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1963
1964 size_t i = 0;
1965 for (; i < list.size(); i++) {
1966 const auto& relative = list[i];
1967 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1968 continue;
1969 }
1970
1971 if (relative->getZ(stateSet) >= 0) {
1972 break;
1973 }
1974 relative->traverseInZOrder(stateSet, visitor);
1975 }
1976
1977 visitor(this);
1978 for (; i < list.size(); i++) {
1979 const auto& relative = list[i];
1980
1981 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
1982 continue;
1983 }
1984 relative->traverseInZOrder(stateSet, visitor);
1985 }
1986 }
1987
1988 /**
1989 * Positively signed relatives are before 'this' in reverse Z-order.
1990 */
traverseInReverseZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)1991 void Layer::traverseInReverseZOrder(LayerVector::StateSet stateSet,
1992 const LayerVector::Visitor& visitor) {
1993 // See traverseInZOrder for documentation.
1994 bool skipRelativeZUsers = false;
1995 LayerVector list = makeTraversalList(stateSet, &skipRelativeZUsers);
1996
1997 int32_t i = 0;
1998 for (i = int32_t(list.size()) - 1; i >= 0; i--) {
1999 const auto& relative = list[i];
2000
2001 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
2002 continue;
2003 }
2004
2005 if (relative->getZ(stateSet) < 0) {
2006 break;
2007 }
2008 relative->traverseInReverseZOrder(stateSet, visitor);
2009 }
2010 visitor(this);
2011 for (; i >= 0; i--) {
2012 const auto& relative = list[i];
2013
2014 if (skipRelativeZUsers && relative->usingRelativeZ(stateSet)) {
2015 continue;
2016 }
2017
2018 relative->traverseInReverseZOrder(stateSet, visitor);
2019 }
2020 }
2021
traverse(LayerVector::StateSet state,const LayerVector::Visitor & visitor)2022 void Layer::traverse(LayerVector::StateSet state, const LayerVector::Visitor& visitor) {
2023 visitor(this);
2024 const LayerVector& children =
2025 state == LayerVector::StateSet::Drawing ? mDrawingChildren : mCurrentChildren;
2026 for (const sp<Layer>& child : children) {
2027 child->traverse(state, visitor);
2028 }
2029 }
2030
makeChildrenTraversalList(LayerVector::StateSet stateSet,const std::vector<Layer * > & layersInTree)2031 LayerVector Layer::makeChildrenTraversalList(LayerVector::StateSet stateSet,
2032 const std::vector<Layer*>& layersInTree) {
2033 LOG_ALWAYS_FATAL_IF(stateSet == LayerVector::StateSet::Invalid,
2034 "makeTraversalList received invalid stateSet");
2035 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
2036 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
2037 const State& state = useDrawing ? mDrawingState : mCurrentState;
2038
2039 LayerVector traverse(stateSet);
2040 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
2041 sp<Layer> strongRelative = weakRelative.promote();
2042 // Only add relative layers that are also descendents of the top most parent of the tree.
2043 // If a relative layer is not a descendent, then it should be ignored.
2044 if (std::binary_search(layersInTree.begin(), layersInTree.end(), strongRelative.get())) {
2045 traverse.add(strongRelative);
2046 }
2047 }
2048
2049 for (const sp<Layer>& child : children) {
2050 const State& childState = useDrawing ? child->mDrawingState : child->mCurrentState;
2051 // If a layer has a relativeOf layer, only ignore if the layer it's relative to is a
2052 // descendent of the top most parent of the tree. If it's not a descendent, then just add
2053 // the child here since it won't be added later as a relative.
