1 /*
2 * Copyright 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <base/logging.h>
18 #include <gtest/gtest.h>
19 #include <cstdint>
20 #include <queue>
21
22 #include "hci/src/packet_fragmenter.cc"
23 #include "osi/test/AllocationTestHarness.h"
24
25 extern void allocation_tracker_uninit(void);
26
27 enum kPacketOrder {
28 kStart = 1,
29 kContinuation = 2,
30 };
31
32 struct AclPacketHeader {
33 struct {
34 uint16_t handle : 12;
35 uint16_t continuation : 1;
36 uint16_t start : 1;
37 uint16_t reserved : 2;
38 } s;
39 uint16_t length;
40
GetRawHandleAclPacketHeader41 uint16_t GetRawHandle() const { return *(uint16_t*)(this); }
42
GetHandleAclPacketHeader43 uint16_t GetHandle() const { return s.handle; }
GetLengthAclPacketHeader44 uint16_t GetLength() const { return length; }
45 } __attribute__((packed));
46
47 struct L2capPacketHeader {
48 uint16_t length;
49 uint16_t cid;
50 } __attribute__((packed));
51
52 struct AclL2capPacketHeader {
53 struct AclPacketHeader acl_header;
54 struct L2capPacketHeader l2cap_header;
55 } __attribute__((packed));
56
57 namespace {
58
59 constexpr uint16_t kHandle = 0x123;
60 constexpr uint16_t kCid = 0x4567;
61 constexpr uint16_t kMaxPacketSize = BT_DEFAULT_BUFFER_SIZE - sizeof(BT_HDR) -
62 L2CAP_HEADER_SIZE - HCI_ACL_PREAMBLE_SIZE;
63 constexpr size_t kTypicalPacketSizes[] = {
64 1, 2, 3, 4, 8, 16, 32, 64, 127, 128, 129, 256, 1024, 2048, kMaxPacketSize};
65 constexpr size_t kNumberOfTypicalPacketSizes =
66 sizeof(kTypicalPacketSizes) / sizeof(kTypicalPacketSizes[0]);
67
FreeBuffer(BT_HDR * bt_hdr)68 void FreeBuffer(BT_HDR* bt_hdr) { osi_free(bt_hdr); }
69
70 struct TestMutables {
71 struct {
72 int access_count_{0};
73 } fragmented;
74 struct {
75 int access_count_{0};
76 std::queue<std::unique_ptr<BT_HDR, decltype(&FreeBuffer)>> queue;
77 } reassembled;
78 struct {
79 int access_count_{0};
80 } transmit_finished;
81 };
82
83 TestMutables test_state_;
84
OnFragmented(BT_HDR * packet,bool send_transmit_finished)85 void OnFragmented(BT_HDR* packet, bool send_transmit_finished) {
86 test_state_.fragmented.access_count_++;
87 }
88
OnReassembled(BT_HDR * packet)89 void OnReassembled(BT_HDR* packet) {
90 test_state_.reassembled.access_count_++;
91 test_state_.reassembled.queue.push(
92 std::unique_ptr<BT_HDR, decltype(&FreeBuffer)>(packet, &FreeBuffer));
93 }
94
OnTransmitFinished(BT_HDR * packet,bool all_fragments_sent)95 void OnTransmitFinished(BT_HDR* packet, bool all_fragments_sent) {
96 test_state_.transmit_finished.access_count_++;
97 }
98
99 packet_fragmenter_callbacks_t result_callbacks = {
100 .fragmented = OnFragmented,
101 .reassembled = OnReassembled,
102 .transmit_finished = OnTransmitFinished,
103 };
104
AclHeader(BT_HDR * packet)105 AclPacketHeader* AclHeader(BT_HDR* packet) {
106 return (AclPacketHeader*)packet->data;
107 }
L2capHeader(BT_HDR * packet)108 L2capPacketHeader* L2capHeader(BT_HDR* packet) {
109 return &((AclL2capPacketHeader*)packet->data)->l2cap_header;
110 }
111
Data(BT_HDR * packet)112 uint8_t* Data(BT_HDR* packet) {
113 AclPacketHeader* acl_header =
114 reinterpret_cast<AclPacketHeader*>(packet->data);
115 return acl_header->s.start
116 ? (uint8_t*)(packet->data + sizeof(AclL2capPacketHeader))
117 : (uint8_t*)(packet->data + sizeof(AclPacketHeader));
118 }
119
120 } // namespace
121
122 // Needed for linkage
controller_get_interface()123 const controller_t* controller_get_interface() { return nullptr; }
124
125 /**
126 * Test class to test selected functionality in hci/src/hci_layer.cc
127 */
128 class HciPacketFragmenterTest : public AllocationTestHarness {
129 protected:
SetUp()130 void SetUp() override {
131 AllocationTestHarness::SetUp();
132 // Disable our allocation tracker to allow ASAN full range
