Lines Matching refs:cdot
35 is on the linearly interpolated circle with center $C_t = (1-t) \cdot C_0 + t \cdot C_1$ and radius
36 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be *positive*). If
49 As $r_0 \neq r_1$, we can find a focal point $C_f = (1-f) \cdot C_0 + f \cdot C_1$ where its
50 corresponding linearly interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$.
103 \hat y$ allow us to have $t = f + (1 - f)x_t = f + \text{sign}(1-f) \cdot \hat x_t$. That saves us
154 hopefully soon be upgraded to the algorithm described here) mainly uses formula $$t = 0.5 \cdot
155 (1/a) \cdot \left(-b \pm \sqrt{b^2 - 4ac}\right)$$ It precomputes $a = 1 - (r_1 - r_0)^2, 1/a, r1 -
156 r0$. Number $b = -2 \cdot (x + (r1 - r0) \cdot r0)$ costs 2 multiplications and 1 addition. Number
160 if it saves the $0.5 \cdot (1/a), 4a, r_0^2$ and $(r_1 - r_0) r_0$ multiplications, there are still
177 Therefore $||P C|| = ||P_1 C_1|| \cdot (||C_f C|| / ||C_f C_1||) = r_1 x'$. Thus $x'$ is a solution
179 = ||C_f C_1|| \cdot (||C_f P|| / ||C_f P_1||) = ||C_f P|| / ||C_f P_1||$. $\square$
220 $$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = x / \sqrt{x^2 + y^2}$$
221 $$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$
243 $$||C_f H|| = ||C_f C_1|| \cdot (||C_f X_P|| / ||C_f P||) = -x / \sqrt{x^2 + y^2}$$
244 $$||C_1 H|| = ||C_f C_1|| \cdot (||P X_P|| / ||C_f P||) = y / \sqrt{x^2 + y^2}$$