2054 if (std::binary_search(layersInTree.begin(), layersInTree.end(),
2055 childState.zOrderRelativeOf.promote().get())) {
2056 continue;
2057 }
2058 traverse.add(child);
2059 }
2060
2061 return traverse;
2062 }
2063
traverseChildrenInZOrderInner(const std::vector<Layer * > & layersInTree,LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)2064 void Layer::traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
2065 LayerVector::StateSet stateSet,
2066 const LayerVector::Visitor& visitor) {
2067 const LayerVector list = makeChildrenTraversalList(stateSet, layersInTree);
2068
2069 size_t i = 0;
2070 for (; i < list.size(); i++) {
2071 const auto& relative = list[i];
2072 if (relative->getZ(stateSet) >= 0) {
2073 break;
2074 }
2075 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
2076 }
2077
2078 visitor(this);
2079 for (; i < list.size(); i++) {
2080 const auto& relative = list[i];
2081 relative->traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
2082 }
2083 }
2084
getLayersInTree(LayerVector::StateSet stateSet)2085 std::vector<Layer*> Layer::getLayersInTree(LayerVector::StateSet stateSet) {
2086 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
2087 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
2088
2089 std::vector<Layer*> layersInTree = {this};
2090 for (size_t i = 0; i < children.size(); i++) {
2091 const auto& child = children[i];
2092 std::vector<Layer*> childLayers = child->getLayersInTree(stateSet);
2093 layersInTree.insert(layersInTree.end(), childLayers.cbegin(), childLayers.cend());
2094 }
2095
2096 return layersInTree;
2097 }
2098
traverseChildrenInZOrder(LayerVector::StateSet stateSet,const LayerVector::Visitor & visitor)2099 void Layer::traverseChildrenInZOrder(LayerVector::StateSet stateSet,
2100 const LayerVector::Visitor& visitor) {
2101 std::vector<Layer*> layersInTree = getLayersInTree(stateSet);
2102 std::sort(layersInTree.begin(), layersInTree.end());
2103 traverseChildrenInZOrderInner(layersInTree, stateSet, visitor);
2104 }
2105
getTransform() const2106 ui::Transform Layer::getTransform() const {
2107 return mEffectiveTransform;
2108 }
2109
getAlpha() const2110 half Layer::getAlpha() const {
2111 const auto& p = mDrawingParent.promote();
2112
2113 half parentAlpha = (p != nullptr) ? p->getAlpha() : 1.0_hf;
2114 return parentAlpha * getDrawingState().color.a;
2115 }
2116
getFixedTransformHint() const2117 ui::Transform::RotationFlags Layer::getFixedTransformHint() const {
2118 ui::Transform::RotationFlags fixedTransformHint = mCurrentState.fixedTransformHint;
2119 if (fixedTransformHint != ui::Transform::ROT_INVALID) {
2120 return fixedTransformHint;
2121 }
2122 const auto& p = mCurrentParent.promote();
2123 if (!p) return fixedTransformHint;
2124 return p->getFixedTransformHint();
2125 }
2126
getColor() const2127 half4 Layer::getColor() const {
2128 const half4 color(getDrawingState().color);
2129 return half4(color.r, color.g, color.b, getAlpha());
2130 }
2131
getBackgroundBlurRadius() const2132 int32_t Layer::getBackgroundBlurRadius() const {
2133 return getDrawingState().backgroundBlurRadius;
2134 }
2135
getRoundedCornerState() const2136 Layer::RoundedCornerState Layer::getRoundedCornerState() const {
2137 const auto& p = mDrawingParent.promote();
2138 if (p != nullptr) {
2139 RoundedCornerState parentState = p->getRoundedCornerState();
2140 if (parentState.radius > 0) {
2141 ui::Transform t = getActiveTransform(getDrawingState());
2142 t = t.inverse();
2143 parentState.cropRect = t.transform(parentState.cropRect);
2144 // The rounded corners shader only accepts 1 corner radius for performance reasons,
2145 // but a transform matrix can define horizontal and vertical scales.
2146 // Let's take the average between both of them and pass into the shader, practically we
2147 // never do this type of transformation on windows anyway.
2148 auto scaleX = sqrtf(t[0][0] * t[0][0] + t[0][1] * t[0][1]);
2149 auto scaleY = sqrtf(t[1][0] * t[1][0] + t[1][1] * t[1][1]);
2150 parentState.radius *= (scaleX + scaleY) / 2.0f;
2151 return parentState;
2152 }
2153 }
2154 const float radius = getDrawingState().cornerRadius;
2155 return radius > 0 && getCrop(getDrawingState()).isValid()
2156 ? RoundedCornerState(getCrop(getDrawingState()).toFloatRect(), radius)
2157 : RoundedCornerState();
2158 }
2159
getShadowSettings(const Rect & viewport) const2160 renderengine::ShadowSettings Layer::getShadowSettings(const Rect& viewport) const {
2161 renderengine::ShadowSettings state = mFlinger->mDrawingState.globalShadowSettings;
2162
2163 // Shift the spot light x-position to the middle of the display and then
2164 // offset it by casting layer's screen pos.
