1 /* $NetBSD: getaddrinfo.c,v 1.82 2006/03/25 12:09:40 rpaulo Exp $ */
2 /* $KAME: getaddrinfo.c,v 1.29 2000/08/31 17:26:57 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #define LOG_TAG "resolv"
34
35 #include "getaddrinfo.h"
36
37 #include <arpa/inet.h>
38 #include <arpa/nameser.h>
39 #include <assert.h>
40 #include <ctype.h>
41 #include <errno.h>
42 #include <fcntl.h>
43 #include <net/if.h>
44 #include <netdb.h>
45 #include <netinet/in.h>
46 #include <stdbool.h>
47 #include <stddef.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <sys/param.h>
51 #include <sys/socket.h>
52 #include <sys/stat.h>
53 #include <sys/un.h>
54 #include <unistd.h>
55
56 #include <chrono>
57 #include <future>
58
59 #include <android-base/logging.h>
60
61 #include "Experiments.h"
62 #include "netd_resolv/resolv.h"
63 #include "res_comp.h"
64 #include "res_debug.h"
65 #include "resolv_cache.h"
66 #include "resolv_private.h"
67 #include "util.h"
68
69 #define ANY 0
70
71 using android::net::NetworkDnsEventReported;
72
73 const char in_addrany[] = {0, 0, 0, 0};
74 const char in_loopback[] = {127, 0, 0, 1};
75 const char in6_addrany[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
76 const char in6_loopback[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
77
78 const struct afd {
79 int a_af;
80 int a_addrlen;
81 int a_socklen;
82 int a_off;
83 const char* a_addrany;
84 const char* a_loopback;
85 int a_scoped;
86 } afdl[] = {
87 {PF_INET6, sizeof(struct in6_addr), sizeof(struct sockaddr_in6),
88 offsetof(struct sockaddr_in6, sin6_addr), in6_addrany, in6_loopback, 1},
89 {PF_INET, sizeof(struct in_addr), sizeof(struct sockaddr_in),
90 offsetof(struct sockaddr_in, sin_addr), in_addrany, in_loopback, 0},
91 {0, 0, 0, 0, NULL, NULL, 0},
92 };
93
94 struct Explore {
95 int e_af;
96 int e_socktype;
97 int e_protocol;
98 int e_wild;
99 #define WILD_AF(ex) ((ex).e_wild & 0x01)
100 #define WILD_SOCKTYPE(ex) ((ex).e_wild & 0x02)
101 #define WILD_PROTOCOL(ex) ((ex).e_wild & 0x04)
102 };
103
104 const Explore explore_options[] = {
105 {PF_INET6, SOCK_DGRAM, IPPROTO_UDP, 0x07},
106 {PF_INET6, SOCK_STREAM, IPPROTO_TCP, 0x07},
107 {PF_INET6, SOCK_RAW, ANY, 0x05},
108 {PF_INET, SOCK_DGRAM, IPPROTO_UDP, 0x07},
109 {PF_INET, SOCK_STREAM, IPPROTO_TCP, 0x07},
110 {PF_INET, SOCK_RAW, ANY, 0x05},
111 {PF_UNSPEC, SOCK_DGRAM, IPPROTO_UDP, 0x07},
112 {PF_UNSPEC, SOCK_STREAM, IPPROTO_TCP, 0x07},
113 {PF_UNSPEC, SOCK_RAW, ANY, 0x05},
114 };
115
116 #define PTON_MAX 16
117
118 struct res_target {
119 struct res_target* next;
120 const char* name; // domain name
121 int qclass, qtype; // class and type of query
122 std::vector<uint8_t> answer = std::vector<uint8_t>(MAXPACKET, 0); // buffer to put answer
123 int n = 0; // result length
124 };
125
126 static int str2number(const char*);
127 static int explore_fqdn(const struct addrinfo*, const char*, const char*, struct addrinfo**,
128 const struct android_net_context*, NetworkDnsEventReported* event);
129 static int explore_null(const struct addrinfo*, const char*, struct addrinfo**);
130 static int explore_numeric(const struct addrinfo*, const char*, const char*, struct addrinfo**,
131 const char*);
132 static int explore_numeric_scope(const struct addrinfo*, const char*, const char*,
133 struct addrinfo**);
134 static int get_canonname(const struct addrinfo*, struct addrinfo*, const char*);
135 static struct addrinfo* get_ai(const struct addrinfo*, const struct afd*, const char*);
136 static int get_portmatch(const struct addrinfo*, const char*);
137 static int get_port(const struct addrinfo*, const char*, int);
138 static const struct afd* find_afd(int);
139 static int ip6_str2scopeid(const char*, struct sockaddr_in6*, uint32_t*);
140
141 static struct addrinfo* getanswer(const std::vector<uint8_t>&, int, const char*, int,
142 const struct addrinfo*, int* herrno);
143 static int dns_getaddrinfo(const char* name, const addrinfo* pai,
144 const android_net_context* netcontext, addrinfo** rv,
145 NetworkDnsEventReported* event);
146 static void _sethtent(FILE**);
147 static void _endhtent(FILE**);
148 static struct addrinfo* _gethtent(FILE**, const char*, const struct addrinfo*);
149 static struct addrinfo* getCustomHosts(const size_t netid, const char*, const struct addrinfo*);
150 static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai,
151 addrinfo** res);
152 static int _find_src_addr(const struct sockaddr*, struct sockaddr*, unsigned, uid_t);
153
154 static int res_queryN(const char* name, res_target* target, res_state res, int* herrno);
155 static int res_searchN(const char* name, res_target* target, res_state res, int* herrno);
156 static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
157 int* herrno);
158
159 const char* const ai_errlist[] = {
160 "Success",
161 "Address family for hostname not supported", /* EAI_ADDRFAMILY */
162 "Temporary failure in name resolution", /* EAI_AGAIN */
163 "Invalid value for ai_flags", /* EAI_BADFLAGS */
164 "Non-recoverable failure in name resolution", /* EAI_FAIL */
165 "ai_family not supported", /* EAI_FAMILY */
166 "Memory allocation failure", /* EAI_MEMORY */
167 "No address associated with hostname", /* EAI_NODATA */
168 "hostname nor servname provided, or not known", /* EAI_NONAME */
169 "servname not supported for ai_socktype", /* EAI_SERVICE */
170 "ai_socktype not supported", /* EAI_SOCKTYPE */
171 "System error returned in errno", /* EAI_SYSTEM */
172 "Invalid value for hints", /* EAI_BADHINTS */
173 "Resolved protocol is unknown", /* EAI_PROTOCOL */
174 "Argument buffer overflow", /* EAI_OVERFLOW */
175 "Unknown error", /* EAI_MAX */
176 };
177
178 /* XXX macros that make external reference is BAD. */
179
180 #define GET_AI(ai, afd, addr) \
181 do { \
182 /* external reference: pai, error, and label free */ \
183 (ai) = get_ai(pai, (afd), (addr)); \
184 if ((ai) == NULL) { \
185 error = EAI_MEMORY; \
186 goto free; \
187 } \
188 } while (0)
189
190 #define GET_PORT(ai, serv) \
191 do { \
192 /* external reference: error and label free */ \
193 error = get_port((ai), (serv), 0); \
194 if (error != 0) goto free; \
195 } while (0)
196
197 #define MATCH_FAMILY(x, y, w) \
198 ((x) == (y) || ((w) && ((x) == PF_UNSPEC || (y) == PF_UNSPEC)))
199 #define MATCH(x, y, w) ((x) == (y) || ((w) && ((x) == ANY || (y) == ANY)))
200
gai_strerror(int ecode)201 const char* gai_strerror(int ecode) {
202 if (ecode < 0 || ecode > EAI_MAX) ecode = EAI_MAX;
203 return ai_errlist[ecode];
204 }
205
freeaddrinfo(struct addrinfo * ai)206 void freeaddrinfo(struct addrinfo* ai) {
207 while (ai) {
208 struct addrinfo* next = ai->ai_next;
209 if (ai->ai_canonname) free(ai->ai_canonname);
210 // Also frees ai->ai_addr which points to extra space beyond addrinfo
211 free(ai);
212 ai = next;
213 }
214 }
215
str2number(const char * p)216 static int str2number(const char* p) {
217 char* ep;
218 unsigned long v;
219
220 assert(p != NULL);
221
222 if (*p == '\0') return -1;
223 ep = NULL;
224 errno = 0;
225 v = strtoul(p, &ep, 10);
226 if (errno == 0 && ep && *ep == '\0' && v <= UINT_MAX)
227 return v;
228 else
229 return -1;
230 }
231
232 /*
233 * The following functions determine whether IPv4 or IPv6 connectivity is
234 * available in order to implement AI_ADDRCONFIG.
235 *
236 * Strictly speaking, AI_ADDRCONFIG should not look at whether connectivity is
237 * available, but whether addresses of the specified family are "configured
238 * on the local system". However, bionic doesn't currently support getifaddrs,
239 * so checking for connectivity is the next best thing.
