• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19 
20 #include "thread.h"
21 
22 #include "arch/instruction_set.h"
23 #include "base/aborting.h"
24 #include "base/casts.h"
25 #include "base/mutex-inl.h"
26 #include "base/time_utils.h"
27 #include "jni/jni_env_ext.h"
28 #include "managed_stack-inl.h"
29 #include "obj_ptr.h"
30 #include "suspend_reason.h"
31 #include "thread-current-inl.h"
32 #include "thread_pool.h"
33 
34 namespace art {
35 
36 // Quickly access the current thread from a JNIEnv.
ThreadForEnv(JNIEnv * env)37 static inline Thread* ThreadForEnv(JNIEnv* env) {
38   JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
39   return full_env->GetSelf();
40 }
41 
AllowThreadSuspension()42 inline void Thread::AllowThreadSuspension() {
43   DCHECK_EQ(Thread::Current(), this);
44   if (UNLIKELY(TestAllFlags())) {
45     CheckSuspend();
46   }
47   // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
48   // to missing handles.
49   PoisonObjectPointers();
50 }
51 
CheckSuspend()52 inline void Thread::CheckSuspend() {
53   DCHECK_EQ(Thread::Current(), this);
54   for (;;) {
55     if (ReadFlag(kCheckpointRequest)) {
56       RunCheckpointFunction();
57     } else if (ReadFlag(kSuspendRequest)) {
58       FullSuspendCheck();
59     } else if (ReadFlag(kEmptyCheckpointRequest)) {
60       RunEmptyCheckpoint();
61     } else {
62       break;
63     }
64   }
65 }
66 
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)67 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
68   Thread* self = Thread::Current();
69   DCHECK_EQ(self, this);
70   for (;;) {
71     if (ReadFlag(kEmptyCheckpointRequest)) {
72       RunEmptyCheckpoint();
73       // Check we hold only an expected mutex when accessing weak ref.
74       if (kIsDebugBuild) {
75         for (int i = kLockLevelCount - 1; i >= 0; --i) {
76           BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
77           if (held_mutex != nullptr &&
78               held_mutex != Locks::mutator_lock_ &&
79               held_mutex != cond_var_mutex) {
80             CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
81                 << "Holding unexpected mutex " << held_mutex->GetName()
82                 << " when accessing weak ref";
83           }
84         }
85       }
86     } else {
87       break;
88     }
89   }
90 }
91 
CheckEmptyCheckpointFromMutex()92 inline void Thread::CheckEmptyCheckpointFromMutex() {
93   DCHECK_EQ(Thread::Current(), this);
94   for (;;) {
95     if (ReadFlag(kEmptyCheckpointRequest)) {
96       RunEmptyCheckpoint();
97     } else {
98       break;
99     }
100   }
101 }
102 
SetState(ThreadState new_state)103 inline ThreadState Thread::SetState(ThreadState new_state) {
104   // Should only be used to change between suspended states.
105   // Cannot use this code to change into or from Runnable as changing to Runnable should
106   // fail if old_state_and_flags.suspend_request is true and changing from Runnable might
107   // miss passing an active suspend barrier.
108   DCHECK_NE(new_state, kRunnable);
109   if (kIsDebugBuild && this != Thread::Current()) {
110     std::string name;
111     GetThreadName(name);
112     LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
113                << Thread::Current() << ") changing state to " << new_state;
114   }
115   union StateAndFlags old_state_and_flags;
116   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
117   CHECK_NE(old_state_and_flags.as_struct.state, kRunnable) << new_state << " " << *this << " "
118       << *Thread::Current();
119   tls32_.state_and_flags.as_struct.state = new_state;
120   return static_cast<ThreadState>(old_state_and_flags.as_struct.state);
121 }
122 
IsThreadSuspensionAllowable()123 inline bool Thread::IsThreadSuspensionAllowable() const {
124   if (tls32_.no_thread_suspension != 0) {
125     return false;
126   }
127   for (int i = kLockLevelCount - 1; i >= 0; --i) {
128     if (i != kMutatorLock &&
129         i != kUserCodeSuspensionLock &&
130         GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
131       return false;
132     }
133   }
134   // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
135   // have the mutex meaning we need to do this hack.
136   auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
137     return tls32_.user_code_suspend_count != 0;
138   };
139   if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
140     return false;
141   }
142   return true;
143 }
144 
AssertThreadSuspensionIsAllowable(bool check_locks)145 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
146   if (kIsDebugBuild) {
147     if (gAborting == 0) {
148       CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
149     }
150     if (check_locks) {
151       bool bad_mutexes_held = false;
152       for (int i = kLockLevelCount - 1; i >= 0; --i) {
153         // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as
154         // we aren't going to be held suspended due to SuspendReason::kForUserCode.
