1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert PIXEL_TILE >= 1 7$assert PIXEL_TILE % 4 == 0 8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 9#include <assert.h> 10 11#include <wasm_simd128.h> 12 13#include <xnnpack/ibilinear.h> 14 15 16void xnn_f32_ibilinear_chw_ukernel__wasmsimd_p${PIXEL_TILE}( 17 size_t output_pixels, 18 size_t channels, 19 const float**restrict input, 20 size_t input_offset, 21 const float*restrict weights, 22 float*restrict output, 23 size_t input_increment) XNN_DISABLE_TSAN 24{ 25 assert(output_pixels != 0); 26 assert(channels != 0); 27 assert(input_increment % sizeof(float) == 0); 28 29 do { 30 const float** i = input; 31 const float* w = weights; 32 size_t p = output_pixels; 33 $if PIXEL_TILE > 4: 34 for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { 35 $for P in range(PIXEL_TILE): 36 const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); 37 const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); 38 i += 2 * ${PIXEL_TILE}; 39 40 $for P in range(0, PIXEL_TILE, 4): 41 const v128_t vw${ABC[P:P+4]}p0 = wasm_v128_load(w + ${2 * P}); 42 const v128_t vw${ABC[P:P+4]}p1 = wasm_v128_load(w + ${2 * P + 4}); 43 w += 2 * ${PIXEL_TILE}; 44 45 $for P in range(0, PIXEL_TILE, 2): 46 const v128_t vtltr${ABC[P]} = wasm_v64x2_load_splat(itl${ABC[P]}); 47 const v128_t vblbr${ABC[P]} = wasm_v64x2_load_splat(ibl${ABC[P]}); 48 const double vtltr${ABC[P+1]} = *((const double*) itl${ABC[P+1]}); 49 const double vblbr${ABC[P+1]} = *((const double*) ibl${ABC[P+1]}); 50 51 $for P in range(0, PIXEL_TILE, 4): 52 const v128_t valphah${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 0, 2, 4, 6); 53 const v128_t valphav${ABC[P:P+4]} = wasm_v32x4_shuffle(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, 1, 3, 5, 7); 54 55 $for P in range(0, PIXEL_TILE, 2): 56 const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]}); 57 const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]}); 58 59 $for P in range(0, PIXEL_TILE, 2): 60 const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); 61 62 $for P in range(0, PIXEL_TILE, 4): 63 const v128_t vld${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 0, 2, 4, 6); 64 const v128_t vrd${ABC[P:P+4]} = wasm_v32x4_shuffle(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, 1, 3, 5, 7); 65 66 $for P in range(0, PIXEL_TILE, 4): 67 const v128_t vtl${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 0, 2, 4, 6); 68 const v128_t vtr${ABC[P:P+4]} = wasm_v32x4_shuffle(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, 1, 3, 5, 7); 69 70 $for P in range(0, PIXEL_TILE, 4): 71 const v128_t vl${ABC[P:P+4]} = wasm_f32x4_add(vtl${ABC[P:P+4]}, wasm_f32x4_mul(vld${ABC[P:P+4]}, valphav${ABC[P:P+4]})); 72 const v128_t vr${ABC[P:P+4]} = wasm_f32x4_add(vtr${ABC[P:P+4]}, wasm_f32x4_mul(vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]})); 73 74 $for P in range(0, PIXEL_TILE, 4): 75 const v128_t vd${ABC[P:P+4]} = wasm_f32x4_sub(vr${ABC[P:P+4]}, vl${ABC[P:P+4]}); 76 77 $for P in range(0, PIXEL_TILE, 4): 78 const v128_t vo${ABC[P:P+4]} = wasm_f32x4_add(vl${ABC[P:P+4]}, wasm_f32x4_mul(vd${ABC[P:P+4]}, valphah${ABC[P:P+4]})); 79 80 $for P in range(0, PIXEL_TILE, 4): 81 wasm_v128_store(output + ${P}, vo${ABC[P:P+4]}); 82 output += ${PIXEL_TILE}; 83 } 84 85 for (; p >= 4; p -= 4) { 86 $for P in range(4): 87 const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); 88 const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); 89 i += 8; 90 91 const v128_t vw0 = wasm_v128_load(w); 92 const v128_t vw1 = wasm_v128_load(w + 4); 93 w += 8; 94 95 $for P in range(0, 4, 2): 96 const v128_t vtltr${ABC[P]} = wasm_v64x2_load_splat(itl${P}); 97 const v128_t vblbr${ABC[P]} = wasm_v64x2_load_splat(ibl${P}); 98 const double vtltr${ABC[P+1]} = *((const double*) itl${P+1}); 99 const double vblbr${ABC[P+1]} = *((const double*) ibl${P+1}); 100 