240 */
have_ipv6(unsigned mark,uid_t uid)241 static int have_ipv6(unsigned mark, uid_t uid) {
242 static const struct sockaddr_in6 sin6_test = {
243 .sin6_family = AF_INET6,
244 .sin6_addr.s6_addr = {// 2000::
245 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
246 sockaddr_union addr = {.sin6 = sin6_test};
247 return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
248 }
249
have_ipv4(unsigned mark,uid_t uid)250 static int have_ipv4(unsigned mark, uid_t uid) {
251 static const struct sockaddr_in sin_test = {
252 .sin_family = AF_INET,
253 .sin_addr.s_addr = __constant_htonl(0x08080808L) // 8.8.8.8
254 };
255 sockaddr_union addr = {.sin = sin_test};
256 return _find_src_addr(&addr.sa, NULL, mark, uid) == 1;
257 }
258
259 // Internal version of getaddrinfo(), but limited to AI_NUMERICHOST.
260 // NOTE: also called by resolv_set_nameservers().
getaddrinfo_numeric(const char * hostname,const char * servname,addrinfo hints,addrinfo ** result)261 int getaddrinfo_numeric(const char* hostname, const char* servname, addrinfo hints,
262 addrinfo** result) {
263 hints.ai_flags = AI_NUMERICHOST;
264 const android_net_context netcontext = {
265 .app_netid = NETID_UNSET,
266 .app_mark = MARK_UNSET,
267 .dns_netid = NETID_UNSET,
268 .dns_mark = MARK_UNSET,
269 .uid = NET_CONTEXT_INVALID_UID,
270 .pid = NET_CONTEXT_INVALID_PID,
271 };
272 NetworkDnsEventReported event;
273 return android_getaddrinfofornetcontext(hostname, servname, &hints, &netcontext, result,
274 &event);
275 }
276
277 namespace {
278
validateHints(const addrinfo * _Nonnull hints)279 int validateHints(const addrinfo* _Nonnull hints) {
280 if (!hints) return EAI_BADHINTS;
281
282 // error check for hints
283 if (hints->ai_addrlen || hints->ai_canonname || hints->ai_addr || hints->ai_next) {
284 return EAI_BADHINTS;
285 }
286 if (hints->ai_flags & ~AI_MASK) {
287 return EAI_BADFLAGS;
288 }
289 if (!(hints->ai_family == PF_UNSPEC || hints->ai_family == PF_INET ||
290 hints->ai_family == PF_INET6)) {
291 return EAI_FAMILY;
292 }
293
294 // Socket types which are not in explore_options.
295 switch (hints->ai_socktype) {
296 case SOCK_RAW:
297 case SOCK_DGRAM:
298 case SOCK_STREAM:
299 case ANY:
300 break;
301 default:
302 return EAI_SOCKTYPE;
303 }
304
305 if (hints->ai_socktype == ANY || hints->ai_protocol == ANY) return 0;
306
307 // if both socktype/protocol are specified, check if they are meaningful combination.
308 for (const Explore& ex : explore_options) {
309 if (hints->ai_family != ex.e_af) continue;
310 if (ex.e_socktype == ANY) continue;
311 if (ex.e_protocol == ANY) continue;
312 if (hints->ai_socktype == ex.e_socktype && hints->ai_protocol != ex.e_protocol) {
313 return EAI_BADHINTS;
314 }
315 }
316
317 return 0;
318 }
319
320 } // namespace
321
android_getaddrinfofornetcontext(const char * hostname,const char * servname,const addrinfo * hints,const android_net_context * netcontext,addrinfo ** res,NetworkDnsEventReported * event)322 int android_getaddrinfofornetcontext(const char* hostname, const char* servname,
323 const addrinfo* hints, const android_net_context* netcontext,
324 addrinfo** res, NetworkDnsEventReported* event) {
325 // hostname is allowed to be nullptr
326 // servname is allowed to be nullptr
327 // hints is allowed to be nullptr
328 assert(res != nullptr);
329 assert(netcontext != nullptr);
330 assert(event != nullptr);
331
332 addrinfo sentinel = {};
333 addrinfo* cur = &sentinel;
334 int error = 0;
335
336 do {
337 if (hostname == nullptr && servname == nullptr) {
338 error = EAI_NONAME;
339 break;
340 }
341
342 if (hints && (error = validateHints(hints))) break;
343 addrinfo ai = hints ? *hints : addrinfo{};
344
345 // Check for special cases:
346 // (1) numeric servname is disallowed if socktype/protocol are left unspecified.
347 // (2) servname is disallowed for raw and other inet{,6} sockets.
348 if (MATCH_FAMILY(ai.ai_family, PF_INET, 1) || MATCH_FAMILY(ai.ai_family, PF_INET6, 1)) {
349 addrinfo tmp = ai;
350 if (tmp.ai_family == PF_UNSPEC) {
351 tmp.ai_family = PF_INET6;
352 }
353 error = get_portmatch(&tmp, servname);
354 if (error) break;
355 }
356
357 // NULL hostname, or numeric hostname
358 for (const Explore& ex : explore_options) {
359 /* PF_UNSPEC entries are prepared for DNS queries only */
360 if (ex.e_af == PF_UNSPEC) continue;
361
362 if (!MATCH_FAMILY(ai.ai_family, ex.e_af, WILD_AF(ex))) continue;
363 if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue;
364 if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue;
365
366 addrinfo tmp = ai;
367 if (tmp.ai_family == PF_UNSPEC) tmp.ai_family = ex.e_af;
368 if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
369 if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;
370
371 LOG(DEBUG) << __func__ << ": explore_numeric: ai_family=" << tmp.ai_family
372 << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
373 if (hostname == nullptr)
374 error = explore_null(&tmp, servname, &cur->ai_next);
375 else
376 error = explore_numeric_scope(&tmp, hostname, servname, &cur->ai_next);
377
378 if (error) break;
379
380 while (cur->ai_next) cur = cur->ai_next;
381 }
382 if (error) break;
383
384 // If numeric representation of AF1 can be interpreted as FQDN
385 // representation of AF2, we need to think again about the code below.
386 if (sentinel.ai_next) break;
387
388 if (hostname == nullptr) {
389 error = EAI_NODATA;
390 break;
391 }
392 if (ai.ai_flags & AI_NUMERICHOST) {
393 error = EAI_NONAME;
394 break;
395 }
396
397 return resolv_getaddrinfo(hostname, servname, hints, netcontext, res, event);
398 } while (0);
399
400 if (error) {
401 freeaddrinfo(sentinel.ai_next);
402 *res = nullptr;
403 } else {
404 *res = sentinel.ai_next;
405 }
406 return error;
407 }
408
resolv_getaddrinfo(const char * _Nonnull hostname,const char * servname,const addrinfo * hints,const android_net_context * _Nonnull netcontext,addrinfo ** _Nonnull res,NetworkDnsEventReported * _Nonnull event)409 int resolv_getaddrinfo(const char* _Nonnull hostname, const char* servname, const addrinfo* hints,
410 const android_net_context* _Nonnull netcontext, addrinfo** _Nonnull res,
411 NetworkDnsEventReported* _Nonnull event) {
412 if (hostname == nullptr && servname == nullptr) return EAI_NONAME;
413 if (hostname == nullptr) return EAI_NODATA;
414
415 // servname is allowed to be nullptr
416 // hints is allowed to be nullptr
417 assert(res != nullptr);
418 assert(netcontext != nullptr);
419 assert(event != nullptr);
420
421 int error = EAI_FAIL;
422 if (hints && (error = validateHints(hints))) {
423 *res = nullptr;
424 return error;
425 }
426
427 addrinfo ai = hints ? *hints : addrinfo{};
428 addrinfo sentinel = {};
429 addrinfo* cur = &sentinel;
430 // hostname as alphanumeric name.
431 // We would like to prefer AF_INET6 over AF_INET, so we'll make a outer loop by AFs.
432 for (const Explore& ex : explore_options) {
433 // Require exact match for family field
434 if (ai.ai_family != ex.e_af) continue;
435
436 if (!MATCH(ai.ai_socktype, ex.e_socktype, WILD_SOCKTYPE(ex))) continue;
437
438 if (!MATCH(ai.ai_protocol, ex.e_protocol, WILD_PROTOCOL(ex))) continue;
439
440 addrinfo tmp = ai;
441 if (tmp.ai_socktype == ANY && ex.e_socktype != ANY) tmp.ai_socktype = ex.e_socktype;
442 if (tmp.ai_protocol == ANY && ex.e_protocol != ANY) tmp.ai_protocol = ex.e_protocol;
443
444 LOG(DEBUG) << __func__ << ": explore_fqdn(): ai_family=" << tmp.ai_family
445 << " ai_socktype=" << tmp.ai_socktype << " ai_protocol=" << tmp.ai_protocol;
446 error = explore_fqdn(&tmp, hostname, servname, &cur->ai_next, netcontext, event);
447
448 while (cur->ai_next) cur = cur->ai_next;
449 }
450
451 // Propagate the last error from explore_fqdn(), but only when *all* attempts failed.
452 if ((*res = sentinel.ai_next)) return 0;
453
454 // TODO: consider removing freeaddrinfo.
455 freeaddrinfo(sentinel.ai_next);
456 *res = nullptr;
457 return (error == 0) ? EAI_FAIL : error;
458 }
459
460 // FQDN hostname, DNS lookup
explore_fqdn(const addrinfo * pai,const char * hostname,const char * servname,addrinfo ** res,const android_net_context * netcontext,NetworkDnsEventReported * event)461 static int explore_fqdn(const addrinfo* pai, const char* hostname, const char* servname,
462 addrinfo** res, const android_net_context* netcontext,
463 NetworkDnsEventReported* event) {
464 assert(pai != nullptr);
465 // hostname may be nullptr
466 // servname may be nullptr
467 assert(res != nullptr);
468
469 addrinfo* result = nullptr;
470 int error = 0;
471
472 // If the servname does not match socktype/protocol, return error code.