2165 state.lightPos.x = (viewport.width() / 2.f) - mScreenBounds.left;
2166 state.lightPos.y -= mScreenBounds.top;
2167
2168 state.length = mEffectiveShadowRadius;
2169 return state;
2170 }
2171
commitChildList()2172 void Layer::commitChildList() {
2173 for (size_t i = 0; i < mCurrentChildren.size(); i++) {
2174 const auto& child = mCurrentChildren[i];
2175 child->commitChildList();
2176 }
2177 mDrawingChildren = mCurrentChildren;
2178 mDrawingParent = mCurrentParent;
2179 }
2180
extractLayerFromBinder(const wp<IBinder> & weakBinderHandle)2181 static wp<Layer> extractLayerFromBinder(const wp<IBinder>& weakBinderHandle) {
2182 if (weakBinderHandle == nullptr) {
2183 return nullptr;
2184 }
2185 sp<IBinder> binderHandle = weakBinderHandle.promote();
2186 if (binderHandle == nullptr) {
2187 return nullptr;
2188 }
2189 sp<Layer::Handle> handle = static_cast<Layer::Handle*>(binderHandle.get());
2190 if (handle == nullptr) {
2191 return nullptr;
2192 }
2193 return handle->owner;
2194 }
2195
setInputInfo(const InputWindowInfo & info)2196 void Layer::setInputInfo(const InputWindowInfo& info) {
2197 mCurrentState.inputInfo = info;
2198 mCurrentState.touchableRegionCrop = extractLayerFromBinder(info.touchableRegionCropHandle);
2199 mCurrentState.modified = true;
2200 mCurrentState.inputInfoChanged = true;
2201 setTransactionFlags(eTransactionNeeded);
2202 }
2203
writeToProto(LayersProto & layersProto,uint32_t traceFlags,const DisplayDevice * display) const2204 LayerProto* Layer::writeToProto(LayersProto& layersProto, uint32_t traceFlags,
2205 const DisplayDevice* display) const {
2206 LayerProto* layerProto = layersProto.add_layers();
2207 writeToProtoDrawingState(layerProto, traceFlags, display);
2208 writeToProtoCommonState(layerProto, LayerVector::StateSet::Drawing, traceFlags);
2209
2210 if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
2211 // Only populate for the primary display.
2212 if (display) {
2213 const Hwc2::IComposerClient::Composition compositionType = getCompositionType(*display);
2214 layerProto->set_hwc_composition_type(static_cast<HwcCompositionType>(compositionType));
2215 }
2216 }
2217
2218 for (const sp<Layer>& layer : mDrawingChildren) {
2219 layer->writeToProto(layersProto, traceFlags, display);
2220 }
2221
2222 return layerProto;
2223 }
2224
writeToProtoDrawingState(LayerProto * layerInfo,uint32_t traceFlags,const DisplayDevice * display) const2225 void Layer::writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags,
2226 const DisplayDevice* display) const {
2227 ui::Transform transform = getTransform();
2228
2229 if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
2230 for (const auto& pendingState : mPendingStatesSnapshot) {
2231 auto barrierLayer = pendingState.barrierLayer_legacy.promote();
2232 if (barrierLayer != nullptr) {
2233 BarrierLayerProto* barrierLayerProto = layerInfo->add_barrier_layer();
2234 barrierLayerProto->set_id(barrierLayer->sequence);
2235 barrierLayerProto->set_frame_number(pendingState.frameNumber_legacy);
2236 }
2237 }
2238
2239 auto buffer = getBuffer();
2240 if (buffer != nullptr) {
2241 LayerProtoHelper::writeToProto(buffer,
2242 [&]() { return layerInfo->mutable_active_buffer(); });
2243 LayerProtoHelper::writeToProto(ui::Transform(getBufferTransform()),
