• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <errno.h>
18 #include <inttypes.h>
19 #include <sys/auxv.h>
20 #include <sys/mman.h>
21 #include <unistd.h>
22 
23 #include <bionic/mte.h>
24 
25 #include <map>
26 #include <utility>
27 
28 #include "Allocator.h"
29 #include "HeapWalker.h"
30 #include "LeakFolding.h"
31 #include "ScopedSignalHandler.h"
32 #include "log.h"
33 
34 namespace android {
UntagAddress(uintptr_t addr)35 static inline uintptr_t UntagAddress(uintptr_t addr) {
36 #if defined(__aarch64__)
37   constexpr uintptr_t mask = (static_cast<uintptr_t>(1) << 56) - 1;
38   addr = addr & mask;
39 #endif
40   return addr;
41 }
42 
Allocation(uintptr_t begin,uintptr_t end)43 bool HeapWalker::Allocation(uintptr_t begin, uintptr_t end) {
44   if (end == begin) {
45     end = begin + 1;
46   }
47   begin = UntagAddress(begin);
48   end = UntagAddress(end);
49   Range range{begin, end};
50   if (valid_mappings_range_.end != 0 &&
51       (begin < valid_mappings_range_.begin || end > valid_mappings_range_.end)) {
52     MEM_LOG_ALWAYS_FATAL("allocation %p-%p is outside mapping range %p-%p",
53                          reinterpret_cast<void*>(begin), reinterpret_cast<void*>(end),
54                          reinterpret_cast<void*>(valid_mappings_range_.begin),
55                          reinterpret_cast<void*>(valid_mappings_range_.end));
56   }
57   auto inserted = allocations_.insert(std::pair<Range, AllocationInfo>(range, AllocationInfo{}));
58   if (inserted.second) {
59     valid_allocations_range_.begin = std::min(valid_allocations_range_.begin, begin);
60     valid_allocations_range_.end = std::max(valid_allocations_range_.end, end);
61     allocation_bytes_ += range.size();
62     return true;
63   } else {
64     Range overlap = inserted.first->first;
65     if (overlap != range) {
66       MEM_ALOGE("range %p-%p overlaps with existing range %p-%p", reinterpret_cast<void*>(begin),
67                 reinterpret_cast<void*>(end), reinterpret_cast<void*>(overlap.begin),
68                 reinterpret_cast<void*>(overlap.end));
69     }
70     return false;
71   }
72 }
73 
74 // Sanitizers and MTE may consider certain memory inaccessible through certain pointers.
75 // With MTE we set PSTATE.TCO during the access to suppress tag checks.
ReadWordAtAddressUnsafe(uintptr_t word_ptr)76 static uintptr_t ReadWordAtAddressUnsafe(uintptr_t word_ptr)
77     __attribute__((no_sanitize("address", "hwaddress"))) {
78   ScopedDisableMTE x;
79   return *reinterpret_cast<uintptr_t*>(word_ptr);
80 }
81 
WordContainsAllocationPtr(uintptr_t word_ptr,Range * range,AllocationInfo ** info)82 bool HeapWalker::WordContainsAllocationPtr(uintptr_t word_ptr, Range* range, AllocationInfo** info) {
83   walking_ptr_ = word_ptr;
84   // This access may segfault if the process under test has done something strange,
85   // for example mprotect(PROT_NONE) on a native heap page.  If so, it will be
86   // caught and handled by mmaping a zero page over the faulting page.