473 if ((error = get_portmatch(pai, servname))) return error;
474
475 if (!files_getaddrinfo(netcontext->dns_netid, hostname, pai, &result)) {
476 error = dns_getaddrinfo(hostname, pai, netcontext, &result, event);
477 }
478 if (error) {
479 freeaddrinfo(result);
480 return error;
481 }
482
483 for (addrinfo* cur = result; cur; cur = cur->ai_next) {
484 // canonname should be filled already
485 if ((error = get_port(cur, servname, 0))) {
486 freeaddrinfo(result);
487 return error;
488 }
489 }
490 *res = result;
491 return 0;
492 }
493
494 /*
495 * hostname == NULL.
496 * passive socket -> anyaddr (0.0.0.0 or ::)
497 * non-passive socket -> localhost (127.0.0.1 or ::1)
498 */
explore_null(const struct addrinfo * pai,const char * servname,struct addrinfo ** res)499 static int explore_null(const struct addrinfo* pai, const char* servname, struct addrinfo** res) {
500 int s;
501 const struct afd* afd;
502 struct addrinfo* cur;
503 struct addrinfo sentinel;
504 int error;
505
506 LOG(DEBUG) << __func__;
507
508 assert(pai != NULL);
509 /* servname may be NULL */
510 assert(res != NULL);
511
512 *res = NULL;
513 sentinel.ai_next = NULL;
514 cur = &sentinel;
515
516 /*
517 * filter out AFs that are not supported by the kernel
518 * XXX errno?
519 */
520 s = socket(pai->ai_family, SOCK_DGRAM | SOCK_CLOEXEC, 0);
521 if (s < 0) {
522 if (errno != EMFILE) return 0;
523 } else
524 close(s);
525
526 /*
527 * if the servname does not match socktype/protocol, ignore it.
528 */
529 if (get_portmatch(pai, servname) != 0) return 0;
530
531 afd = find_afd(pai->ai_family);
532 if (afd == NULL) return 0;
533
534 if (pai->ai_flags & AI_PASSIVE) {
535 GET_AI(cur->ai_next, afd, afd->a_addrany);
536 GET_PORT(cur->ai_next, servname);
537 } else {
538 GET_AI(cur->ai_next, afd, afd->a_loopback);
539 GET_PORT(cur->ai_next, servname);
540 }
541 cur = cur->ai_next;
542
543 *res = sentinel.ai_next;
544 return 0;
545
546 free:
547 freeaddrinfo(sentinel.ai_next);
548 return error;
549 }
550
551 /*
552 * numeric hostname
553 */
explore_numeric(const struct addrinfo * pai,const char * hostname,const char * servname,struct addrinfo ** res,const char * canonname)554 static int explore_numeric(const struct addrinfo* pai, const char* hostname, const char* servname,
555 struct addrinfo** res, const char* canonname) {
556 const struct afd* afd;
557 struct addrinfo* cur;
558 struct addrinfo sentinel;
559 int error;
560 char pton[PTON_MAX];
561
562 assert(pai != NULL);
563 /* hostname may be NULL */
564 /* servname may be NULL */
565 assert(res != NULL);
566
567 *res = NULL;
568 sentinel.ai_next = NULL;
569 cur = &sentinel;
570
571 /*
572 * if the servname does not match socktype/protocol, ignore it.
573 */
574 if (get_portmatch(pai, servname) != 0) return 0;
575
576 afd = find_afd(pai->ai_family);
577 if (afd == NULL) return 0;
578
579 if (inet_pton(afd->a_af, hostname, pton) == 1) {
580 if (pai->ai_family == afd->a_af || pai->ai_family == PF_UNSPEC /*?*/) {
581 GET_AI(cur->ai_next, afd, pton);
582 GET_PORT(cur->ai_next, servname);
583 if ((pai->ai_flags & AI_CANONNAME)) {
584 /*
585 * Set the numeric address itself as
586 * the canonical name, based on a
587 * clarification in rfc2553bis-03.
588 */
589 error = get_canonname(pai, cur->ai_next, canonname);
590 if (error != 0) {
591 freeaddrinfo(sentinel.ai_next);
592 return error;
593 }
594 }
595 while (cur->ai_next) cur = cur->ai_next;
596 } else
597 return EAI_FAMILY;
598 }
599
600 *res = sentinel.ai_next;
601 return 0;
602
603 free:
604 freeaddrinfo(sentinel.ai_next);
605 return error;
606 }
607
608 /*
609 * numeric hostname with scope
610 */
explore_numeric_scope(const struct addrinfo * pai,const char * hostname,const char * servname,struct addrinfo ** res)611 static int explore_numeric_scope(const struct addrinfo* pai, const char* hostname,
612 const char* servname, struct addrinfo** res) {
613 const struct afd* afd;
614 struct addrinfo* cur;
615 int error;
616 const char *cp, *scope, *addr;
617 struct sockaddr_in6* sin6;
618
619 LOG(DEBUG) << __func__;
620
621 assert(pai != NULL);
622 /* hostname may be NULL */
623 /* servname may be NULL */
624 assert(res != NULL);
625
626 /*
627 * if the servname does not match socktype/protocol, ignore it.
628 */
629 if (get_portmatch(pai, servname) != 0) return 0;
630
631 afd = find_afd(pai->ai_family);
632 if (afd == NULL) return 0;
633
634 if (!afd->a_scoped) return explore_numeric(pai, hostname, servname, res, hostname);
635
636 cp = strchr(hostname, SCOPE_DELIMITER);
637 if (cp == NULL) return explore_numeric(pai, hostname, servname, res, hostname);
638
639 /*
640 * Handle special case of <scoped_address><delimiter><scope id>
641 */
642 char* hostname2 = strdup(hostname);
643 if (hostname2 == NULL) return EAI_MEMORY;
644 /* terminate at the delimiter */
645 hostname2[cp - hostname] = '\0';
646 addr = hostname2;
647 scope = cp + 1;
648
649 error = explore_numeric(pai, addr, servname, res, hostname);
650 if (error == 0) {
651 uint32_t scopeid;
652
653 for (cur = *res; cur; cur = cur->ai_next) {
654 if (cur->ai_family != AF_INET6) continue;
655 sin6 = (struct sockaddr_in6*) (void*) cur->ai_addr;
656 if (ip6_str2scopeid(scope, sin6, &scopeid) == -1) {
657 free(hostname2);
658 return (EAI_NODATA); /* XXX: is return OK? */
659 }
660 sin6->sin6_scope_id = scopeid;
661 }
662 }
663
664 free(hostname2);
665
666 return error;
667 }
668
get_canonname(const struct addrinfo * pai,struct addrinfo * ai,const char * str)669 static int get_canonname(const struct addrinfo* pai, struct addrinfo* ai, const char* str) {
670 assert(pai != NULL);
671 assert(ai != NULL);
672 assert(str != NULL);
673
674 if ((pai->ai_flags & AI_CANONNAME) != 0) {
675 ai->ai_canonname = strdup(str);
676 if (ai->ai_canonname == NULL) return EAI_MEMORY;
677 }
678 return 0;
679 }
680
get_ai(const struct addrinfo * pai,const struct afd * afd,const char * addr)681 static struct addrinfo* get_ai(const struct addrinfo* pai, const struct afd* afd,
682 const char* addr) {
683 char* p;
684 struct addrinfo* ai;
685
686 assert(pai != NULL);
687 assert(afd != NULL);
688 assert(addr != NULL);
689
690 ai = (struct addrinfo*) malloc(sizeof(struct addrinfo) + sizeof(sockaddr_union));
691 if (ai == NULL) return NULL;
692
693 memcpy(ai, pai, sizeof(struct addrinfo));
694 ai->ai_addr = (struct sockaddr*) (void*) (ai + 1);
695 memset(ai->ai_addr, 0, sizeof(sockaddr_union));
696
697 ai->ai_addrlen = afd->a_socklen;
698 ai->ai_addr->sa_family = ai->ai_family = afd->a_af;
699 p = (char*) (void*) (ai->ai_addr);
700 memcpy(p + afd->a_off, addr, (size_t) afd->a_addrlen);
701 return ai;
702 }
703
get_portmatch(const struct addrinfo * ai,const char * servname)704 static int get_portmatch(const struct addrinfo* ai, const char* servname) {
705 assert(ai != NULL);
706 /* servname may be NULL */
707
708 return get_port(ai, servname, 1);
709 }
710
get_port(const struct addrinfo * ai,const char * servname,int matchonly)711 static int get_port(const struct addrinfo* ai, const char* servname, int matchonly) {
712 const char* proto;
713 struct servent* sp;
714 int port;
715 int allownumeric;
716
717 assert(ai != NULL);
718 /* servname may be NULL */
719
720 if (servname == NULL) return 0;
721 switch (ai->ai_family) {
722 case AF_INET:
723 case AF_INET6:
724 break;
725 default:
726 return 0;
727 }
728
729 switch (ai->ai_socktype) {
730 case SOCK_RAW:
731 return EAI_SERVICE;
732 case SOCK_DGRAM:
733 case SOCK_STREAM:
734 case ANY:
735 allownumeric = 1;
736 break;
737 default:
738 return EAI_SOCKTYPE;
739 }
740
741 port = str2number(servname);
742 if (port >= 0) {
743 if (!allownumeric) return EAI_SERVICE;
744 if (port < 0 || port > 65535) return EAI_SERVICE;
745 port = htons(port);
746 } else {
747 if (ai->ai_flags & AI_NUMERICSERV) return EAI_NONAME;
748
749 switch (ai->ai_socktype) {
750 case SOCK_DGRAM:
751 proto = "udp";
752 break;
753 case SOCK_STREAM:
754 proto = "tcp";
755 break;
756 default:
757 proto = NULL;
758 break;
759 }
760
761 if ((sp = getservbyname(servname, proto)) == NULL) return EAI_SERVICE;
762 port = sp->s_port;
763 }
764
765 if (!matchonly) {
766 switch (ai->ai_family) {
767 case AF_INET:
768 ((struct sockaddr_in*) (void*) ai->ai_addr)->sin_port = port;
769 break;
770 case AF_INET6:
771 ((struct sockaddr_in6*) (void*) ai->ai_addr)->sin6_port = port;
772 break;
773 }
774 }
775
776 return 0;
777 }
778
find_afd(int af)779 static const struct afd* find_afd(int af) {
780 const struct afd* afd;
781
782 if (af == PF_UNSPEC) return NULL;
783 for (afd = afdl; afd->a_af; afd++) {
784 if (afd->a_af == af) return afd;
785 }
786 return NULL;
787 }
788
789 // Convert a string to a scope identifier.
