1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/ns/noise_suppressor.h"
12
13 #include <math.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17
18 #include "modules/audio_processing/ns/fast_math.h"
19 #include "rtc_base/checks.h"
20
21 namespace webrtc {
22
23 namespace {
24
25 // Maps sample rate to number of bands.
NumBandsForRate(size_t sample_rate_hz)26 size_t NumBandsForRate(size_t sample_rate_hz) {
27 RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 ||
28 sample_rate_hz == 48000);
29 return sample_rate_hz / 16000;
30 }
31
32 // Maximum number of channels for which the channel data is stored on
33 // the stack. If the number of channels are larger than this, they are stored
34 // using scratch memory that is pre-allocated on the heap. The reason for this
35 // partitioning is not to waste heap space for handling the more common numbers
36 // of channels, while at the same time not limiting the support for higher
37 // numbers of channels by enforcing the channel data to be stored on the
38 // stack using a fixed maximum value.
39 constexpr size_t kMaxNumChannelsOnStack = 2;
40
41 // Chooses the number of channels to store on the heap when that is required due
42 // to the number of channels being larger than the pre-defined number
43 // of channels to store on the stack.
NumChannelsOnHeap(size_t num_channels)44 size_t NumChannelsOnHeap(size_t num_channels) {
45 return num_channels > kMaxNumChannelsOnStack ? num_channels : 0;
46 }
47
48 // Hybrib Hanning and flat window for the filterbank.
49 constexpr std::array<float, 96> kBlocks160w256FirstHalf = {
50 0.00000000f, 0.01636173f, 0.03271908f, 0.04906767f, 0.06540313f,
51 0.08172107f, 0.09801714f, 0.11428696f, 0.13052619f, 0.14673047f,
52 0.16289547f, 0.17901686f, 0.19509032f, 0.21111155f, 0.22707626f,
53 0.24298018f, 0.25881905f, 0.27458862f, 0.29028468f, 0.30590302f,
54 0.32143947f, 0.33688985f, 0.35225005f, 0.36751594f, 0.38268343f,
55 0.39774847f, 0.41270703f, 0.42755509f, 0.44228869f, 0.45690388f,
56 0.47139674f, 0.48576339f, 0.50000000f, 0.51410274f, 0.52806785f,
57 0.54189158f, 0.55557023f, 0.56910015f, 0.58247770f, 0.59569930f,
58 0.60876143f, 0.62166057f, 0.63439328f, 0.64695615f, 0.65934582f,
59 0.67155895f, 0.68359230f, 0.69544264f, 0.70710678f, 0.71858162f,
60 0.72986407f, 0.74095113f, 0.75183981f, 0.76252720f, 0.77301045f,
61 0.78328675f, 0.79335334f, 0.80320753f, 0.81284668f, 0.82226822f,
62 0.83146961f, 0.84044840f, 0.84920218f, 0.85772861f, 0.86602540f,
63 0.87409034f, 0.88192126f, 0.88951608f, 0.89687274f, 0.90398929f,
64 0.91086382f, 0.91749450f, 0.92387953f, 0.93001722f, 0.93590593f,
65 0.94154407f, 0.94693013f, 0.95206268f, 0.95694034f, 0.96156180f,
66 0.96592583f, 0.97003125f, 0.97387698f, 0.97746197f, 0.98078528f,
67 0.98384601f, 0.98664333f, 0.98917651f, 0.99144486f, 0.99344778f,
68 0.99518473f, 0.99665524f, 0.99785892f, 0.99879546f, 0.99946459f,
69 0.99986614f};
70
71 // Applies the filterbank window to a buffer.
ApplyFilterBankWindow(rtc::ArrayView<float,kFftSize> x)72 void ApplyFilterBankWindow(rtc::ArrayView<float, kFftSize> x) {
73 for (size_t i = 0; i < 96; ++i) {
74 x[i] = kBlocks160w256FirstHalf[i] * x[i];
75 }
76
77 for (size_t i = 161, k = 95; i < kFftSize; ++i, --k) {
78 RTC_DCHECK_NE(0, k);
79 x[i] = kBlocks160w256FirstHalf[k] * x[i];
80 }
81 }
82
83 // Extends a frame with previous data.