133 allocation_tracker_uninit();
134 packet_fragmenter_ = packet_fragmenter_get_interface();
135 packet_fragmenter_->init(&result_callbacks);
136 test_state_ = TestMutables();
137 }
138
TearDown()139 void TearDown() override {
140 FlushPartialPackets();
141 while (!test_state_.reassembled.queue.empty()) {
142 test_state_.reassembled.queue.pop();
143 }
144 packet_fragmenter_->cleanup();
145 AllocationTestHarness::TearDown();
146 }
147 const packet_fragmenter_t* packet_fragmenter_;
148
149 // Start acl packet
AllocateL2capPacket(size_t l2cap_length,const std::vector<uint8_t> data) const150 BT_HDR* AllocateL2capPacket(size_t l2cap_length,
151 const std::vector<uint8_t> data) const {
152 auto packet =
153 AllocateAclPacket(data.size() + sizeof(L2capPacketHeader), kStart);
154 L2capHeader(packet)->length = l2cap_length;
155 L2capHeader(packet)->cid = kCid;
156 std::copy(data.cbegin(), data.cend(), Data(packet));
157 return packet;
158 }
159
160 // Continuation acl packet
AllocateL2capPacket(const std::vector<uint8_t> data) const161 BT_HDR* AllocateL2capPacket(const std::vector<uint8_t> data) const {
162 auto packet = AllocateAclPacket(data.size(), kContinuation);
163 std::copy(data.cbegin(), data.cend(), Data(packet));
164 return packet;
165 }
166
CreateData(size_t size) const167 const std::vector<uint8_t> CreateData(size_t size) const {
168 CHECK(size > 0);
169 std::vector<uint8_t> v(size);
170 uint8_t sum = 0;
171 for (size_t s = 0; s < size; s++) {
172 sum += v[s] = s;
173 }
174 v[0] = (~sum + 1); // First byte has sum complement
175 return v;
176 }
177
178 // Verify packet integrity
VerifyData(const uint8_t * data,size_t size) const179 bool VerifyData(const uint8_t* data, size_t size) const {
180 CHECK(size > 0);
181 uint8_t sum = 0;
182 for (size_t s = 0; s < size; s++) {
183 sum += data[s];
184 }
185 return sum == 0;
186 }
187
188 private:
AllocateAclPacket(size_t acl_length,kPacketOrder packet_order) const189 BT_HDR* AllocateAclPacket(size_t acl_length,
190 kPacketOrder packet_order) const {
191 BT_HDR* packet = AllocatePacket(sizeof(AclPacketHeader) + acl_length,
192 MSG_HC_TO_STACK_HCI_ACL);
193 AclHeader(packet)->s.handle = kHandle;
194 AclHeader(packet)->length = acl_length;
195 switch (packet_order) {
196 case kStart:
197 AclHeader(packet)->s.start = 1;
198 break;
199 case kContinuation:
200 AclHeader(packet)->s.continuation = 1;
201 break;
202 }
203 return packet;
204 }
205
AllocatePacket(size_t packet_length,uint16_t event_mask) const206 BT_HDR* AllocatePacket(size_t packet_length, uint16_t event_mask) const {
207 BT_HDR* packet =
208 static_cast<BT_HDR*>(osi_calloc(sizeof(BT_HDR) + packet_length));
209 packet->event = event_mask;
210 packet->len = static_cast<uint16_t>(packet_length);
211 return packet;
212 }
213
FlushPartialPackets() const214 void FlushPartialPackets() const {
215 while (!partial_packets.empty()) {
216 BT_HDR* partial_packet = partial_packets.at(kHandle);
217 partial_packets.erase(kHandle);
218 osi_free(partial_packet);
219 }
220 }
221 };
222
TEST_F(HciPacketFragmenterTest,TestStruct_Handle)223 TEST_F(HciPacketFragmenterTest, TestStruct_Handle) {
224 AclPacketHeader acl_header;
225 memset(&acl_header, 0, sizeof(acl_header));
226
227 for (uint16_t h = 0; h < UINT16_MAX; h++) {
228 acl_header.s.handle = h;
229 CHECK(acl_header.GetHandle() == (h & HANDLE_MASK));
230 CHECK(acl_header.s.continuation == 0);
231 CHECK(acl_header.s.start == 0);
232 CHECK(acl_header.s.reserved == 0);
233
234 CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == (h & HANDLE_MASK));
235 GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == 0);
236 }
237 }
238
TEST_F(HciPacketFragmenterTest,TestStruct_Continuation)239 TEST_F(HciPacketFragmenterTest, TestStruct_Continuation) {
240 AclPacketHeader acl_header;