2244 layerInfo->mutable_buffer_transform());
2245 }
2246 layerInfo->set_invalidate(contentDirty);
2247 layerInfo->set_is_protected(isProtected());
2248 layerInfo->set_dataspace(dataspaceDetails(static_cast<android_dataspace>(getDataSpace())));
2249 layerInfo->set_queued_frames(getQueuedFrameCount());
2250 layerInfo->set_refresh_pending(isBufferLatched());
2251 layerInfo->set_curr_frame(mCurrentFrameNumber);
2252 layerInfo->set_effective_scaling_mode(getEffectiveScalingMode());
2253
2254 layerInfo->set_corner_radius(getRoundedCornerState().radius);
2255 LayerProtoHelper::writeToProto(transform, layerInfo->mutable_transform());
2256 LayerProtoHelper::writePositionToProto(transform.tx(), transform.ty(),
2257 [&]() { return layerInfo->mutable_position(); });
2258 LayerProtoHelper::writeToProto(mBounds, [&]() { return layerInfo->mutable_bounds(); });
2259 if (traceFlags & SurfaceTracing::TRACE_COMPOSITION) {
2260 LayerProtoHelper::writeToProto(getVisibleRegion(display),
2261 [&]() { return layerInfo->mutable_visible_region(); });
2262 }
2263 LayerProtoHelper::writeToProto(surfaceDamageRegion,
2264 [&]() { return layerInfo->mutable_damage_region(); });
2265
2266 if (hasColorTransform()) {
2267 LayerProtoHelper::writeToProto(getColorTransform(),
2268 layerInfo->mutable_color_transform());
2269 }
2270 }
2271
2272 LayerProtoHelper::writeToProto(mSourceBounds,
2273 [&]() { return layerInfo->mutable_source_bounds(); });
2274 LayerProtoHelper::writeToProto(mScreenBounds,
2275 [&]() { return layerInfo->mutable_screen_bounds(); });
2276 LayerProtoHelper::writeToProto(getRoundedCornerState().cropRect,
2277 [&]() { return layerInfo->mutable_corner_radius_crop(); });
2278 layerInfo->set_shadow_radius(mEffectiveShadowRadius);
2279 }
2280
writeToProtoCommonState(LayerProto * layerInfo,LayerVector::StateSet stateSet,uint32_t traceFlags) const2281 void Layer::writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet,
2282 uint32_t traceFlags) const {
2283 const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
2284 const LayerVector& children = useDrawing ? mDrawingChildren : mCurrentChildren;
2285 const State& state = useDrawing ? mDrawingState : mCurrentState;
2286
2287 ui::Transform requestedTransform = state.active_legacy.transform;
2288
2289 if (traceFlags & SurfaceTracing::TRACE_CRITICAL) {
2290 layerInfo->set_id(sequence);
2291 layerInfo->set_name(getName().c_str());
2292 layerInfo->set_type(getType());
2293
2294 for (const auto& child : children) {
2295 layerInfo->add_children(child->sequence);
2296 }
2297
2298 for (const wp<Layer>& weakRelative : state.zOrderRelatives) {
2299 sp<Layer> strongRelative = weakRelative.promote();
2300 if (strongRelative != nullptr) {
2301 layerInfo->add_relatives(strongRelative->sequence);
2302 }
2303 }
2304
2305 LayerProtoHelper::writeToProto(state.activeTransparentRegion_legacy,
2306 [&]() { return layerInfo->mutable_transparent_region(); });
2307
2308 layerInfo->set_layer_stack(getLayerStack());
2309 layerInfo->set_z(state.z);
2310
2311 LayerProtoHelper::writePositionToProto(requestedTransform.tx(), requestedTransform.ty(),
2312 [&]() {
2313 return layerInfo->mutable_requested_position();
2314 });
2315
