1 // Auto-generated file. Do not edit!
2 // Template: src/f32-ibilinear-chw/neon.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/ibilinear.h>
15
16
xnn_f32_ibilinear_chw_ukernel__neon_p4(size_t output_pixels,size_t channels,const float ** restrict input,size_t input_offset,const float * restrict weights,float * restrict output,size_t input_increment)17 void xnn_f32_ibilinear_chw_ukernel__neon_p4(
18 size_t output_pixels,
19 size_t channels,
20 const float**restrict input,
21 size_t input_offset,
22 const float*restrict weights,
23 float*restrict output,
24 size_t input_increment) XNN_DISABLE_TSAN
25 {
26 assert(output_pixels != 0);
27 assert(channels != 0);
28 assert(input_increment % sizeof(float) == 0);
29
30 do {
31 const float** i = input;
32 const float* w = weights;
33 size_t p = output_pixels;
34
35 for (; p >= 4; p -= 4) {
36 const float* itl0 = (const float*) ((uintptr_t) i[0] + input_offset);
37 const float* ibl0 = (const float*) ((uintptr_t) i[1] + input_offset);
38 const float* itl1 = (const float*) ((uintptr_t) i[2] + input_offset);
39 const float* ibl1 = (const float*) ((uintptr_t) i[3] + input_offset);
40 const float* itl2 = (const float*) ((uintptr_t) i[4] + input_offset);
41 const float* ibl2 = (const float*) ((uintptr_t) i[5] + input_offset);
42 const float* itl3 = (const float*) ((uintptr_t) i[6] + input_offset);
43 const float* ibl3 = (const float*) ((uintptr_t) i[7] + input_offset);
44 i += 8;
45
46 const float32x4x2_t vw = vld2q_f32(w);
47 w += 8;
48
49 const float32x2_t vtltr0 = vld1_f32(itl0);
50 const float32x2_t vblbr0 = vld1_f32(ibl0);
51 const float32x2_t vtltr1 = vld1_f32(itl1);
52 const float32x2_t vblbr1 = vld1_f32(ibl1);
53 const float32x2_t vtltr2 = vld1_f32(itl2);
54 const float32x2_t vblbr2 = vld1_f32(ibl2);
55 const float32x2_t vtltr3 = vld1_f32(itl3);
56 const float32x2_t vblbr3 = vld1_f32(ibl3);
57
58 const float32x4_t valphah = vw.val[0];
59 const float32x4_t valphav = vw.val[1];
60
61 const float32x4_t vtltr01 = vcombine_f32(vtltr0, vtltr1);
62 const float32x4_t vblbr01 = vcombine_f32(vblbr0, vblbr1);
63 const float32x4_t vtltr23 = vcombine_f32(vtltr2, vtltr3);
64 const float32x4_t vblbr23 = vcombine_f32(vblbr2, vblbr3);
65
66 const float32x4_t vldrd01 = vsubq_f32(vblbr01, vtltr01);
67 const float32x4_t vldrd23 = vsubq_f32(vblbr23, vtltr23);
68
69 const float32x4x2_t vld_t = vuzpq_f32(vldrd01, vldrd23);
70 const float32x4_t vld = vld_t.val[0];
71 const float32x4_t vrd = vld_t.val[1];
72
73 const float32x4x2_t vtl_t = vuzpq_f32(vtltr01, vtltr23);
74 const float32x4_t vtl = vtl_t.val[0];
75 const float32x4_t vtr = vtl_t.val[1];
76
77 const float32x4_t vl = vmlaq_f32(vtl, vld, valphav);
78 const float32x4_t vr = vmlaq_f32(vtr, vrd, valphav);
79
80 const float32x4_t vd = vsubq_f32(vr, vl);
81 const float32x4_t vo = vmlaq_f32(vl, vd, valphah);
82
83 vst1q_f32(output, vo);
84 output += 4;
85 }
86
87 if XNN_UNLIKELY(p != 0) {
88 if (p & 2) {
89 const float32x2x2_t vw = vld2_f32(w);
90 w += 4;
91
92 const float32x2_t valphah = vw.val[0];
93 const float32x2_t valphav = vw.val[1];
94
95 const float* itl0 = (const float*) ((uintptr_t) i[0] + input_offset);
96 const float* ibl0 = (const float*) ((uintptr_t) i[1] + input_offset);
97 const float* itl1 = (const float*) ((uintptr_t) i[2] + input_offset);
98 const float* ibl1 = (const float*) ((uintptr_t) i[3] + input_offset);
99 i += 4;
100
101 const float32x2_t vtltr0 = vld1_f32(itl0);
102 const float32x2_t vblbr0 = vld1_f32(ibl0);
103 const float32x2_t vtltr1 = vld1_f32(itl1);
104 const float32x2_t vblbr1 = vld1_f32(ibl1);
105
106 const float32x2_t vldrd0 = vsub_f32(vblbr0, vtltr0);
107 const float32x2_t vldrd1 = vsub_f32(vblbr1, vtltr1);
108
109 const float32x2x2_t vld_t = vuzp_f32(vldrd0, vldrd1);
110 const float32x2_t vld = vld_t.val[0];
111 const float32x2_t vrd = vld_t.val[1];
112
113 const float32x2x2_t vtl_t = vuzp_f32(vtltr0, vtltr1);
114 const float32x2_t vtl = vtl_t.val[0];
115 const float32x2_t vtr = vtl_t.val[1];
116
117 const float32x2_t vl = vmla_f32(vtl, vld, valphav);
118 const float32x2_t vr = vmla_f32(vtr, vrd, valphav);
119
120 const float32x2_t vd = vsub_f32(vr, vl);
121 const float32x2_t vo = vmla_f32(vl, vd, valphah);
122
123 vst1_f32(output, vo);
124 output += 2;
125 }
126
127 if (p & 1) {
128 // We are computing the following formula:
129 // result = (1 - alpha_h) * (1 - alpha_v) * top_left +
130 // alpha_h * (1 - alpha_v) * top_right +
131 // (1 - alpha_h) * alpha_v * bottom_left +
132 // alpha_h * alpha_v * bottom_right.
133 //
134 // Rearranging gives
135 // result = left + alpha_h * (right - left),
136 // where
137 // left = top_left + alpha_v * (bottom_left - top_left),
138 // right = top_right + alpha_v * (bottom_right - top_right).
139
140 const float alphah = *w;
141 const float32x2_t valphav = vld1_dup_f32(w + 1);
142 w += 2;
143
144 const float* itl = (const float*) ((uintptr_t) i[0] + input_offset);
145 const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset);
146 i += 2;
147
148 const float32x2_t vtltr = vld1_f32(itl);
149 const float32x2_t vblbr = vld1_f32(ibl);
150
151 // Compute at once
152 // left_diff = bottom_left - top_left
153 // right_diff = bottom_right - top_right
154 const float32x2_t vldrd = vsub_f32(vblbr, vtltr);
155 const float32x2_t vlr = vmla_f32(vtltr, vldrd, valphav);
156
157 // Extract them and compute the result.
158 const float l = vget_lane_f32(vlr, 0);
159 const float r = vget_lane_f32(vlr, 1);
160
161 *output++ = l + alphah * (r - l);
162 }
163 }
164
165 input_offset += input_increment;
166 } while (--channels != 0);
167 }
168