241 memset(&acl_header, 0, sizeof(acl_header));
242
243 for (uint16_t h = 0; h < UINT16_MAX; h++) {
244 acl_header.s.continuation = h;
245 CHECK(acl_header.GetHandle() == 0);
246 CHECK(acl_header.s.continuation == (h & 0x1));
247 CHECK(acl_header.s.start == 0);
248 CHECK(acl_header.s.reserved == 0);
249
250 CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == 0);
251 GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == (h & 0x3));
252 }
253 }
254
TEST_F(HciPacketFragmenterTest,TestStruct_Start)255 TEST_F(HciPacketFragmenterTest, TestStruct_Start) {
256 AclPacketHeader acl_header;
257 memset(&acl_header, 0, sizeof(acl_header));
258
259 for (uint16_t h = 0; h < UINT16_MAX; h++) {
260 acl_header.s.start = h;
261 CHECK(acl_header.GetHandle() == 0);
262 CHECK(acl_header.s.continuation == 0);
263 CHECK(acl_header.s.start == (h & 0x1));
264 CHECK(acl_header.s.reserved == 0);
265
266 CHECK((acl_header.GetRawHandle() & HANDLE_MASK) == 0);
267 GET_BOUNDARY_FLAG(acl_header.GetRawHandle() == (h & 0x3));
268 }
269 }
270
TEST_F(HciPacketFragmenterTest,TestStruct_Reserved)271 TEST_F(HciPacketFragmenterTest, TestStruct_Reserved) {
272 AclPacketHeader acl_header;
273 memset(&acl_header, 0, sizeof(acl_header));
274
275 for (uint16_t h = 0; h < UINT16_MAX; h++) {
276 acl_header.s.reserved = h;
277 CHECK(acl_header.GetHandle() == 0);
278 CHECK(acl_header.s.continuation == 0);
279 CHECK(acl_header.s.start == 0);
280 CHECK(acl_header.s.reserved == (h & 0x3));
281 }
282 }
TEST_F(HciPacketFragmenterTest,CreateAndVerifyPackets)283 TEST_F(HciPacketFragmenterTest, CreateAndVerifyPackets) {
284 const size_t size_check[] = {1, 2, 3, 4, 8, 16, 32,
285 64, 127, 128, 129, 256, 1024, 0xfff0};
286 const std::vector<size_t> sizes(
287 size_check, size_check + sizeof(size_check) / sizeof(size_check[0]));
288
289 for (const auto packet_size : sizes) {
290 const std::vector<uint8_t> data = CreateData(packet_size);
291 uint8_t buf[packet_size];
292 std::copy(data.cbegin(), data.cend(), buf);
293 CHECK(VerifyData(buf, packet_size));
294 }
295 }
296
TEST_F(HciPacketFragmenterTest,OnePacket_Immediate)297 TEST_F(HciPacketFragmenterTest, OnePacket_Immediate) {
298 const std::vector<size_t> sizes(
299 kTypicalPacketSizes, kTypicalPacketSizes + kNumberOfTypicalPacketSizes);
300
301 int reassembled_access_count = 0;
302 for (const auto packet_size : sizes) {
303 const std::vector<uint8_t> data = CreateData(packet_size);
304 reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
305
306 CHECK(partial_packets.size() == 0);
307 CHECK(test_state_.reassembled.access_count_ == ++reassembled_access_count);
308 auto packet = std::move(test_state_.reassembled.queue.front());
309 test_state_.reassembled.queue.pop();
310 CHECK(VerifyData(Data(packet.get()), packet_size));
311 }
312 }
313
TEST_F(HciPacketFragmenterTest,OnePacket_ImmediateTooBig)314 TEST_F(HciPacketFragmenterTest, OnePacket_ImmediateTooBig) {
315 const size_t packet_size = kMaxPacketSize + 1;
316 const std::vector<uint8_t> data = CreateData(packet_size);
317 reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
318
319 CHECK(partial_packets.size() == 0);
320 CHECK(test_state_.reassembled.access_count_ == 0);
321 }
322
TEST_F(HciPacketFragmenterTest,ThreePackets_Immediate)323 TEST_F(HciPacketFragmenterTest, ThreePackets_Immediate) {
324 const size_t packet_size = 512;
325 const std::vector<uint8_t> data = CreateData(packet_size);
326 reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
327 reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
328 reassemble_and_dispatch(AllocateL2capPacket(data.size(), data));
329 CHECK(partial_packets.size() == 0);
330 CHECK(test_state_.reassembled.access_count_ == 3);
331 }
332