2316 LayerProtoHelper::writeSizeToProto(state.active_legacy.w, state.active_legacy.h,
2317 [&]() { return layerInfo->mutable_size(); });
2318
2319 LayerProtoHelper::writeToProto(state.crop_legacy,
2320 [&]() { return layerInfo->mutable_crop(); });
2321
2322 layerInfo->set_is_opaque(isOpaque(state));
2323
2324
2325 layerInfo->set_pixel_format(decodePixelFormat(getPixelFormat()));
2326 LayerProtoHelper::writeToProto(getColor(), [&]() { return layerInfo->mutable_color(); });
2327 LayerProtoHelper::writeToProto(state.color,
2328 [&]() { return layerInfo->mutable_requested_color(); });
2329 layerInfo->set_flags(state.flags);
2330
2331 LayerProtoHelper::writeToProto(requestedTransform,
2332 layerInfo->mutable_requested_transform());
2333
2334 auto parent = useDrawing ? mDrawingParent.promote() : mCurrentParent.promote();
2335 if (parent != nullptr) {
2336 layerInfo->set_parent(parent->sequence);
2337 } else {
2338 layerInfo->set_parent(-1);
2339 }
2340
2341 auto zOrderRelativeOf = state.zOrderRelativeOf.promote();
2342 if (zOrderRelativeOf != nullptr) {
2343 layerInfo->set_z_order_relative_of(zOrderRelativeOf->sequence);
2344 } else {
2345 layerInfo->set_z_order_relative_of(-1);
2346 }
2347
2348 layerInfo->set_is_relative_of(state.isRelativeOf);
2349 }
2350
2351 if (traceFlags & SurfaceTracing::TRACE_INPUT) {
2352 LayerProtoHelper::writeToProto(state.inputInfo, state.touchableRegionCrop,
2353 [&]() { return layerInfo->mutable_input_window_info(); });
2354 }
2355
2356 if (traceFlags & SurfaceTracing::TRACE_EXTRA) {
2357 auto protoMap = layerInfo->mutable_metadata();
2358 for (const auto& entry : state.metadata.mMap) {
2359 (*protoMap)[entry.first] = std::string(entry.second.cbegin(), entry.second.cend());
2360 }
2361 }
2362 }
2363
isRemovedFromCurrentState() const2364 bool Layer::isRemovedFromCurrentState() const {
2365 return mRemovedFromCurrentState;
2366 }
2367
fillInputInfo()2368 InputWindowInfo Layer::fillInputInfo() {
2369 if (!hasInputInfo()) {
2370 mDrawingState.inputInfo.name = getName();
2371 mDrawingState.inputInfo.ownerUid = mCallingUid;
2372 mDrawingState.inputInfo.ownerPid = mCallingPid;
2373 mDrawingState.inputInfo.inputFeatures =
2374 InputWindowInfo::INPUT_FEATURE_NO_INPUT_CHANNEL;
2375 mDrawingState.inputInfo.layoutParamsFlags = InputWindowInfo::FLAG_NOT_TOUCH_MODAL;
2376 mDrawingState.inputInfo.displayId = getLayerStack();
2377 }
2378
2379 InputWindowInfo info = mDrawingState.inputInfo;
2380 info.id = sequence;
2381
2382 if (info.displayId == ADISPLAY_ID_NONE) {
2383 info.displayId = getLayerStack();
2384 }
2385
2386 ui::Transform t = getTransform();
2387 const float xScale = t.sx();
2388 const float yScale = t.sy();
2389 int32_t xSurfaceInset = info.surfaceInset;
2390 int32_t ySurfaceInset = info.surfaceInset;
2391 if (xScale != 1.0f || yScale != 1.0f) {
2392 info.windowXScale *= (xScale != 0.0f) ? 1.0f / xScale : 0.0f;
2393 info.windowYScale *= (yScale != 0.0f) ? 1.0f / yScale : 0.0f;
2394 info.touchableRegion.scaleSelf(xScale, yScale);
2395 xSurfaceInset = std::round(xSurfaceInset * xScale);
2396 ySurfaceInset = std::round(ySurfaceInset * yScale);
2397 }
2398
2399 // Transform layer size to screen space and inset it by surface insets.
2400 // If this is a portal window, set the touchableRegion to the layerBounds.
