1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19
20 #include "thread.h"
21
22 #include "arch/instruction_set.h"
23 #include "base/aborting.h"
24 #include "base/casts.h"
25 #include "base/mutex-inl.h"
26 #include "base/time_utils.h"
27 #include "jni/jni_env_ext.h"
28 #include "managed_stack-inl.h"
29 #include "obj_ptr.h"
30 #include "suspend_reason.h"
31 #include "thread-current-inl.h"
32 #include "thread_pool.h"
33
34 namespace art {
35
36 // Quickly access the current thread from a JNIEnv.
ThreadForEnv(JNIEnv * env)37 static inline Thread* ThreadForEnv(JNIEnv* env) {
38 JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
39 return full_env->GetSelf();
40 }
41
AllowThreadSuspension()42 inline void Thread::AllowThreadSuspension() {
43 DCHECK_EQ(Thread::Current(), this);
44 if (UNLIKELY(TestAllFlags())) {
45 CheckSuspend();
46 }
47 // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
48 // to missing handles.
49 PoisonObjectPointers();
50 }
51
CheckSuspend()52 inline void Thread::CheckSuspend() {
53 DCHECK_EQ(Thread::Current(), this);
54 for (;;) {
55 if (ReadFlag(kCheckpointRequest)) {
56 RunCheckpointFunction();
57 } else if (ReadFlag(kSuspendRequest)) {
58 FullSuspendCheck();
59 } else if (ReadFlag(kEmptyCheckpointRequest)) {
60 RunEmptyCheckpoint();
61 } else {
62 break;
63 }
64 }
65 }
66
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)67 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
68 Thread* self = Thread::Current();
69 DCHECK_EQ(self, this);
70 for (;;) {
71 if (ReadFlag(kEmptyCheckpointRequest)) {
72 RunEmptyCheckpoint();
73 // Check we hold only an expected mutex when accessing weak ref.
74 if (kIsDebugBuild) {
75 for (int i = kLockLevelCount - 1; i >= 0; --i) {
76 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
77 if (held_mutex != nullptr &&
78 held_mutex != Locks::mutator_lock_ &&
79 held_mutex != cond_var_mutex) {
80 CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
81 << "Holding unexpected mutex " << held_mutex->GetName()
82 << " when accessing weak ref";
83 }
84 }
85 }
86 } else {
87 break;
88 }
89 }
90 }
91
CheckEmptyCheckpointFromMutex()92 inline void Thread::CheckEmptyCheckpointFromMutex() {
93 DCHECK_EQ(Thread::Current(), this);
94 for (;;) {
95 if (ReadFlag(kEmptyCheckpointRequest)) {
96 RunEmptyCheckpoint();
97 } else {
98 break;
99 }
100 }
101 }
102
SetState(ThreadState new_state)103 inline ThreadState Thread::SetState(ThreadState new_state) {
104 // Should only be used to change between suspended states.
105 // Cannot use this code to change into or from Runnable as changing to Runnable should
106 // fail if old_state_and_flags.suspend_request is true and changing from Runnable might
107 // miss passing an active suspend barrier.
108 DCHECK_NE(new_state, kRunnable);
109 if (kIsDebugBuild && this != Thread::Current()) {
110 std::string name;
111 GetThreadName(name);
112 LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
113 << Thread::Current() << ") changing state to " << new_state;
114 }
115 union StateAndFlags old_state_and_flags;
116 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
117 CHECK_NE(old_state_and_flags.as_struct.state, kRunnable) << new_state << " " << *this << " "
118 << *Thread::Current();
119 tls32_.state_and_flags.as_struct.state = new_state;
120 return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
121 }
122
IsThreadSuspensionAllowable()123 inline bool Thread::IsThreadSuspensionAllowable() const {
124 if (tls32_.no_thread_suspension != 0) {
125 return false;
126 }
127 for (int i = kLockLevelCount - 1; i >= 0; --i) {
128 if (i != kMutatorLock &&
129 i != kUserCodeSuspensionLock &&
130 GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
131 return false;
132 }
133 }
134 // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
135 // have the mutex meaning we need to do this hack.
136 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
137 return tls32_.user_code_suspend_count != 0;
138 };
139 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
140 return false;
141 }
142 return true;
143 }
144
AssertThreadSuspensionIsAllowable(bool check_locks)145 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
146 if (kIsDebugBuild) {
147 if (gAborting == 0) {
148 CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
149 }
150 if (check_locks) {
151 bool bad_mutexes_held = false;
152 for (int i = kLockLevelCount - 1; i >= 0; --i) {
153 // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as
154 // we aren't going to be held suspended due to SuspendReason::kForUserCode.