87   uintptr_t value = ReadWordAtAddressUnsafe(word_ptr);
88   value = UntagAddress(value);
89   walking_ptr_ = 0;
90   if (value >= valid_allocations_range_.begin && value < valid_allocations_range_.end) {
91     AllocationMap::iterator it = allocations_.find(Range{value, value + 1});
92     if (it != allocations_.end()) {
93       *range = it->first;
94       *info = &it->second;
95       return true;
96     }
97   }
98   return false;
99 }
100 
RecurseRoot(const Range & root)101 void HeapWalker::RecurseRoot(const Range& root) {
102   allocator::vector<Range> to_do(1, root, allocator_);
103   while (!to_do.empty()) {
104     Range range = to_do.back();
105     to_do.pop_back();
106 
107     walking_range_ = range;
108     ForEachPtrInRange(range, [&](Range& ref_range, AllocationInfo* ref_info) {
109       if (!ref_info->referenced_from_root) {
110         ref_info->referenced_from_root = true;
111         to_do.push_back(ref_range);
112       }
113     });
114     walking_range_ = Range{0, 0};
115   }
116 }
117 
Mapping(uintptr_t begin,uintptr_t end)118 void HeapWalker::Mapping(uintptr_t begin, uintptr_t end) {
119   valid_mappings_range_.begin = std::min(valid_mappings_range_.begin, begin);
120   valid_mappings_range_.end = std::max(valid_mappings_range_.end, end);
121 }
122 
Root(uintptr_t begin,uintptr_t end)123 void HeapWalker::Root(uintptr_t begin, uintptr_t end) {
124   roots_.push_back(Range{begin, end});
125 }
126 
Root(const allocator::vector<uintptr_t> & vals)127 void HeapWalker::Root(const allocator::vector<uintptr_t>& vals) {
128   root_vals_.insert(root_vals_.end(), vals.begin(), vals.end());
129 }
130 
Allocations()131 size_t HeapWalker::Allocations() {
132   return allocations_.size();
133 }
134 
AllocationBytes()135 size_t HeapWalker::AllocationBytes() {
136   return allocation_bytes_;
137 }
138 
DetectLeaks()139 bool HeapWalker::DetectLeaks() {
140   // Recursively walk pointers from roots to mark referenced allocations
141   for (auto it = roots_.begin(); it != roots_.end(); it++) {
142     RecurseRoot(*it);
143   }
144 
145   Range vals;
146   vals.begin = reinterpret_cast<uintptr_t>(root_vals_.data());
147   vals.end = vals.begin + root_vals_.size() * sizeof(uintptr_t);
148 
149   RecurseRoot(vals);
150 
151   if (segv_page_count_ > 0) {
152     MEM_ALOGE("%zu pages skipped due to segfaults", segv_page_count_);
153   }
154 
155   return true;
156 }
157 
Leaked(allocator::vector<Range> & leaked,size_t limit,size_t * num_leaks_out,size_t * leak_bytes_out)158 bool HeapWalker::Leaked(allocator::vector<Range>& leaked, size_t limit, size_t* num_leaks_out,
159                         size_t* leak_bytes_out) {
160   leaked.clear();
161 
162   size_t num_leaks = 0;
163   size_t leak_bytes = 0;
164   for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
165     if (!it->second.referenced_from_root) {
166       num_leaks++;
167       leak_bytes += it->first.end - it->first.begin;
168     }
169   }
170 
171   size_t n = 0;
172   for (auto it = allocations_.begin(); it != allocations_.end(); it++) {
173     if (!it->second.referenced_from_root) {
174       if (n++ < limit) {
175         leaked.push_back(it->first);
176       }
177     }
178   }
179 
180   if (num_leaks_out) {
181     *num_leaks_out = num_leaks;
182   }
183   if (leak_bytes_out) {
184     *leak_bytes_out = leak_bytes;
185   }
186 
187   return true;
188 }
189 
MapOverPage(void * addr)190 static bool MapOverPage(void* addr) {
191   const size_t page_size = sysconf(_SC_PAGE_SIZE);
192   void* page = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) & ~(page_size - 1));
193 
194   void* ret = mmap(page, page_size, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
195   if (ret == MAP_FAILED) {
196     MEM_ALOGE("failed to map page at %p: %s", page, strerror(errno));
197     return false;
198   }
199 
200   return true;
201 }
202 
HandleSegFault(ScopedSignalHandler & handler,int signal,siginfo_t * si,void *)203 void HeapWalker::HandleSegFault(ScopedSignalHandler& handler, int signal, siginfo_t* si,
204                                 void* /*uctx*/) {
205   uintptr_t addr = reinterpret_cast<uintptr_t>(si->si_addr);
206   if (addr != walking_ptr_) {
207     handler.reset();
208     return;
209   }
210   if (!segv_logged_) {
211     MEM_ALOGW("failed to read page at %p, signal %d", si->si_addr, signal);
212     if (walking_range_.begin != 0U) {
213       MEM_ALOGW("while walking range %p-%p", reinterpret_cast<void*>(walking_range_.begin),
214                 reinterpret_cast<void*>(walking_range_.end));
215     }
216     segv_logged_ = true;
217   }
218   segv_page_count_++;
219   if (!MapOverPage(si->si_addr)) {
220     handler.reset();
221   }
222 }
223 
224 Allocator<ScopedSignalHandler::SignalFnMap>::unique_ptr ScopedSignalHandler::handler_map_;
225 
226 }  // namespace android
227