101 const v128_t valphah = wasm_v32x4_shuffle(vw0, vw1, 0, 2, 4, 6); 102 const v128_t valphav = wasm_v32x4_shuffle(vw0, vw1, 1, 3, 5, 7); 103 104 $for P in range(0, 4, 2): 105 const v128_t vtltr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vtltr${ABC[P]}, 1, vtltr${ABC[P+1]}); 106 const v128_t vblbr${ABC[P:P+2]} = wasm_f64x2_replace_lane(vblbr${ABC[P]}, 1, vblbr${ABC[P+1]}); 107 108 $for P in range(0, 4, 2): 109 const v128_t vldrd${ABC[P:P+2]} = wasm_f32x4_sub(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]}); 110 111 const v128_t vld = wasm_v32x4_shuffle(vldrd01, vldrd23, 0, 2, 4, 6); 112 const v128_t vrd = wasm_v32x4_shuffle(vldrd01, vldrd23, 1, 3, 5, 7); 113 114 const v128_t vtl = wasm_v32x4_shuffle(vtltr01, vtltr23, 0, 2, 4, 6); 115 const v128_t vtr = wasm_v32x4_shuffle(vtltr01, vtltr23, 1, 3, 5, 7); 116 117 const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav)); 118 const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav)); 119 120 const v128_t vd = wasm_f32x4_sub(vr, vl); 121 const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah)); 122 123 wasm_v128_store(output, vo); 124 output += 4; 125 } 126 127 if XNN_UNLIKELY(p != 0) { 128 if (p & 2) { 129 const v128_t vw = wasm_v128_load(w); 130 w += 4; 131 132 const v128_t valphah = wasm_v32x4_shuffle(vw, vw, 0, 2, 0, 2); 133 const v128_t valphav = wasm_v32x4_shuffle(vw, vw, 1, 3, 1, 3); 134 135 $for P in range(2): 136 const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset); 137 const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset); 138 i += 4; 139 140 const v128_t vtltr = wasm_f64x2_replace_lane(wasm_v64x2_load_splat(itl0), 1, *((const double*) itl1)); 141 const v128_t vblbr = wasm_f64x2_replace_lane(wasm_v64x2_load_splat(ibl0), 1, *((const double*) ibl1)); 142 143 const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr); 144 const v128_t vld = wasm_v32x4_shuffle(vldrd, vldrd, 0, 2, 0, 2); 145 const v128_t vrd = wasm_v32x4_shuffle(vldrd, vldrd, 1, 3, 1, 3); 146 147 const v128_t vtl = wasm_v32x4_shuffle(vtltr, vtltr, 0, 2, 0, 2); 148 const v128_t vtr = wasm_v32x4_shuffle(vtltr, vtltr, 1, 3, 1, 3); 149 150 const v128_t vl = wasm_f32x4_add(vtl, wasm_f32x4_mul(vld, valphav)); 151 const v128_t vr = wasm_f32x4_add(vtr, wasm_f32x4_mul(vrd, valphav)); 152 153 const v128_t vd = wasm_f32x4_sub(vr, vl); 154 const v128_t vo = wasm_f32x4_add(vl, wasm_f32x4_mul(vd, valphah)); 155 156 *((double*) output) = wasm_f64x2_extract_lane(vo, 0); 157 output += 2; 158 } 159 160 if (p & 1) { 161 // We are computing the following formula: 162 // result = (1 - alpha_h) * (1 - alpha_v) * top_left + 163 // alpha_h * (1 - alpha_v) * top_right + 164 // (1 - alpha_h) * alpha_v * bottom_left + 165 // alpha_h * alpha_v * bottom_right. 166 // 167 // Rearranging gives 168 // result = left + alpha_h * (right - left), 169 // where 170 // left = top_left + alpha_v * (bottom_left - top_left), 171 // right = top_right + alpha_v * (bottom_right - top_right). 172 173 const float alphah = *w; 174 const v128_t valphav = wasm_v32x4_load_splat(w + 1); 175 w += 2; 176 177 const float* itl = (const float*) ((uintptr_t) i[0] + input_offset); 178 const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset); 179 i += 2; 180 181 const v128_t vtltr = wasm_v64x2_load_splat(itl); 182 const v128_t vblbr = wasm_v64x2_load_splat(ibl); 183 184 // Compute at once 185 // left_diff = bottom_left - top_left 186 // right_diff = bottom_right - top_right 187 const v128_t vldrd = wasm_f32x4_sub(vblbr, vtltr); 188 const v128_t vlr = wasm_f32x4_add(vtltr, wasm_f32x4_mul(vldrd, valphav)); 189 190 // Extract them and compute the result. 191 const float l = wasm_f32x4_extract_lane(vlr, 0); 192 const float r = wasm_f32x4_extract_lane(vlr, 1); 193 194 *output++ = l + alphah * (r - l); 195 } 196 } 197 198 input_offset += input_increment; 199 } while (--channels != 0); 200} 201