155 if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
156 BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
157 if (held_mutex != nullptr) {
158 LOG(ERROR) << "holding \"" << held_mutex->GetName()
159 << "\" at point where thread suspension is expected";
160 bad_mutexes_held = true;
161 }
162 }
163 }
164 // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
165 // user_code_suspend_count which would prevent the thread from ever waking up. Thread
166 // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
167 // have the mutex meaning we need to do this hack.
168 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
169 return tls32_.user_code_suspend_count != 0;
170 };
171 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
172 LOG(ERROR) << "suspending due to user-code while holding \""
173 << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
174 << "wake up.";
175 bad_mutexes_held = true;
176 }
177 if (gAborting == 0) {
178 CHECK(!bad_mutexes_held);
179 }
180 }
181 }
182 }
183
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)184 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
185 DCHECK_NE(new_state, kRunnable);
186 DCHECK_EQ(GetState(), kRunnable);
187 union StateAndFlags old_state_and_flags;
188 union StateAndFlags new_state_and_flags;
189 while (true) {
190 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
191 if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
192 RunCheckpointFunction();
193 continue;
194 }
195 if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
196 RunEmptyCheckpoint();
197 continue;
198 }
199 // Change the state but keep the current flags (kCheckpointRequest is clear).
200 DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
201 DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
202 new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
203 new_state_and_flags.as_struct.state = new_state;
204
205 // CAS the value, ensuring that prior memory operations are visible to any thread
206 // that observes that we are suspended.
207 bool done =
208 tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int,
209 new_state_and_flags.as_int);
210 if (LIKELY(done)) {
211 break;
212 }
213 }
214 }
215
PassActiveSuspendBarriers()216 inline void Thread::PassActiveSuspendBarriers() {
217 while (true) {
218 uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
219 if (LIKELY((current_flags &
220 (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
221 break;
222 } else if ((current_flags & kActiveSuspendBarrier) != 0) {
223 PassActiveSuspendBarriers(this);
224 } else {
225 // Impossible
226 LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
227 }
228 }
229 }
230
TransitionFromRunnableToSuspended(ThreadState new_state)231 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
232 AssertThreadSuspensionIsAllowable();
233 PoisonObjectPointersIfDebug();
234 DCHECK_EQ(this, Thread::Current());
235 // Change to non-runnable state, thereby appearing suspended to the system.
236 TransitionToSuspendedAndRunCheckpoints(new_state);
237 // Mark the release of the share of the mutator_lock_.
238 Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
239 // Once suspended - check the active suspend barrier flag
240 PassActiveSuspendBarriers();
241 }
242
TransitionFromSuspendedToRunnable()243 inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
244 union StateAndFlags old_state_and_flags;
245 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
246 int16_t old_state = old_state_and_flags.as_struct.state;
247 DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
248 do {
249 Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC..
250 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
251 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
252 if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
253 // Optimize for the return from native code case - this is the fast path.
254 // Atomically change from suspended to runnable if no suspend request pending.
255 union StateAndFlags new_state_and_flags;
256 new_state_and_flags.as_int = old_state_and_flags.as_int;
257 new_state_and_flags.as_struct.state = kRunnable;
258
259 // CAS the value with a memory barrier.
260 if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire(
261 old_state_and_flags.as_int,
262 new_state_and_flags.as_int))) {
263 // Mark the acquisition of a share of the mutator_lock_.
264 Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
265 break;
266 }
267 } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
268 PassActiveSuspendBarriers(this);
269 } else if ((old_state_and_flags.as_struct.flags &
270 (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
271 // Impossible
272 LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
273 << " flags=" << old_state_and_flags.as_struct.flags
274 << " state=" << old_state_and_flags.as_struct.state;
275 } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
276 // Wait while our suspend count is non-zero.
277
278 // We pass null to the MutexLock as we may be in a situation where the
279 // runtime is shutting down. Guarding ourselves from that situation
280 // requires to take the shutdown lock, which is undesirable here.
281 Thread* thread_to_pass = nullptr;
282 if (kIsDebugBuild && !IsDaemon()) {
283 // We know we can make our debug locking checks on non-daemon threads,
284 // so re-enable them on debug builds.