155         if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
156           BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
157           if (held_mutex != nullptr) {
158             LOG(ERROR) << "holding \"" << held_mutex->GetName()
159                       << "\" at point where thread suspension is expected";
160             bad_mutexes_held = true;
161           }
162         }
163       }
164       // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
165       // user_code_suspend_count which would prevent the thread from ever waking up.  Thread
166       // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
167       // have the mutex meaning we need to do this hack.
168       auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
169         return tls32_.user_code_suspend_count != 0;
170       };
171       if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
172         LOG(ERROR) << "suspending due to user-code while holding \""
173                    << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
174                    << "wake up.";
175         bad_mutexes_held = true;
176       }
177       if (gAborting == 0) {
178         CHECK(!bad_mutexes_held);
179       }
180     }
181   }
182 }
183 
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)184 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
185   DCHECK_NE(new_state, kRunnable);
186   DCHECK_EQ(GetState(), kRunnable);
187   union StateAndFlags old_state_and_flags;
188   union StateAndFlags new_state_and_flags;
189   while (true) {
190     old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
191     if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) {
192       RunCheckpointFunction();
193       continue;
194     }
195     if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) {
196       RunEmptyCheckpoint();
197       continue;
198     }
199     // Change the state but keep the current flags (kCheckpointRequest is clear).
200     DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0);
201     DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0);
202     new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags;
203     new_state_and_flags.as_struct.state = new_state;
204 
205     // CAS the value, ensuring that prior memory operations are visible to any thread
206     // that observes that we are suspended.
207     bool done =
208         tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int,
209                                                                         new_state_and_flags.as_int);
210     if (LIKELY(done)) {
211       break;
212     }
213   }
214 }
215 
PassActiveSuspendBarriers()216 inline void Thread::PassActiveSuspendBarriers() {
217   while (true) {
218     uint16_t current_flags = tls32_.state_and_flags.as_struct.flags;
219     if (LIKELY((current_flags &
220                 (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) {
221       break;
222     } else if ((current_flags & kActiveSuspendBarrier) != 0) {
223       PassActiveSuspendBarriers(this);
224     } else {
225       // Impossible
226       LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
227     }
228   }
229 }
230 
TransitionFromRunnableToSuspended(ThreadState new_state)231 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
232   AssertThreadSuspensionIsAllowable();
233   PoisonObjectPointersIfDebug();
234   DCHECK_EQ(this, Thread::Current());
235   // Change to non-runnable state, thereby appearing suspended to the system.
236   TransitionToSuspendedAndRunCheckpoints(new_state);
237   // Mark the release of the share of the mutator_lock_.
238   Locks::mutator_lock_->TransitionFromRunnableToSuspended(this);
239   // Once suspended - check the active suspend barrier flag
240   PassActiveSuspendBarriers();
241 }
242 
TransitionFromSuspendedToRunnable()243 inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
244   union StateAndFlags old_state_and_flags;
245   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
246   int16_t old_state = old_state_and_flags.as_struct.state;
247   DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable);
248   do {
249     Locks::mutator_lock_->AssertNotHeld(this);  // Otherwise we starve GC..
250     old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
251     DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
252     if (LIKELY(old_state_and_flags.as_struct.flags == 0)) {
253       // Optimize for the return from native code case - this is the fast path.
254       // Atomically change from suspended to runnable if no suspend request pending.
255       union StateAndFlags new_state_and_flags;
256       new_state_and_flags.as_int = old_state_and_flags.as_int;
257       new_state_and_flags.as_struct.state = kRunnable;
258 
259       // CAS the value with a memory barrier.
260       if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire(
261                                                  old_state_and_flags.as_int,
262                                                  new_state_and_flags.as_int))) {
263         // Mark the acquisition of a share of the mutator_lock_.
264         Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this);
265         break;
266       }
267     } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) {
268       PassActiveSuspendBarriers(this);
269     } else if ((old_state_and_flags.as_struct.flags &
270                 (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) {
271       // Impossible
272       LOG(FATAL) << "Transitioning to runnable with checkpoint flag, "
273                  << " flags=" << old_state_and_flags.as_struct.flags
274                  << " state=" << old_state_and_flags.as_struct.state;
275     } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
276       // Wait while our suspend count is non-zero.
277 
278       // We pass null to the MutexLock as we may be in a situation where the
279       // runtime is shutting down. Guarding ourselves from that situation
280       // requires to take the shutdown lock, which is undesirable here.
281       Thread* thread_to_pass = nullptr;
282       if (kIsDebugBuild && !IsDaemon()) {
283         // We know we can make our debug locking checks on non-daemon threads,
284         // so re-enable them on debug builds.