2401 Rect layerBounds = info.portalToDisplayId == ADISPLAY_ID_NONE
2402 ? getBufferSize(getDrawingState())
2403 : info.touchableRegion.getBounds();
2404 if (!layerBounds.isValid()) {
2405 layerBounds = getCroppedBufferSize(getDrawingState());
2406 }
2407 layerBounds = t.transform(layerBounds);
2408
2409 // clamp inset to layer bounds
2410 xSurfaceInset = (xSurfaceInset >= 0) ? std::min(xSurfaceInset, layerBounds.getWidth() / 2) : 0;
2411 ySurfaceInset = (ySurfaceInset >= 0) ? std::min(ySurfaceInset, layerBounds.getHeight() / 2) : 0;
2412
2413 // inset while protecting from overflow TODO(b/161235021): What is going wrong
2414 // in the overflow scenario?
2415 {
2416 int32_t tmp;
2417 if (!__builtin_add_overflow(layerBounds.left, xSurfaceInset, &tmp)) layerBounds.left = tmp;
2418 if (!__builtin_sub_overflow(layerBounds.right, xSurfaceInset, &tmp)) layerBounds.right = tmp;
2419 if (!__builtin_add_overflow(layerBounds.top, ySurfaceInset, &tmp)) layerBounds.top = tmp;
2420 if (!__builtin_sub_overflow(layerBounds.bottom, ySurfaceInset, &tmp)) layerBounds.bottom = tmp;
2421 }
2422
2423 // Input coordinate should match the layer bounds.
2424 info.frameLeft = layerBounds.left;
2425 info.frameTop = layerBounds.top;
2426 info.frameRight = layerBounds.right;
2427 info.frameBottom = layerBounds.bottom;
2428
2429 // Position the touchable region relative to frame screen location and restrict it to frame
2430 // bounds.
2431 info.touchableRegion = info.touchableRegion.translate(info.frameLeft, info.frameTop);
2432 // For compatibility reasons we let layers which can receive input
2433 // receive input before they have actually submitted a buffer. Because
2434 // of this we use canReceiveInput instead of isVisible to check the
2435 // policy-visibility, ignoring the buffer state. However for layers with
2436 // hasInputInfo()==false we can use the real visibility state.
2437 // We are just using these layers for occlusion detection in
2438 // InputDispatcher, and obviously if they aren't visible they can't occlude
2439 // anything.
2440 info.visible = hasInputInfo() ? canReceiveInput() : isVisible();
2441
2442 auto cropLayer = mDrawingState.touchableRegionCrop.promote();
2443 if (info.replaceTouchableRegionWithCrop) {
2444 if (cropLayer == nullptr) {
2445 info.touchableRegion = Region(Rect{mScreenBounds});
2446 } else {
2447 info.touchableRegion = Region(Rect{cropLayer->mScreenBounds});
2448 }
2449 } else if (cropLayer != nullptr) {
2450 info.touchableRegion = info.touchableRegion.intersect(Rect{cropLayer->mScreenBounds});
2451 }
2452
2453 // If the layer is a clone, we need to crop the input region to cloned root to prevent
2454 // touches from going outside the cloned area.