FormExtendedFrame(rtc::ArrayView<const float,kNsFrameSize> frame,rtc::ArrayView<float,kFftSize-kNsFrameSize> old_data,rtc::ArrayView<float,kFftSize> extended_frame)84 void FormExtendedFrame(rtc::ArrayView<const float, kNsFrameSize> frame,
85 rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data,
86 rtc::ArrayView<float, kFftSize> extended_frame) {
87 std::copy(old_data.begin(), old_data.end(), extended_frame.begin());
88 std::copy(frame.begin(), frame.end(),
89 extended_frame.begin() + old_data.size());
90 std::copy(extended_frame.end() - old_data.size(), extended_frame.end(),
91 old_data.begin());
92 }
93
94 // Uses overlap-and-add to produce an output frame.
OverlapAndAdd(rtc::ArrayView<const float,kFftSize> extended_frame,rtc::ArrayView<float,kOverlapSize> overlap_memory,rtc::ArrayView<float,kNsFrameSize> output_frame)95 void OverlapAndAdd(rtc::ArrayView<const float, kFftSize> extended_frame,
96 rtc::ArrayView<float, kOverlapSize> overlap_memory,
97 rtc::ArrayView<float, kNsFrameSize> output_frame) {
98 for (size_t i = 0; i < kOverlapSize; ++i) {
99 output_frame[i] = overlap_memory[i] + extended_frame[i];
100 }
101 std::copy(extended_frame.begin() + kOverlapSize,
102 extended_frame.begin() + kNsFrameSize,
103 output_frame.begin() + kOverlapSize);
104 std::copy(extended_frame.begin() + kNsFrameSize, extended_frame.end(),
105 overlap_memory.begin());
106 }
107
108 // Produces a delayed frame.
DelaySignal(rtc::ArrayView<const float,kNsFrameSize> frame,rtc::ArrayView<float,kFftSize-kNsFrameSize> delay_buffer,rtc::ArrayView<float,kNsFrameSize> delayed_frame)109 void DelaySignal(rtc::ArrayView<const float, kNsFrameSize> frame,
110 rtc::ArrayView<float, kFftSize - kNsFrameSize> delay_buffer,
111 rtc::ArrayView<float, kNsFrameSize> delayed_frame) {
112 constexpr size_t kSamplesFromFrame = kNsFrameSize - (kFftSize - kNsFrameSize);
113 std::copy(delay_buffer.begin(), delay_buffer.end(), delayed_frame.begin());
114 std::copy(frame.begin(), frame.begin() + kSamplesFromFrame,
115 delayed_frame.begin() + delay_buffer.size());
116
117 std::copy(frame.begin() + kSamplesFromFrame, frame.end(),
118 delay_buffer.begin());
119 }
120
121 // Computes the energy of an extended frame.
ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float,kFftSize> x)122 float ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float, kFftSize> x) {
123 float energy = 0.f;
124 for (float x_k : x) {
125 energy += x_k * x_k;
126 }
127
128 return energy;
129 }
130
131 // Computes the energy of an extended frame based on its subcomponents.
ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float,kNsFrameSize> frame,rtc::ArrayView<float,kFftSize-kNsFrameSize> old_data)132 float ComputeEnergyOfExtendedFrame(
133 rtc::ArrayView<const float, kNsFrameSize> frame,
134 rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data) {
135 float energy = 0.f;
136 for (float v : old_data) {
137 energy += v * v;
138 }
139 for (float v : frame) {
140 energy += v * v;
141 }
142
143 return energy;
144 }
145
146 // Computes the magnitude spectrum based on an FFT output.
ComputeMagnitudeSpectrum(rtc::ArrayView<const float,kFftSize> real,rtc::ArrayView<const float,kFftSize> imag,rtc::ArrayView<float,kFftSizeBy2Plus1> signal_spectrum)147 void ComputeMagnitudeSpectrum(
148 rtc::ArrayView<const float, kFftSize> real,
149 rtc::ArrayView<const float, kFftSize> imag,
150 rtc::ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) {
151 signal_spectrum[0] = fabsf(real[0]) + 1.f;
152 signal_spectrum[kFftSizeBy2Plus1 - 1] =
153 fabsf(real[kFftSizeBy2Plus1 - 1]) + 1.f;
154
155 for (size_t i = 1; i < kFftSizeBy2Plus1 - 1; ++i) {
156 signal_spectrum[i] =
157 SqrtFastApproximation(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
158 }
159 }
160
161 // Compute prior and post SNR.
