/external/webrtc/modules/audio_processing/ns/ |
D | signal_model_estimator.cc | 25 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in ComputeSpectralDiff() argument 45 float signal_diff = signal_spectrum[i] - signal_average; in ComputeSpectralDiff() 64 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in UpdateSpectralFlatness() argument 74 if (signal_spectrum[i] == 0.f) { in UpdateSpectralFlatness() 81 avg_spect_flatness_num += LogApproximation(signal_spectrum[i]); in UpdateSpectralFlatness() 84 float avg_spect_flatness_denom = signal_spectral_sum - signal_spectrum[0]; in UpdateSpectralFlatness() 135 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in Update() argument 139 UpdateSpectralFlatness(signal_spectrum, signal_spectral_sum, in Update() 144 ComputeSpectralDiff(conservative_noise_spectrum, signal_spectrum, in Update()
|
D | noise_suppressor.cc | 150 rtc::ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) { in ComputeMagnitudeSpectrum() argument 151 signal_spectrum[0] = fabsf(real[0]) + 1.f; in ComputeMagnitudeSpectrum() 152 signal_spectrum[kFftSizeBy2Plus1 - 1] = in ComputeMagnitudeSpectrum() 156 signal_spectrum[i] = in ComputeMagnitudeSpectrum() 164 rtc::ArrayView<const float> signal_spectrum, in ComputeSnr() argument 175 if (signal_spectrum[i] > noise_spectrum[i]) { in ComputeSnr() 176 post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f; in ComputeSnr() 192 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) { in ComputeUpperBandsGain() argument 215 sum_processing_spectrum += signal_spectrum[i]; in ComputeUpperBandsGain() 340 std::array<float, kFftSizeBy2Plus1> signal_spectrum; in Analyze() local [all …]
|
D | wiener_filter.cc | 35 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) { in Update() argument 43 if (signal_spectrum[i] > noise_spectrum[i]) { in Update() 44 current_tsa = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f; in Update() 60 initial_spectral_estimate_[i] += signal_spectrum[i]; in Update() 79 std::copy(signal_spectrum.begin(), signal_spectrum.end(), in Update()
|
D | noise_estimator.cc | 61 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in PreUpdate() argument 63 quantile_noise_estimator_.Estimate(signal_spectrum, noise_spectrum_); in PreUpdate() 76 float log_signal = LogApproximation(signal_spectrum[i]); in PreUpdate() 151 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) { in PostUpdate() argument 164 (1.f - gamma) * (prob_non_speech * signal_spectrum[i] + in PostUpdate() 177 0.05f * (signal_spectrum[i] - conservative_noise_spectrum_[i]); in PostUpdate() 186 (1.f - gamma) * (prob_non_speech * signal_spectrum[i] + in PostUpdate()
|
D | noise_estimator.h | 34 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, 40 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum);
|
D | quantile_noise_estimator.cc | 31 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in Estimate() argument 34 LogApproximation(signal_spectrum, log_spectrum); in Estimate()
|
D | speech_probability_estimator.cc | 30 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum, in Update() argument 39 conservative_noise_spectrum, signal_spectrum, in Update()
|
D | quantile_noise_estimator.h | 32 void Estimate(rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
|
D | speech_probability_estimator.h | 36 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
|
D | signal_model_estimator.h | 38 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum,
|
D | wiener_filter.h | 35 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum);
|
/external/webrtc/modules/audio_processing/agc2/ |
D | signal_classifier.cc | 71 rtc::ArrayView<const float> signal_spectrum, in ClassifySignal() argument 79 if (signal_spectrum[k] < 3 * noise_spectrum[k] && in ClassifySignal() 80 signal_spectrum[k] * 3 > noise_spectrum[k]) { in ClassifySignal() 82 } else if (signal_spectrum[k] > 9 * noise_spectrum[k]) { in ClassifySignal() 147 float signal_spectrum[65]; in Analyze() local 148 PowerSpectrum(&ooura_fft_, extended_frame, signal_spectrum); in Analyze() 153 signal_spectrum, noise_spectrum_estimator_.GetNoiseSpectrum(), in Analyze() 157 noise_spectrum_estimator_.Update(signal_spectrum, in Analyze()
|