2455 if (isClone()) {
2456 sp<Layer> clonedRoot = getClonedRoot();
2457 if (clonedRoot != nullptr) {
2458 Rect rect(clonedRoot->mScreenBounds);
2459 info.touchableRegion = info.touchableRegion.intersect(rect);
2460 }
2461 }
2462
2463 return info;
2464 }
2465
getClonedRoot()2466 sp<Layer> Layer::getClonedRoot() {
2467 if (mClonedChild != nullptr) {
2468 return this;
2469 }
2470 if (mDrawingParent == nullptr || mDrawingParent.promote() == nullptr) {
2471 return nullptr;
2472 }
2473 return mDrawingParent.promote()->getClonedRoot();
2474 }
2475
hasInputInfo() const2476 bool Layer::hasInputInfo() const {
2477 return mDrawingState.inputInfo.token != nullptr;
2478 }
2479
canReceiveInput() const2480 bool Layer::canReceiveInput() const {
2481 return !isHiddenByPolicy();
2482 }
2483
findOutputLayerForDisplay(const DisplayDevice * display) const2484 compositionengine::OutputLayer* Layer::findOutputLayerForDisplay(
2485 const DisplayDevice* display) const {
2486 if (!display) return nullptr;
2487 return display->getCompositionDisplay()->getOutputLayerForLayer(getCompositionEngineLayerFE());
2488 }
2489
getVisibleRegion(const DisplayDevice * display) const2490 Region Layer::getVisibleRegion(const DisplayDevice* display) const {
2491 const auto outputLayer = findOutputLayerForDisplay(display);
2492 return outputLayer ? outputLayer->getState().visibleRegion : Region();
2493 }
2494
setInitialValuesForClone(const sp<Layer> & clonedFrom)2495 void Layer::setInitialValuesForClone(const sp<Layer>& clonedFrom) {
2496 // copy drawing state from cloned layer
2497 mDrawingState = clonedFrom->mDrawingState;
2498 mClonedFrom = clonedFrom;
2499 }
2500
updateMirrorInfo()2501 void Layer::updateMirrorInfo() {
2502 if (mClonedChild == nullptr || !mClonedChild->isClonedFromAlive()) {
2503 // If mClonedChild is null, there is nothing to mirror. If isClonedFromAlive returns false,
2504 // it means that there is a clone, but the layer it was cloned from has been destroyed. In
2505 // that case, we want to delete the reference to the clone since we want it to get
2506 // destroyed. The root, this layer, will still be around since the client can continue
2507 // to hold a reference, but no cloned layers will be displayed.
2508 mClonedChild = nullptr;
2509 return;
2510 }
2511
2512 std::map<sp<Layer>, sp<Layer>> clonedLayersMap;
2513 // If the real layer exists and is in current state, add the clone as a child of the root.
2514 // There's no need to remove from drawingState when the layer is offscreen since currentState is
2515 // copied to drawingState for the root layer. So the clonedChild is always removed from
2516 // drawingState and then needs to be added back each traversal.
2517 if (!mClonedChild->getClonedFrom()->isRemovedFromCurrentState()) {
2518 addChildToDrawing(mClonedChild);
2519 }
2520
2521 mClonedChild->updateClonedDrawingState(clonedLayersMap);
2522 mClonedChild->updateClonedChildren(this, clonedLayersMap);
2523 mClonedChild->updateClonedRelatives(clonedLayersMap);
2524 }
2525
updateClonedDrawingState(std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2526 void Layer::updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2527 // If the layer the clone was cloned from is alive, copy the content of the drawingState
2528 // to the clone. If the real layer is no longer alive, continue traversing the children
2529 // since we may be able to pull out other children that are still alive.
2530 if (isClonedFromAlive()) {
2531 sp<Layer> clonedFrom = getClonedFrom();
2532 mDrawingState = clonedFrom->mDrawingState;
2533 clonedLayersMap.emplace(clonedFrom, this);
2534 }
2535
2536 // The clone layer may have children in drawingState since they may have been created and
2537 // added from a previous request to updateMirorInfo. This is to ensure we don't recreate clones
2538 // that already exist, since we can just re-use them.
2539 // The drawingChildren will not get overwritten by the currentChildren since the clones are
2540 // not updated in the regular traversal. They are skipped since the root will lose the
2541 // reference to them when it copies its currentChildren to drawing.
2542 for (sp<Layer>& child : mDrawingChildren) {
2543 child->updateClonedDrawingState(clonedLayersMap);
2544 }
2545 }
2546
updateClonedChildren(const sp<Layer> & mirrorRoot,std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2547 void Layer::updateClonedChildren(const sp<Layer>& mirrorRoot,
2548 std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2549 mDrawingChildren.clear();
2550
2551 if (!isClonedFromAlive()) {
2552 return;
2553 }
2554
2555 sp<Layer> clonedFrom = getClonedFrom();
2556 for (sp<Layer>& child : clonedFrom->mDrawingChildren) {
2557 if (child == mirrorRoot) {
2558 // This is to avoid cyclical mirroring.