ip6_str2scopeid(const char * scope,struct sockaddr_in6 * sin6,uint32_t * scopeid)790 static int ip6_str2scopeid(const char* scope, struct sockaddr_in6* sin6, uint32_t* scopeid) {
791 uint64_t lscopeid;
792 struct in6_addr* a6;
793 char* ep;
794
795 assert(scope != NULL);
796 assert(sin6 != NULL);
797 assert(scopeid != NULL);
798
799 a6 = &sin6->sin6_addr;
800
801 /* empty scopeid portion is invalid */
802 if (*scope == '\0') return -1;
803
804 if (IN6_IS_ADDR_LINKLOCAL(a6) || IN6_IS_ADDR_MC_LINKLOCAL(a6)) {
805 /*
806 * We currently assume a one-to-one mapping between links
807 * and interfaces, so we simply use interface indices for
808 * like-local scopes.
809 */
810 *scopeid = if_nametoindex(scope);
811 if (*scopeid != 0) return 0;
812 }
813
814 // try to convert to a numeric id as a last resort
815 errno = 0;
816 lscopeid = strtoul(scope, &ep, 10);
817 *scopeid = (uint32_t)(lscopeid & 0xffffffffUL);
818 if (errno == 0 && ep && *ep == '\0' && *scopeid == lscopeid)
819 return 0;
820 else
821 return -1;
822 }
823
824 /* code duplicate with gethnamaddr.c */
825
826 #define BOUNDED_INCR(x) \
827 do { \
828 BOUNDS_CHECK(cp, x); \
829 cp += (x); \
830 } while (0)
831
832 #define BOUNDS_CHECK(ptr, count) \
833 do { \
834 if (eom - (ptr) < (count)) { \
835 *herrno = NO_RECOVERY; \
836 return NULL; \
837 } \
838 } while (0)
839
getanswer(const std::vector<uint8_t> & answer,int anslen,const char * qname,int qtype,const struct addrinfo * pai,int * herrno)840 static struct addrinfo* getanswer(const std::vector<uint8_t>& answer, int anslen, const char* qname,
841 int qtype, const struct addrinfo* pai, int* herrno) {
842 struct addrinfo sentinel = {};
843 struct addrinfo *cur;
844 struct addrinfo ai;
845 const struct afd* afd;
846 char* canonname;
847 const HEADER* hp;
848 const uint8_t* cp;
849 int n;
850 const uint8_t* eom;
851 char *bp, *ep;
852 int type, ancount, qdcount;
853 int haveanswer, had_error;
854 char tbuf[MAXDNAME];
855 char hostbuf[8 * 1024];
856
857 assert(qname != NULL);
858 assert(pai != NULL);
859
860 cur = &sentinel;
861
862 canonname = NULL;
863 eom = answer.data() + anslen;
864
865 bool (*name_ok)(const char* dn);
866 switch (qtype) {
867 case T_A:
868 case T_AAAA:
869 case T_ANY: /*use T_ANY only for T_A/T_AAAA lookup*/
870 name_ok = res_hnok;
871 break;
872 default:
873 return NULL; /* XXX should be abort(); */
874 }
875 /*
876 * find first satisfactory answer
877 */
878 hp = reinterpret_cast<const HEADER*>(answer.data());
879 ancount = ntohs(hp->ancount);
880 qdcount = ntohs(hp->qdcount);
881 bp = hostbuf;
882 ep = hostbuf + sizeof hostbuf;
883 cp = answer.data();
884 BOUNDED_INCR(HFIXEDSZ);
885 if (qdcount != 1) {
886 *herrno = NO_RECOVERY;
887 return (NULL);
888 }
889 n = dn_expand(answer.data(), eom, cp, bp, ep - bp);
890 if ((n < 0) || !(*name_ok)(bp)) {
891 *herrno = NO_RECOVERY;
892 return (NULL);
893 }
894 BOUNDED_INCR(n + QFIXEDSZ);
895 if (qtype == T_A || qtype == T_AAAA || qtype == T_ANY) {
896 /* res_send() has already verified that the query name is the
897 * same as the one we sent; this just gets the expanded name
898 * (i.e., with the succeeding search-domain tacked on).
899 */
900 n = strlen(bp) + 1; /* for the \0 */
901 if (n >= MAXHOSTNAMELEN) {
902 *herrno = NO_RECOVERY;
903 return (NULL);
904 }
905 canonname = bp;
906 bp += n;
907 /* The qname can be abbreviated, but h_name is now absolute. */
908 qname = canonname;
909 }
910 haveanswer = 0;
911 had_error = 0;
912 while (ancount-- > 0 && cp < eom && !had_error) {
913 n = dn_expand(answer.data(), eom, cp, bp, ep - bp);
914 if ((n < 0) || !(*name_ok)(bp)) {
915 had_error++;
916 continue;
917 }
918 cp += n; /* name */
919 BOUNDS_CHECK(cp, 3 * INT16SZ + INT32SZ);
920 type = ntohs(*reinterpret_cast<const uint16_t*>(cp));
921 cp += INT16SZ; /* type */
922 int cl = ntohs(*reinterpret_cast<const uint16_t*>(cp));
923 cp += INT16SZ + INT32SZ; /* class, TTL */
924 n = ntohs(*reinterpret_cast<const uint16_t*>(cp));
925 cp += INT16SZ; /* len */
926 BOUNDS_CHECK(cp, n);
927 if (cl != C_IN) {
928 /* XXX - debug? syslog? */
929 cp += n;
930 continue; /* XXX - had_error++ ? */
931 }
932 if ((qtype == T_A || qtype == T_AAAA || qtype == T_ANY) && type == T_CNAME) {
933 n = dn_expand(answer.data(), eom, cp, tbuf, sizeof tbuf);
934 if ((n < 0) || !(*name_ok)(tbuf)) {
935 had_error++;
936 continue;
937 }
938 cp += n;
939 /* Get canonical name. */
940 n = strlen(tbuf) + 1; /* for the \0 */
941 if (n > ep - bp || n >= MAXHOSTNAMELEN) {
942 had_error++;
943 continue;
944 }
945 strlcpy(bp, tbuf, (size_t)(ep - bp));
946 canonname = bp;
947 bp += n;
948 continue;
949 }
950 if (qtype == T_ANY) {
951 if (!(type == T_A || type == T_AAAA)) {
952 cp += n;
953 continue;
954 }
955 } else if (type != qtype) {
956 if (type != T_KEY && type != T_SIG)
957 LOG(DEBUG) << __func__ << ": asked for \"" << qname << " " << p_class(C_IN) << " "
958 << p_type(qtype) << "\", got type \"" << p_type(type) << "\"";
959 cp += n;
960 continue; /* XXX - had_error++ ? */
961 }
962 switch (type) {
963 case T_A:
964 case T_AAAA:
965 if (strcasecmp(canonname, bp) != 0) {
966 LOG(DEBUG) << __func__ << ": asked for \"" << canonname << "\", got \"" << bp
967 << "\"";
968 cp += n;
969 continue; /* XXX - had_error++ ? */
970 }
971 if (type == T_A && n != INADDRSZ) {
972 cp += n;
973 continue;
974 }
975 if (type == T_AAAA && n != IN6ADDRSZ) {
976 cp += n;
977 continue;
978 }
979 if (type == T_AAAA) {
980 struct in6_addr in6;
981 memcpy(&in6, cp, IN6ADDRSZ);
982 if (IN6_IS_ADDR_V4MAPPED(&in6)) {
983 cp += n;
984 continue;
985 }
986 }
987 if (!haveanswer) {
988 int nn;
989
990 canonname = bp;
991 nn = strlen(bp) + 1; /* for the \0 */
992 bp += nn;
993 }
994
995 /* don't overwrite pai */
996 ai = *pai;
997 ai.ai_family = (type == T_A) ? AF_INET : AF_INET6;
998 afd = find_afd(ai.ai_family);
999 if (afd == NULL) {
1000 cp += n;
1001 continue;
1002 }
1003 cur->ai_next = get_ai(&ai, afd, (const char*) cp);
1004 if (cur->ai_next == NULL) had_error++;
1005 while (cur && cur->ai_next) cur = cur->ai_next;
1006 cp += n;
1007 break;
1008 default:
1009 abort();
1010 }
1011 if (!had_error) haveanswer++;
1012 }
1013 if (haveanswer) {
1014 if (!canonname)
1015 (void) get_canonname(pai, sentinel.ai_next, qname);
1016 else
1017 (void) get_canonname(pai, sentinel.ai_next, canonname);
1018 *herrno = NETDB_SUCCESS;
1019 return sentinel.ai_next;
1020 }
1021
1022 *herrno = NO_RECOVERY;
1023 return NULL;
1024 }
1025
1026 struct addrinfo_sort_elem {
1027 struct addrinfo* ai;
1028 int has_src_addr;
1029 sockaddr_union src_addr;
1030 int original_order;
1031 };
1032
_get_scope(const struct sockaddr * addr)1033 static int _get_scope(const struct sockaddr* addr) {
1034 if (addr->sa_family == AF_INET6) {
1035 const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
1036 if (IN6_IS_ADDR_MULTICAST(&addr6->sin6_addr)) {
1037 return IPV6_ADDR_MC_SCOPE(&addr6->sin6_addr);
1038 } else if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr) ||
1039 IN6_IS_ADDR_LINKLOCAL(&addr6->sin6_addr)) {
1040 /*
1041 * RFC 4291 section 2.5.3 says loopback is to be treated as having
1042 * link-local scope.