285 thread_to_pass = this;
286 }
287 MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
288 ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
289 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
290 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
291 while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
292 // Re-check when Thread::resume_cond_ is notified.
293 Thread::resume_cond_->Wait(thread_to_pass);
294 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
295 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
296 }
297 DCHECK_EQ(GetSuspendCount(), 0);
298 }
299 } while (true);
300 // Run the flip function, if set.
301 Closure* flip_func = GetFlipFunction();
302 if (flip_func != nullptr) {
303 flip_func->Run(this);
304 }
305 return static_cast<ThreadState>(old_state);
306 }
307
AllocTlab(size_t bytes)308 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
309 DCHECK_GE(TlabSize(), bytes);
310 ++tlsPtr_.thread_local_objects;
311 mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
312 tlsPtr_.thread_local_pos += bytes;
313 return ret;
314 }
315
PushOnThreadLocalAllocationStack(mirror::Object * obj)316 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
317 DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
318 if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
319 // There's room.
320 DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
321 sizeof(StackReference<mirror::Object>),
322 reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
323 DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
324 tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
325 ++tlsPtr_.thread_local_alloc_stack_top;
326 return true;
327 }
328 return false;
329 }
330
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)331 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
332 StackReference<mirror::Object>* end) {
333 DCHECK(Thread::Current() == this) << "Should be called by self";
334 DCHECK(start != nullptr);
335 DCHECK(end != nullptr);
336 DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
337 DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
338 DCHECK_LT(start, end);
339 tlsPtr_.thread_local_alloc_stack_end = end;
340 tlsPtr_.thread_local_alloc_stack_top = start;
341 }
342
RevokeThreadLocalAllocationStack()343 inline void Thread::RevokeThreadLocalAllocationStack() {
344 if (kIsDebugBuild) {
345 // Note: self is not necessarily equal to this thread since thread may be suspended.
346 Thread* self = Thread::Current();
347 DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
348 << GetState() << " thread " << this << " self " << self;
349 }
350 tlsPtr_.thread_local_alloc_stack_end = nullptr;
351 tlsPtr_.thread_local_alloc_stack_top = nullptr;
352 }
353
PoisonObjectPointersIfDebug()354 inline void Thread::PoisonObjectPointersIfDebug() {
355 if (kObjPtrPoisoning) {
356 Thread::Current()->PoisonObjectPointers();
357 }
358 }
359
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)360 inline bool Thread::ModifySuspendCount(Thread* self,
361 int delta,
362 AtomicInteger* suspend_barrier,
363 SuspendReason reason) {
364 if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
365 // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
366 // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
367 while (true) {
368 if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
369 return true;
370 } else {
371 // Failure means the list of active_suspend_barriers is full or we are in the middle of a
372 // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
373 // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
374 // flip function. Note that we could not simply wait for the thread to change to a suspended
375 // state, because it might need to run checkpoint function before the state change or
376 // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
377 //
378 // The list of active_suspend_barriers is very unlikely to be full since more than
379 // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
380 // target thread stays in kRunnable in the mean time.
381 Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
382 NanoSleep(100000);
383 Locks::thread_suspend_count_lock_->ExclusiveLock(self);
384 }
385 }
386 } else {
387 return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
388 }
389 }
390
PushShadowFrame(ShadowFrame * new_top_frame)391 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
392 new_top_frame->CheckConsistentVRegs();
393 return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
394 }
395
PopShadowFrame()396 inline ShadowFrame* Thread::PopShadowFrame() {
397 return tlsPtr_.managed_stack.PopShadowFrame();
398 }
399
GetStackEndForInterpreter(bool implicit_overflow_check)400 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
401 uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
402 ? GetStackOverflowReservedBytes(kRuntimeISA)
403 : 0);
404 if (kIsDebugBuild) {
405 // In a debuggable build, but especially under ASAN, the access-checks interpreter has a
406 // potentially humongous stack size. We don't want to take too much of the stack regularly,
407 // so do not increase the regular reserved size (for compiled code etc) and only report the
408 // virtually smaller stack to the interpreter here.
409 end += GetStackOverflowReservedBytes(kRuntimeISA);
410 }
411 return end;
412 }
413
ResetDefaultStackEnd()414 inline void Thread::ResetDefaultStackEnd() {
415 // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
416 // to throw a StackOverflowError.
417 tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
418 }
419
420 } // namespace art
421
422 #endif // ART_RUNTIME_THREAD_INL_H_
423