2559 continue;
2560 }
2561 sp<Layer> clonedChild = clonedLayersMap[child];
2562 if (clonedChild == nullptr) {
2563 clonedChild = child->createClone();
2564 clonedLayersMap[child] = clonedChild;
2565 }
2566 addChildToDrawing(clonedChild);
2567 clonedChild->updateClonedChildren(mirrorRoot, clonedLayersMap);
2568 }
2569 }
2570
updateClonedInputInfo(const std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2571 void Layer::updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2572 auto cropLayer = mDrawingState.touchableRegionCrop.promote();
2573 if (cropLayer != nullptr) {
2574 if (clonedLayersMap.count(cropLayer) == 0) {
2575 // Real layer had a crop layer but it's not in the cloned hierarchy. Just set to
2576 // self as crop layer to avoid going outside bounds.
2577 mDrawingState.touchableRegionCrop = this;
2578 } else {
2579 const sp<Layer>& clonedCropLayer = clonedLayersMap.at(cropLayer);
2580 mDrawingState.touchableRegionCrop = clonedCropLayer;
2581 }
2582 }
2583 // Cloned layers shouldn't handle watch outside since their z order is not determined by
2584 // WM or the client.
2585 mDrawingState.inputInfo.layoutParamsFlags &= ~InputWindowInfo::FLAG_WATCH_OUTSIDE_TOUCH;
2586 }
2587
updateClonedRelatives(const std::map<sp<Layer>,sp<Layer>> & clonedLayersMap)2588 void Layer::updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap) {
2589 mDrawingState.zOrderRelativeOf = nullptr;
2590 mDrawingState.zOrderRelatives.clear();
2591
2592 if (!isClonedFromAlive()) {
2593 return;
2594 }
2595
2596 const sp<Layer>& clonedFrom = getClonedFrom();
2597 for (wp<Layer>& relativeWeak : clonedFrom->mDrawingState.zOrderRelatives) {
2598 const sp<Layer>& relative = relativeWeak.promote();
2599 if (clonedLayersMap.count(relative) > 0) {
2600 auto& clonedRelative = clonedLayersMap.at(relative);
2601 mDrawingState.zOrderRelatives.add(clonedRelative);
2602 }
2603 }
2604
2605 // Check if the relativeLayer for the real layer is part of the cloned hierarchy.
2606 // It's possible that the layer it's relative to is outside the requested cloned hierarchy.
2607 // In that case, we treat the layer as if the relativeOf has been removed. This way, it will
2608 // still traverse the children, but the layer with the missing relativeOf will not be shown
2609 // on screen.
2610 const sp<Layer>& relativeOf = clonedFrom->mDrawingState.zOrderRelativeOf.promote();
2611 if (clonedLayersMap.count(relativeOf) > 0) {
2612 const sp<Layer>& clonedRelativeOf = clonedLayersMap.at(relativeOf);
2613 mDrawingState.zOrderRelativeOf = clonedRelativeOf;
2614 }
2615
2616 updateClonedInputInfo(clonedLayersMap);
2617
2618 for (sp<Layer>& child : mDrawingChildren) {
2619 child->updateClonedRelatives(clonedLayersMap);
2620 }
2621 }
2622
addChildToDrawing(const sp<Layer> & layer)2623 void Layer::addChildToDrawing(const sp<Layer>& layer) {
2624 mDrawingChildren.add(layer);
2625 layer->mDrawingParent = this;
2626 }
2627
convertCompatibility(int8_t compatibility)2628 Layer::FrameRateCompatibility Layer::FrameRate::convertCompatibility(int8_t compatibility) {
2629 switch (compatibility) {
2630 case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT:
2631 return FrameRateCompatibility::Default;
2632 case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE:
2633 return FrameRateCompatibility::ExactOrMultiple;
2634 default:
2635 LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility);
2636 return FrameRateCompatibility::Default;
2637 }
2638 }
2639
2640 // ---------------------------------------------------------------------------
2641
2642 }; // namespace android
2643
2644 #if defined(__gl_h_)
2645 #error "don't include gl/gl.h in this file"
2646 #endif
2647
2648 #if defined(__gl2_h_)
2649 #error "don't include gl2/gl2.h in this file"
2650 #endif
2651
2652 // TODO(b/129481165): remove the #pragma below and fix conversion issues
2653 #pragma clang diagnostic pop // ignored "-Wconversion"
2654