1043 */
1044 return IPV6_ADDR_SCOPE_LINKLOCAL;
1045 } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
1046 return IPV6_ADDR_SCOPE_SITELOCAL;
1047 } else {
1048 return IPV6_ADDR_SCOPE_GLOBAL;
1049 }
1050 } else if (addr->sa_family == AF_INET) {
1051 const struct sockaddr_in* addr4 = (const struct sockaddr_in*) addr;
1052 unsigned long int na = ntohl(addr4->sin_addr.s_addr);
1053
1054 if (IN_LOOPBACK(na) || /* 127.0.0.0/8 */
1055 (na & 0xffff0000) == 0xa9fe0000) { /* 169.254.0.0/16 */
1056 return IPV6_ADDR_SCOPE_LINKLOCAL;
1057 } else {
1058 /*
1059 * RFC 6724 section 3.2. Other IPv4 addresses, including private addresses
1060 * and shared addresses (100.64.0.0/10), are assigned global scope.
1061 */
1062 return IPV6_ADDR_SCOPE_GLOBAL;
1063 }
1064 } else {
1065 /*
1066 * This should never happen.
1067 * Return a scope with low priority as a last resort.
1068 */
1069 return IPV6_ADDR_SCOPE_NODELOCAL;
1070 }
1071 }
1072
1073 /* These macros are modelled after the ones in <netinet/in6.h>. */
1074
1075 /* RFC 4380, section 2.6 */
1076 #define IN6_IS_ADDR_TEREDO(a) \
1077 ((*(const uint32_t*) (const void*) (&(a)->s6_addr[0]) == ntohl(0x20010000)))
1078
1079 /* RFC 3056, section 2. */
1080 #define IN6_IS_ADDR_6TO4(a) (((a)->s6_addr[0] == 0x20) && ((a)->s6_addr[1] == 0x02))
1081
1082 /* 6bone testing address area (3ffe::/16), deprecated in RFC 3701. */
1083 #define IN6_IS_ADDR_6BONE(a) (((a)->s6_addr[0] == 0x3f) && ((a)->s6_addr[1] == 0xfe))
1084
1085 /*
1086 * Get the label for a given IPv4/IPv6 address.
1087 * RFC 6724, section 2.1.
1088 */
1089
_get_label(const struct sockaddr * addr)1090 static int _get_label(const struct sockaddr* addr) {
1091 if (addr->sa_family == AF_INET) {
1092 return 4;
1093 } else if (addr->sa_family == AF_INET6) {
1094 const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
1095 if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
1096 return 0;
1097 } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
1098 return 4;
1099 } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
1100 return 2;
1101 } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
1102 return 5;
1103 } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
1104 return 13;
1105 } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr)) {
1106 return 3;
1107 } else if (IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr)) {
1108 return 11;
1109 } else if (IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
1110 return 12;
1111 } else {
1112 /* All other IPv6 addresses, including global unicast addresses. */
1113 return 1;
1114 }
1115 } else {
1116 /*
1117 * This should never happen.
1118 * Return a semi-random label as a last resort.
1119 */
1120 return 1;
1121 }
1122 }
1123
1124 /*
1125 * Get the precedence for a given IPv4/IPv6 address.
1126 * RFC 6724, section 2.1.
1127 */
1128
_get_precedence(const struct sockaddr * addr)1129 static int _get_precedence(const struct sockaddr* addr) {
1130 if (addr->sa_family == AF_INET) {
1131 return 35;
1132 } else if (addr->sa_family == AF_INET6) {
1133 const struct sockaddr_in6* addr6 = (const struct sockaddr_in6*) addr;
1134 if (IN6_IS_ADDR_LOOPBACK(&addr6->sin6_addr)) {
1135 return 50;
1136 } else if (IN6_IS_ADDR_V4MAPPED(&addr6->sin6_addr)) {
1137 return 35;
1138 } else if (IN6_IS_ADDR_6TO4(&addr6->sin6_addr)) {
1139 return 30;
1140 } else if (IN6_IS_ADDR_TEREDO(&addr6->sin6_addr)) {
1141 return 5;
1142 } else if (IN6_IS_ADDR_ULA(&addr6->sin6_addr)) {
1143 return 3;
1144 } else if (IN6_IS_ADDR_V4COMPAT(&addr6->sin6_addr) ||
1145 IN6_IS_ADDR_SITELOCAL(&addr6->sin6_addr) ||
1146 IN6_IS_ADDR_6BONE(&addr6->sin6_addr)) {
1147 return 1;
1148 } else {
1149 /* All other IPv6 addresses, including global unicast addresses. */
1150 return 40;
1151 }
1152 } else {
1153 return 1;
1154 }
1155 }
1156
1157 /*
1158 * Find number of matching initial bits between the two addresses a1 and a2.
1159 */
1160
_common_prefix_len(const struct in6_addr * a1,const struct in6_addr * a2)1161 static int _common_prefix_len(const struct in6_addr* a1, const struct in6_addr* a2) {
1162 const char* p1 = (const char*) a1;
1163 const char* p2 = (const char*) a2;
1164 unsigned i;
1165
1166 for (i = 0; i < sizeof(*a1); ++i) {
1167 int x, j;
1168
1169 if (p1[i] == p2[i]) {
1170 continue;
1171 }
1172 x = p1[i] ^ p2[i];
1173 for (j = 0; j < CHAR_BIT; ++j) {
1174 if (x & (1 << (CHAR_BIT - 1))) {
1175 return i * CHAR_BIT + j;
1176 }
1177 x <<= 1;
1178 }
1179 }
1180 return sizeof(*a1) * CHAR_BIT;
1181 }
1182
1183 /*
1184 * Compare two source/destination address pairs.
1185 * RFC 6724, section 6.
1186 */
1187
_rfc6724_compare(const void * ptr1,const void * ptr2)1188 static int _rfc6724_compare(const void* ptr1, const void* ptr2) {
1189 const struct addrinfo_sort_elem* a1 = (const struct addrinfo_sort_elem*) ptr1;
1190 const struct addrinfo_sort_elem* a2 = (const struct addrinfo_sort_elem*) ptr2;
1191 int scope_src1, scope_dst1, scope_match1;
1192 int scope_src2, scope_dst2, scope_match2;
1193 int label_src1, label_dst1, label_match1;
1194 int label_src2, label_dst2, label_match2;
1195 int precedence1, precedence2;
1196 int prefixlen1, prefixlen2;
1197
1198 /* Rule 1: Avoid unusable destinations. */
1199 if (a1->has_src_addr != a2->has_src_addr) {
1200 return a2->has_src_addr - a1->has_src_addr;
1201 }
1202
1203 /* Rule 2: Prefer matching scope. */
1204 scope_src1 = _get_scope(&a1->src_addr.sa);
1205 scope_dst1 = _get_scope(a1->ai->ai_addr);
1206 scope_match1 = (scope_src1 == scope_dst1);
1207
1208 scope_src2 = _get_scope(&a2->src_addr.sa);
1209 scope_dst2 = _get_scope(a2->ai->ai_addr);
1210 scope_match2 = (scope_src2 == scope_dst2);
1211
1212 if (scope_match1 != scope_match2) {
1213 return scope_match2 - scope_match1;
1214 }
1215
1216 /*
1217 * Rule 3: Avoid deprecated addresses.
1218 * TODO(sesse): We don't currently have a good way of finding this.
1219 */
1220
1221 /*
1222 * Rule 4: Prefer home addresses.
1223 * TODO(sesse): We don't currently have a good way of finding this.