TEST_F(HciPacketFragmenterTest,OnePacket_SplitTwo)333 TEST_F(HciPacketFragmenterTest, OnePacket_SplitTwo) {
334 const std::vector<size_t> sizes(
335 kTypicalPacketSizes, kTypicalPacketSizes + kNumberOfTypicalPacketSizes);
336
337 int reassembled_access_count = 0;
338 for (auto packet_size : sizes) {
339 const std::vector<uint8_t> data = CreateData(packet_size);
340 const std::vector<uint8_t> part1(data.cbegin(),
341 data.cbegin() + packet_size / 2);
342 reassemble_and_dispatch(AllocateL2capPacket(data.size(), part1));
343
344 CHECK(partial_packets.size() == 1);
345 CHECK(test_state_.reassembled.access_count_ == reassembled_access_count);
346
347 const std::vector<uint8_t> part2(data.cbegin() + packet_size / 2,
348 data.cend());
349 reassemble_and_dispatch(AllocateL2capPacket(part2));
350
351 CHECK(partial_packets.size() == 0);
352 CHECK(test_state_.reassembled.access_count_ == ++reassembled_access_count);
353
354 auto packet = std::move(test_state_.reassembled.queue.front());
355 test_state_.reassembled.queue.pop();
356 CHECK(VerifyData(Data(packet.get()), packet_size));
357 }
358 }
359
TEST_F(HciPacketFragmenterTest,OnePacket_SplitALot)360 TEST_F(HciPacketFragmenterTest, OnePacket_SplitALot) {
361 const size_t packet_size = 512;
362 const size_t stride = 2;
363
364 const std::vector<uint8_t> data = CreateData(packet_size);
365 const std::vector<uint8_t> first_part(data.cbegin(), data.cbegin() + stride);
366 reassemble_and_dispatch(AllocateL2capPacket(data.size(), first_part));
367 CHECK(partial_packets.size() == 1);
368
369 for (size_t i = 2; i < packet_size - stride; i += stride) {
370 const std::vector<uint8_t> middle_part(data.cbegin() + i,
371 data.cbegin() + i + stride);
372 reassemble_and_dispatch(AllocateL2capPacket(middle_part));
373 }
374 CHECK(partial_packets.size() == 1);
375 CHECK(test_state_.reassembled.access_count_ == 0);
376
377 const std::vector<uint8_t> last_part(data.cbegin() + packet_size - stride,
378 data.cend());
379 reassemble_and_dispatch(AllocateL2capPacket(last_part));
380
381 CHECK(partial_packets.size() == 0);
382 CHECK(test_state_.reassembled.access_count_ == 1);
383 auto packet = std::move(test_state_.reassembled.queue.front());
384 CHECK(VerifyData(Data(packet.get()), packet_size));
385 }
386
TEST_F(HciPacketFragmenterTest,TwoPacket_InvalidLength)387 TEST_F(HciPacketFragmenterTest, TwoPacket_InvalidLength) {
388 const size_t packet_size = UINT16_MAX;
389 const std::vector<uint8_t> data = CreateData(packet_size);
390 const std::vector<uint8_t> first_part(data.cbegin(),
391 data.cbegin() + packet_size / 2);
392 reassemble_and_dispatch(AllocateL2capPacket(data.size(), first_part));
393
394 CHECK(partial_packets.size() == 0);
395 CHECK(test_state_.reassembled.access_count_ == 0);
396
397 const std::vector<uint8_t> second_part(data.cbegin() + packet_size / 2,
398 data.cend());
399 reassemble_and_dispatch(AllocateL2capPacket(second_part));
400
401 CHECK(partial_packets.size() == 0);
402 CHECK(test_state_.reassembled.access_count_ == 0);
403 }
404
TEST_F(HciPacketFragmenterTest,TwoPacket_HugeBogusSecond)405 TEST_F(HciPacketFragmenterTest, TwoPacket_HugeBogusSecond) {
406 const size_t packet_size = kMaxPacketSize;
407 const std::vector<uint8_t> data = CreateData(UINT16_MAX);
408 const std::vector<uint8_t> first_part(data.cbegin(),
409 data.cbegin() + packet_size - 1);
410 reassemble_and_dispatch(AllocateL2capPacket(packet_size, first_part));
411
412 CHECK(partial_packets.size() == 1);
413 CHECK(test_state_.reassembled.access_count_ == 0);
414
415 const std::vector<uint8_t> second_part(data.cbegin() + packet_size - 1,
416 data.cend());
417 reassemble_and_dispatch(AllocateL2capPacket(second_part));
418
419 CHECK(partial_packets.size() == 0);
420 CHECK(test_state_.reassembled.access_count_ == 1);
421 }
422