285         thread_to_pass = this;
286       }
287       MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
288       ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this);
289       old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
290       DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
291       while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) {
292         // Re-check when Thread::resume_cond_ is notified.
293         Thread::resume_cond_->Wait(thread_to_pass);
294         old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
295         DCHECK_EQ(old_state_and_flags.as_struct.state, old_state);
296       }
297       DCHECK_EQ(GetSuspendCount(), 0);
298     }
299   } while (true);
300   // Run the flip function, if set.
301   Closure* flip_func = GetFlipFunction();
302   if (flip_func != nullptr) {
303     flip_func->Run(this);
304   }
305   return static_cast<ThreadState>(old_state);
306 }
307 
AllocTlab(size_t bytes)308 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
309   DCHECK_GE(TlabSize(), bytes);
310   ++tlsPtr_.thread_local_objects;
311   mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
312   tlsPtr_.thread_local_pos += bytes;
313   return ret;
314 }
315 
PushOnThreadLocalAllocationStack(mirror::Object * obj)316 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
317   DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
318   if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
319     // There's room.
320     DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
321               sizeof(StackReference<mirror::Object>),
322               reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
323     DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
324     tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
325     ++tlsPtr_.thread_local_alloc_stack_top;
326     return true;
327   }
328   return false;
329 }
330 
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)331 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
332                                                   StackReference<mirror::Object>* end) {
333   DCHECK(Thread::Current() == this) << "Should be called by self";
334   DCHECK(start != nullptr);
335   DCHECK(end != nullptr);
336   DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
337   DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
338   DCHECK_LT(start, end);
339   tlsPtr_.thread_local_alloc_stack_end = end;
340   tlsPtr_.thread_local_alloc_stack_top = start;
341 }
342 
RevokeThreadLocalAllocationStack()343 inline void Thread::RevokeThreadLocalAllocationStack() {
344   if (kIsDebugBuild) {
345     // Note: self is not necessarily equal to this thread since thread may be suspended.
346     Thread* self = Thread::Current();
347     DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc)
348         << GetState() << " thread " << this << " self " << self;
349   }
350   tlsPtr_.thread_local_alloc_stack_end = nullptr;
351   tlsPtr_.thread_local_alloc_stack_top = nullptr;
352 }
353 
PoisonObjectPointersIfDebug()354 inline void Thread::PoisonObjectPointersIfDebug() {
355   if (kObjPtrPoisoning) {
356     Thread::Current()->PoisonObjectPointers();
357   }
358 }
359 
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)360 inline bool Thread::ModifySuspendCount(Thread* self,
361                                        int delta,
362                                        AtomicInteger* suspend_barrier,
363                                        SuspendReason reason) {
364   if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) {
365     // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if
366     // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop.
367     while (true) {
368       if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) {
369         return true;
370       } else {
371         // Failure means the list of active_suspend_barriers is full or we are in the middle of a
372         // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and
373         // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the
374         // flip function. Note that we could not simply wait for the thread to change to a suspended
375         // state, because it might need to run checkpoint function before the state change or
376         // resumes from the resume_cond_, which also needs thread_suspend_count_lock_.
377         //
378         // The list of active_suspend_barriers is very unlikely to be full since more than
379         // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and
380         // target thread stays in kRunnable in the mean time.
381         Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
382         NanoSleep(100000);
383         Locks::thread_suspend_count_lock_->ExclusiveLock(self);
384       }
385     }
386   } else {
387     return ModifySuspendCountInternal(self, delta, suspend_barrier, reason);
388   }
389 }
390 
PushShadowFrame(ShadowFrame * new_top_frame)391 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
392   new_top_frame->CheckConsistentVRegs();
393   return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
394 }
395 
PopShadowFrame()396 inline ShadowFrame* Thread::PopShadowFrame() {
397   return tlsPtr_.managed_stack.PopShadowFrame();
398 }
399 
GetStackEndForInterpreter(bool implicit_overflow_check)400 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
401   uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
402       ? GetStackOverflowReservedBytes(kRuntimeISA)
403           : 0);
404   if (kIsDebugBuild) {
405     // In a debuggable build, but especially under ASAN, the access-checks interpreter has a
406     // potentially humongous stack size. We don't want to take too much of the stack regularly,
407     // so do not increase the regular reserved size (for compiled code etc) and only report the
408     // virtually smaller stack to the interpreter here.
409     end += GetStackOverflowReservedBytes(kRuntimeISA);
410   }
411   return end;
412 }
413 
ResetDefaultStackEnd()414 inline void Thread::ResetDefaultStackEnd() {
415   // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
416   // to throw a StackOverflowError.
417   tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
418 }
419 
420 }  // namespace art
421 
422 #endif  // ART_RUNTIME_THREAD_INL_H_
423