1224 */
1225
1226 /* Rule 5: Prefer matching label. */
1227 label_src1 = _get_label(&a1->src_addr.sa);
1228 label_dst1 = _get_label(a1->ai->ai_addr);
1229 label_match1 = (label_src1 == label_dst1);
1230
1231 label_src2 = _get_label(&a2->src_addr.sa);
1232 label_dst2 = _get_label(a2->ai->ai_addr);
1233 label_match2 = (label_src2 == label_dst2);
1234
1235 if (label_match1 != label_match2) {
1236 return label_match2 - label_match1;
1237 }
1238
1239 /* Rule 6: Prefer higher precedence. */
1240 precedence1 = _get_precedence(a1->ai->ai_addr);
1241 precedence2 = _get_precedence(a2->ai->ai_addr);
1242 if (precedence1 != precedence2) {
1243 return precedence2 - precedence1;
1244 }
1245
1246 /*
1247 * Rule 7: Prefer native transport.
1248 * TODO(sesse): We don't currently have a good way of finding this.
1249 */
1250
1251 /* Rule 8: Prefer smaller scope. */
1252 if (scope_dst1 != scope_dst2) {
1253 return scope_dst1 - scope_dst2;
1254 }
1255
1256 /*
1257 * Rule 9: Use longest matching prefix.
1258 * We implement this for IPv6 only, as the rules in RFC 6724 don't seem
1259 * to work very well directly applied to IPv4. (glibc uses information from
1260 * the routing table for a custom IPv4 implementation here.)
1261 */
1262 if (a1->has_src_addr && a1->ai->ai_addr->sa_family == AF_INET6 && a2->has_src_addr &&
1263 a2->ai->ai_addr->sa_family == AF_INET6) {
1264 const struct sockaddr_in6* a1_src = &a1->src_addr.sin6;
1265 const struct sockaddr_in6* a1_dst = (const struct sockaddr_in6*) a1->ai->ai_addr;
1266 const struct sockaddr_in6* a2_src = &a2->src_addr.sin6;
1267 const struct sockaddr_in6* a2_dst = (const struct sockaddr_in6*) a2->ai->ai_addr;
1268 prefixlen1 = _common_prefix_len(&a1_src->sin6_addr, &a1_dst->sin6_addr);
1269 prefixlen2 = _common_prefix_len(&a2_src->sin6_addr, &a2_dst->sin6_addr);
1270 if (prefixlen1 != prefixlen2) {
1271 return prefixlen2 - prefixlen1;
1272 }
1273 }
1274
1275 /*
1276 * Rule 10: Leave the order unchanged.
1277 * We need this since qsort() is not necessarily stable.
1278 */
1279 return a1->original_order - a2->original_order;
1280 }
1281
1282 /*
1283 * Find the source address that will be used if trying to connect to the given
1284 * address. src_addr must be large enough to hold a struct sockaddr_in6.
1285 *
1286 * Returns 1 if a source address was found, 0 if the address is unreachable,
1287 * and -1 if a fatal error occurred. If 0 or -1, the contents of src_addr are
1288 * undefined.
1289 */
1290
_find_src_addr(const struct sockaddr * addr,struct sockaddr * src_addr,unsigned mark,uid_t uid)1291 static int _find_src_addr(const struct sockaddr* addr, struct sockaddr* src_addr, unsigned mark,
1292 uid_t uid) {
1293 int sock;
1294 int ret;
1295 socklen_t len;
1296
1297 switch (addr->sa_family) {
1298 case AF_INET:
1299 len = sizeof(struct sockaddr_in);
1300 break;
1301 case AF_INET6:
1302 len = sizeof(struct sockaddr_in6);
1303 break;
1304 default:
1305 /* No known usable source address for non-INET families. */
1306 return 0;
1307 }
1308
1309 sock = socket(addr->sa_family, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP);
1310 if (sock == -1) {
1311 if (errno == EAFNOSUPPORT) {
1312 return 0;
1313 } else {
1314 return -1;
1315 }
1316 }
1317 if (mark != MARK_UNSET && setsockopt(sock, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) {
1318 close(sock);
1319 return 0;
1320 }
1321 if (uid > 0 && uid != NET_CONTEXT_INVALID_UID && fchown(sock, uid, (gid_t) -1) < 0) {
1322 close(sock);
1323 return 0;
1324 }
1325 do {
1326 ret = connect(sock, addr, len);
1327 } while (ret == -1 && errno == EINTR);
1328
1329 if (ret == -1) {
1330 close(sock);
1331 return 0;
1332 }
1333
1334 if (src_addr && getsockname(sock, src_addr, &len) == -1) {
1335 close(sock);
1336 return -1;
1337 }
1338 close(sock);
1339 return 1;
1340 }
1341
1342 /*
1343 * Sort the linked list starting at sentinel->ai_next in RFC6724 order.
1344 * Will leave the list unchanged if an error occurs.
1345 */
1346
_rfc6724_sort(struct addrinfo * list_sentinel,unsigned mark,uid_t uid)1347 static void _rfc6724_sort(struct addrinfo* list_sentinel, unsigned mark, uid_t uid) {
1348 struct addrinfo* cur;
1349 int nelem = 0, i;
1350 struct addrinfo_sort_elem* elems;
1351
1352 cur = list_sentinel->ai_next;
1353 while (cur) {
1354 ++nelem;
1355 cur = cur->ai_next;
1356 }
1357
1358 elems = (struct addrinfo_sort_elem*) malloc(nelem * sizeof(struct addrinfo_sort_elem));
1359 if (elems == NULL) {
1360 goto error;
1361 }
1362
1363 /*
1364 * Convert the linked list to an array that also contains the candidate
1365 * source address for each destination address.
1366 */
1367 for (i = 0, cur = list_sentinel->ai_next; i < nelem; ++i, cur = cur->ai_next) {
1368 int has_src_addr;
1369 assert(cur != NULL);
1370 elems[i].ai = cur;
1371 elems[i].original_order = i;
1372
1373 has_src_addr = _find_src_addr(cur->ai_addr, &elems[i].src_addr.sa, mark, uid);
1374 if (has_src_addr == -1) {
1375 goto error;
1376 }
1377 elems[i].has_src_addr = has_src_addr;
1378 }
1379
1380 /* Sort the addresses, and rearrange the linked list so it matches the sorted order. */
1381 qsort((void*) elems, nelem, sizeof(struct addrinfo_sort_elem), _rfc6724_compare);
1382
1383 list_sentinel->ai_next = elems[0].ai;
1384 for (i = 0; i < nelem - 1; ++i) {
1385 elems[i].ai->ai_next = elems[i + 1].ai;
1386 }
1387 elems[nelem - 1].ai->ai_next = NULL;
1388
1389 error:
1390 free(elems);
1391 }
1392
dns_getaddrinfo(const char * name,const addrinfo * pai,const android_net_context * netcontext,addrinfo ** rv,NetworkDnsEventReported * event)1393 static int dns_getaddrinfo(const char* name, const addrinfo* pai,
1394 const android_net_context* netcontext, addrinfo** rv,
1395 NetworkDnsEventReported* event) {
1396 res_target q = {};
1397 res_target q2 = {};
1398
1399 switch (pai->ai_family) {
1400 case AF_UNSPEC: {
1401 /* prefer IPv6 */
1402 q.name = name;
1403 q.qclass = C_IN;
1404 int query_ipv6 = 1, query_ipv4 = 1;
1405 if (pai->ai_flags & AI_ADDRCONFIG) {
1406 query_ipv6 = have_ipv6(netcontext->app_mark, netcontext->uid);
1407 query_ipv4 = have_ipv4(netcontext->app_mark, netcontext->uid);
1408 }
1409 if (query_ipv6) {
1410 q.qtype = T_AAAA;
1411 if (query_ipv4) {
1412 q.next = &q2;
1413 q2.name = name;
1414 q2.qclass = C_IN;
1415 q2.qtype = T_A;
1416 }
1417 } else if (query_ipv4) {
1418 q.qtype = T_A;
1419 } else {
1420 return EAI_NODATA;
1421 }
1422 break;
1423 }
1424 case AF_INET:
1425 q.name = name;
1426 q.qclass = C_IN;
1427 q.qtype = T_A;
1428 break;
1429 case AF_INET6:
1430 q.name = name;
1431 q.qclass = C_IN;
1432 q.qtype = T_AAAA;
1433 break;
1434 default:
1435 return EAI_FAMILY;
1436 }
1437
1438 ResState res(netcontext, event);
1439
1440 int he;
1441 if (res_searchN(name, &q, &res, &he) < 0) {
1442 // Return h_errno (he) to catch more detailed errors rather than EAI_NODATA.
1443 // Note that res_searchN() doesn't set the pair NETDB_INTERNAL and errno.
1444 // See also herrnoToAiErrno().
1445 return herrnoToAiErrno(he);
1446 }
1447
1448 addrinfo sentinel = {};
1449 addrinfo* cur = &sentinel;
1450 addrinfo* ai = getanswer(q.answer, q.n, q.name, q.qtype, pai, &he);
1451 if (ai) {
1452 cur->ai_next = ai;
1453 while (cur && cur->ai_next) cur = cur->ai_next;
1454 }
1455 if (q.next) {
1456 ai = getanswer(q2.answer, q2.n, q2.name, q2.qtype, pai, &he);
1457 if (ai) cur->ai_next = ai;
1458 }
1459 if (sentinel.ai_next == NULL) {
1460 // Note that getanswer() doesn't set the pair NETDB_INTERNAL and errno.
1461 // See also herrnoToAiErrno().
1462 return herrnoToAiErrno(he);
1463 }
1464
1465 _rfc6724_sort(&sentinel, netcontext->app_mark, netcontext->uid);
1466
1467 *rv = sentinel.ai_next;
1468 return 0;
1469 }
1470
_sethtent(FILE ** hostf)1471 static void _sethtent(FILE** hostf) {
1472 if (!*hostf)
1473 *hostf = fopen(_PATH_HOSTS, "re");
1474 else
1475 rewind(*hostf);
1476 }
1477
_endhtent(FILE ** hostf)1478 static void _endhtent(FILE** hostf) {
1479 if (*hostf) {
1480 (void) fclose(*hostf);
1481 *hostf = NULL;
1482 }
1483 }
1484
_gethtent(FILE ** hostf,const char * name,const struct addrinfo * pai)1485 static struct addrinfo* _gethtent(FILE** hostf, const char* name, const struct addrinfo* pai) {
1486 char* p;
1487 char *cp, *tname, *cname;
1488 struct addrinfo *res0, *res;
1489 int error;
1490 const char* addr;
1491 char hostbuf[8 * 1024];
1492
1493 assert(name != NULL);
1494 assert(pai != NULL);
1495
1496 if (!*hostf && !(*hostf = fopen(_PATH_HOSTS, "re"))) return (NULL);
1497 again:
1498 if (!(p = fgets(hostbuf, sizeof hostbuf, *hostf))) return (NULL);
1499 if (*p == '#') goto again;
1500 if (!(cp = strpbrk(p, "#\n"))) goto again;
1501 *cp = '\0';
1502 if (!(cp = strpbrk(p, " \t"))) goto again;
1503 *cp++ = '\0';
1504 addr = p;
1505 /* if this is not something we're looking for, skip it. */
1506 cname = NULL;
1507 while (cp && *cp) {
1508 if (*cp == ' ' || *cp == '\t') {
1509 cp++;
1510 continue;
1511 }
1512 if (!cname) cname = cp;
1513 tname = cp;
1514 if ((cp = strpbrk(cp, " \t")) != NULL) *cp++ = '\0';
1515 if (strcasecmp(name, tname) == 0) goto found;
1516 }
1517 goto again;
1518
1519 found:
1520 error = getaddrinfo_numeric(addr, nullptr, *pai, &res0);
1521 if (error) goto again;
1522 for (res = res0; res; res = res->ai_next) {
1523 /* cover it up */
1524 res->ai_flags = pai->ai_flags;
1525
1526 if (pai->ai_flags & AI_CANONNAME) {
1527 if (get_canonname(pai, res, cname) != 0) {
1528 freeaddrinfo(res0);
1529 goto again;
1530 }
1531 }
1532 }
1533 return res0;
1534 }
1535
getCustomHosts(const size_t netid,const char * _Nonnull name,const struct addrinfo * _Nonnull pai)1536 static struct addrinfo* getCustomHosts(const size_t netid, const char* _Nonnull name,
1537 const struct addrinfo* _Nonnull pai) {
1538 struct addrinfo sentinel = {};
1539 struct addrinfo *res0, *res;
1540 res = &sentinel;
1541 std::vector<std::string> hosts = getCustomizedTableByName(netid, name);
1542 for (const std::string& host : hosts) {
1543 int error = getaddrinfo_numeric(host.c_str(), nullptr, *pai, &res0);
1544 if (!error && res0 != nullptr) {
1545 res->ai_next = res0;
1546 res = res0;
1547 res0 = nullptr;
1548 }
1549 }
1550 return sentinel.ai_next;
1551 }
1552
files_getaddrinfo(const size_t netid,const char * name,const addrinfo * pai,addrinfo ** res)1553 static bool files_getaddrinfo(const size_t netid, const char* name, const addrinfo* pai,
1554 addrinfo** res) {
1555 struct addrinfo sentinel = {};
1556 struct addrinfo *p, *cur;
1557 FILE* hostf = nullptr;
1558
1559 cur = &sentinel;
1560 _sethtent(&hostf);
1561 while ((p = _gethtent(&hostf, name, pai)) != nullptr) {
1562 cur->ai_next = p;
1563 while (cur && cur->ai_next) cur = cur->ai_next;
1564 }
1565 _endhtent(&hostf);
1566
1567 if ((p = getCustomHosts(netid, name, pai)) != nullptr) {
1568 cur->ai_next = p;
1569 }
1570
1571 *res = sentinel.ai_next;
1572 return sentinel.ai_next != nullptr;
1573 }
1574
1575 /* resolver logic */
1576
1577 namespace {
1578
1579 constexpr int SLEEP_TIME_MS = 2;
1580
getHerrnoFromRcode(int rcode)1581 int getHerrnoFromRcode(int rcode) {
1582 switch (rcode) {
1583 // Not defined in RFC.
1584 case RCODE_TIMEOUT:
1585 // DNS metrics monitors DNS query timeout.
1586 return NETD_RESOLV_H_ERRNO_EXT_TIMEOUT; // extended h_errno.
1587 // Defined in RFC 1035 section 4.1.1.
1588 case NXDOMAIN:
1589 return HOST_NOT_FOUND;
1590 case SERVFAIL:
1591 return TRY_AGAIN;
1592 case NOERROR:
1593 return NO_DATA;
1594 case FORMERR:
1595 case NOTIMP:
1596 case REFUSED:
1597 default:
1598 return NO_RECOVERY;
1599 }
1600 }
1601
1602 struct QueryResult {
1603 int ancount;
1604 int rcode;
1605 int herrno;
1606 int qerrno;
1607 NetworkDnsEventReported event;
1608 };
1609
doQuery(const char * name,res_target * t,res_state res,std::chrono::milliseconds sleepTimeMs)1610 QueryResult doQuery(const char* name, res_target* t, res_state res,
1611 std::chrono::milliseconds sleepTimeMs) {
1612 HEADER* hp = (HEADER*)(void*)t->answer.data();
1613
1614 hp->rcode = NOERROR; // default
1615
1616 const int cl = t->qclass;
1617 const int type = t->qtype;
1618 const int anslen = t->answer.size();
1619
1620 LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")";
1621
1622 uint8_t buf[MAXPACKET];
1623
1624 int n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf),
1625 res->netcontext_flags);
1626
1627 if (n > 0 &&
1628 (res->netcontext_flags & (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS))) {
1629 n = res_nopt(res, n, buf, sizeof(buf), anslen);
1630 }
1631
1632 NetworkDnsEventReported event;
1633 if (n <= 0) {
1634 LOG(ERROR) << __func__ << ": res_nmkquery failed";
1635 return {
1636 .ancount = 0,
1637 .rcode = -1,
1638 .herrno = NO_RECOVERY,
1639 .qerrno = errno,
1640 .event = event,
1641 };
1642 }
1643
1644 ResState res_temp = res->clone(&event);
1645
1646 int rcode = NOERROR;
1647 n = res_nsend(&res_temp, buf, n, t->answer.data(), anslen, &rcode, 0, sleepTimeMs);
1648 if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) {
1649 // To ensure that the rcode handling is identical to res_queryN().
1650 if (rcode != RCODE_TIMEOUT) rcode = hp->rcode;
1651 // if the query choked with EDNS0, retry without EDNS0
1652 if ((res_temp.netcontext_flags &
1653 (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) &&
1654 (res_temp._flags & RES_F_EDNS0ERR)) {
1655 LOG(DEBUG) << __func__ << ": retry without EDNS0";
1656 n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf,
1657 sizeof(buf), res_temp.netcontext_flags);
1658 n = res_nsend(&res_temp, buf, n, t->answer.data(), anslen, &rcode, 0);
1659 }
1660 }
1661
1662 LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount);
1663
1664 t->n = n;
1665 return {
1666 .ancount = ntohs(hp->ancount),
1667 .rcode = rcode,
1668 .qerrno = errno,
1669 .event = event,
1670 };
1671 }
1672
1673 } // namespace
1674
res_queryN_parallel(const char * name,res_target * target,res_state res,int * herrno)1675 static int res_queryN_parallel(const char* name, res_target* target, res_state res, int* herrno) {
1676 std::vector<std::future<QueryResult>> results;
1677 results.reserve(2);
1678 std::chrono::milliseconds sleepTimeMs{};
1679 for (res_target* t = target; t; t = t->next) {
1680 results.emplace_back(std::async(std::launch::async, doQuery, name, t, res, sleepTimeMs));
1681 // Avoiding gateways drop packets if queries are sent too close together
1682 // Only needed if we have multiple queries in a row.
1683 if (t->next) {
1684 int sleepFlag = android::net::Experiments::getInstance()->getFlag(
1685 "parallel_lookup_sleep_time", SLEEP_TIME_MS);
1686 if (sleepFlag > 1000) sleepFlag = 1000;
1687 sleepTimeMs = std::chrono::milliseconds(sleepFlag);
1688 }
1689 }
1690
1691 int ancount = 0;
1692 int rcode = 0;
1693
1694 for (auto& f : results) {
1695 const QueryResult& r = f.get();
1696 if (r.herrno == NO_RECOVERY) {
1697 *herrno = r.herrno;
1698 return -1;
1699 }
1700 res->event->MergeFrom(r.event);
1701 ancount += r.ancount;
1702 rcode = r.rcode;
1703 errno = r.qerrno;
1704 }
1705
1706 if (ancount == 0) {
1707 *herrno = getHerrnoFromRcode(rcode);
1708 return -1;
1709 }
1710
1711 return ancount;
1712 }
1713
res_queryN_wrapper(const char * name,res_target * target,res_state res,int * herrno)1714 static int res_queryN_wrapper(const char* name, res_target* target, res_state res, int* herrno) {
1715 const bool parallel_lookup =
1716 android::net::Experiments::getInstance()->getFlag("parallel_lookup_release", 1);
1717 if (parallel_lookup) return res_queryN_parallel(name, target, res, herrno);
1718
1719 return res_queryN(name, target, res, herrno);
1720 }
1721
1722 /*
1723 * Formulate a normal query, send, and await answer.
1724 * Returned answer is placed in supplied buffer "answer".
1725 * Perform preliminary check of answer, returning success only
1726 * if no error is indicated and the answer count is nonzero.
1727 * Return the size of the response on success, -1 on error.
1728 * Error number is left in *herrno.
1729 *
1730 * Caller must parse answer and determine whether it answers the question.
1731 */
res_queryN(const char * name,res_target * target,res_state res,int * herrno)1732 static int res_queryN(const char* name, res_target* target, res_state res, int* herrno) {
1733 uint8_t buf[MAXPACKET];
1734 int n;
1735 struct res_target* t;
1736 int rcode;
1737 int ancount;
1738
1739 assert(name != NULL);
1740 /* XXX: target may be NULL??? */
1741
1742 rcode = NOERROR;
1743 ancount = 0;
1744
1745 for (t = target; t; t = t->next) {
1746 HEADER* hp = (HEADER*)(void*)t->answer.data();
1747 bool retried = false;
1748 again:
1749 hp->rcode = NOERROR; /* default */
1750
1751 /* make it easier... */
1752 int cl = t->qclass;
1753 int type = t->qtype;
1754 const int anslen = t->answer.size();
1755
1756 LOG(DEBUG) << __func__ << ": (" << cl << ", " << type << ")";
1757
1758 n = res_nmkquery(QUERY, name, cl, type, /*data=*/nullptr, /*datalen=*/0, buf, sizeof(buf),
1759 res->netcontext_flags);
1760 if (n > 0 &&
1761 (res->netcontext_flags &
1762 (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) &&
1763 !retried) // TODO: remove the retry flag and provide a sufficient test coverage.
1764 n = res_nopt(res, n, buf, sizeof(buf), anslen);
1765 if (n <= 0) {
1766 LOG(ERROR) << __func__ << ": res_nmkquery failed";
1767 *herrno = NO_RECOVERY;
1768 return n;
1769 }
1770
1771 n = res_nsend(res, buf, n, t->answer.data(), anslen, &rcode, 0);
1772 if (n < 0 || hp->rcode != NOERROR || ntohs(hp->ancount) == 0) {
1773 // Record rcode from DNS response header only if no timeout.
1774 // Keep rcode timeout for reporting later if any.
1775 if (rcode != RCODE_TIMEOUT) rcode = hp->rcode; // record most recent error
1776 // if the query choked with EDNS0, retry without EDNS0 that when the server
1777 // has no response, resovler won't retry and do nothing. Even fallback to UDP,
1778 // we also has the same symptom if EDNS is enabled.
1779 if ((res->netcontext_flags &
1780 (NET_CONTEXT_FLAG_USE_DNS_OVER_TLS | NET_CONTEXT_FLAG_USE_EDNS)) &&
1781 (res->_flags & RES_F_EDNS0ERR) && !retried) {
1782 LOG(DEBUG) << __func__ << ": retry without EDNS0";
1783 retried = true;
1784 goto again;
1785 }
1786 LOG(DEBUG) << __func__ << ": rcode=" << hp->rcode << ", ancount=" << ntohs(hp->ancount);
1787 continue;
1788 }
1789
1790 ancount += ntohs(hp->ancount);
1791
1792 t->n = n;
1793 }
1794
1795 if (ancount == 0) {
1796 *herrno = getHerrnoFromRcode(rcode);
1797 return -1;
1798 }
1799 return ancount;
1800 }
1801
1802 /*
1803 * Formulate a normal query, send, and retrieve answer in supplied buffer.
1804 * Return the size of the response on success, -1 on error.
1805 * If enabled, implement search rules until answer or unrecoverable failure
1806 * is detected. Error code, if any, is left in *herrno.
1807 */
res_searchN(const char * name,res_target * target,res_state res,int * herrno)1808 static int res_searchN(const char* name, res_target* target, res_state res, int* herrno) {
1809 const char* cp;
1810 HEADER* hp;
1811 uint32_t dots;
1812 int ret, saved_herrno;
1813 int got_nodata = 0, got_servfail = 0, tried_as_is = 0;
1814
1815 assert(name != NULL);
1816 assert(target != NULL);
1817
1818 hp = (HEADER*)(void*)target->answer.data();
1819
1820 errno = 0;
1821 *herrno = HOST_NOT_FOUND; /* default, if we never query */
1822 dots = 0;
1823 for (cp = name; *cp; cp++) dots += (*cp == '.');
1824 const bool trailing_dot = (cp > name && *--cp == '.') ? true : false;
1825
1826 /*
1827 * If there are dots in the name already, let's just give it a try
1828 * 'as is'. The threshold can be set with the "ndots" option.
1829 */
1830 saved_herrno = -1;
1831 if (dots >= res->ndots) {
1832 ret = res_querydomainN(name, NULL, target, res, herrno);
1833 if (ret > 0) return (ret);
1834 saved_herrno = *herrno;
1835 tried_as_is++;
1836 }
1837
1838 /*
1839 * We do at least one level of search if
1840 * - there is no dot, or
1841 * - there is at least one dot and there is no trailing dot.
1842 */
1843 if ((!dots) || (dots && !trailing_dot)) {
1844 int done = 0;
1845
1846 /* Unfortunately we need to set stuff up before
1847 * the domain stuff is tried. Will have a better
1848 * fix after thread pools are used.
1849 */
1850 resolv_populate_res_for_net(res);
1851
1852 for (const auto& domain : res->search_domains) {
1853 ret = res_querydomainN(name, domain.c_str(), target, res, herrno);
1854 if (ret > 0) return ret;
1855
1856 /*
1857 * If no server present, give up.
1858 * If name isn't found in this domain,
1859 * keep trying higher domains in the search list
1860 * (if that's enabled).
1861 * On a NO_DATA error, keep trying, otherwise
1862 * a wildcard entry of another type could keep us
1863 * from finding this entry higher in the domain.
1864 * If we get some other error (negative answer or
1865 * server failure), then stop searching up,
1866 * but try the input name below in case it's
1867 * fully-qualified.
1868 */
1869 if (errno == ECONNREFUSED) {
1870 *herrno = TRY_AGAIN;
1871 return -1;
1872 }
1873
1874 switch (*herrno) {
1875 case NO_DATA:
1876 got_nodata++;
1877 [[fallthrough]];
1878 case HOST_NOT_FOUND:
1879 /* keep trying */
1880 break;
1881 case TRY_AGAIN:
1882 if (hp->rcode == SERVFAIL) {
1883 /* try next search element, if any */
1884 got_servfail++;
1885 break;
1886 }
1887 [[fallthrough]];
1888 default:
1889 /* anything else implies that we're done */
1890 done++;
1891 }
1892 }
1893 }
1894
1895 /*
1896 * if we have not already tried the name "as is", do that now.
1897 * note that we do this regardless of how many dots were in the
1898 * name or whether it ends with a dot.
1899 */
1900 if (!tried_as_is) {
1901 ret = res_querydomainN(name, NULL, target, res, herrno);
1902 if (ret > 0) return ret;
1903 }
1904
1905 /*
1906 * if we got here, we didn't satisfy the search.
1907 * if we did an initial full query, return that query's h_errno
1908 * (note that we wouldn't be here if that query had succeeded).
1909 * else if we ever got a nodata, send that back as the reason.
1910 * else send back meaningless h_errno, that being the one from
1911 * the last DNSRCH we did.
1912 */
1913 if (saved_herrno != -1)
1914 *herrno = saved_herrno;
1915 else if (got_nodata)
1916 *herrno = NO_DATA;
1917 else if (got_servfail)
1918 *herrno = TRY_AGAIN;
1919 return -1;
1920 }
1921
1922 // Perform a call on res_query on the concatenation of name and domain,
1923 // removing a trailing dot from name if domain is NULL.
res_querydomainN(const char * name,const char * domain,res_target * target,res_state res,int * herrno)1924 static int res_querydomainN(const char* name, const char* domain, res_target* target, res_state res,
1925 int* herrno) {
1926 char nbuf[MAXDNAME];
1927 const char* longname = nbuf;
1928 size_t n, d;
1929
1930 assert(name != NULL);
1931
1932 if (domain == NULL) {
1933 // Check for trailing '.'; copy without '.' if present.
1934 n = strlen(name);
1935 if (n + 1 > sizeof(nbuf)) {
1936 *herrno = NO_RECOVERY;
1937 return -1;
1938 }
1939 if (n > 0 && name[--n] == '.') {
1940 strncpy(nbuf, name, n);
1941 nbuf[n] = '\0';
1942 } else
1943 longname = name;
1944 } else {
1945 n = strlen(name);
1946 d = strlen(domain);
1947 if (n + 1 + d + 1 > sizeof(nbuf)) {
1948 *herrno = NO_RECOVERY;
1949 return -1;
1950 }
1951 snprintf(nbuf, sizeof(nbuf), "%s.%s", name, domain);
1952 }
1953 return res_queryN_wrapper(longname, target, res, herrno);
1954 }
1955