ComputeSnr(rtc::ArrayView<const float,kFftSizeBy2Plus1> filter,rtc::ArrayView<const float> prev_signal_spectrum,rtc::ArrayView<const float> signal_spectrum,rtc::ArrayView<const float> prev_noise_spectrum,rtc::ArrayView<const float> noise_spectrum,rtc::ArrayView<float> prior_snr,rtc::ArrayView<float> post_snr)162 void ComputeSnr(rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
163 rtc::ArrayView<const float> prev_signal_spectrum,
164 rtc::ArrayView<const float> signal_spectrum,
165 rtc::ArrayView<const float> prev_noise_spectrum,
166 rtc::ArrayView<const float> noise_spectrum,
167 rtc::ArrayView<float> prior_snr,
168 rtc::ArrayView<float> post_snr) {
169 for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
170 // Previous post SNR.
171 // Previous estimate: based on previous frame with gain filter.
172 float prev_estimate = prev_signal_spectrum[i] /
173 (prev_noise_spectrum[i] + 0.0001f) * filter[i];
174 // Post SNR.
175 if (signal_spectrum[i] > noise_spectrum[i]) {
176 post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f;
177 } else {
178 post_snr[i] = 0.f;
179 }
180 // The directed decision estimate of the prior SNR is a sum the current and
181 // previous estimates.
182 prior_snr[i] = 0.98f * prev_estimate + (1.f - 0.98f) * post_snr[i];
183 }
184 }
185
186 // Computes the attenuating gain for the noise suppression of the upper bands.
ComputeUpperBandsGain(float minimum_attenuating_gain,rtc::ArrayView<const float,kFftSizeBy2Plus1> filter,rtc::ArrayView<const float> speech_probability,rtc::ArrayView<const float,kFftSizeBy2Plus1> prev_analysis_signal_spectrum,rtc::ArrayView<const float,kFftSizeBy2Plus1> signal_spectrum)187 float ComputeUpperBandsGain(
188 float minimum_attenuating_gain,
189 rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
190 rtc::ArrayView<const float> speech_probability,
191 rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_analysis_signal_spectrum,
192 rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
193 // Average speech prob and filter gain for the end of the lowest band.
194 constexpr int kNumAvgBins = 32;
195 constexpr float kOneByNumAvgBins = 1.f / kNumAvgBins;
196
197 float avg_prob_speech = 0.f;
198 float avg_filter_gain = 0.f;
199 for (size_t i = kFftSizeBy2Plus1 - kNumAvgBins - 1; i < kFftSizeBy2Plus1 - 1;
200 i++) {
201 avg_prob_speech += speech_probability[i];
202 avg_filter_gain += filter[i];
203 }
204 avg_prob_speech = avg_prob_speech * kOneByNumAvgBins;
205 avg_filter_gain = avg_filter_gain * kOneByNumAvgBins;
206
207 // If the speech was suppressed by a component between Analyze and Process, an
208 // example being by an AEC, it should not be considered speech for the purpose
209 // of high band suppression. To that end, the speech probability is scaled
210 // accordingly.
211 float sum_analysis_spectrum = 0.f;
212 float sum_processing_spectrum = 0.f;
213 for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
214 sum_analysis_spectrum += prev_analysis_signal_spectrum[i];
215 sum_processing_spectrum += signal_spectrum[i];
216 }
217
218 // The magnitude spectrum computation enforces the spectrum to be strictly
219 // positive.
220 RTC_DCHECK_GT(sum_analysis_spectrum, 0.f);
221 avg_prob_speech *= sum_processing_spectrum / sum_analysis_spectrum;
222
223 // Compute gain based on speech probability.
224 float gain =
225 0.5f * (1.f + static_cast<float>(tanh(2.f * avg_prob_speech - 1.f)));
226
227 // Combine gain with low band gain.
228 if (avg_prob_speech >= 0.5f) {
229 gain = 0.25f * gain + 0.75f * avg_filter_gain;
230 } else {
231 gain = 0.5f * gain + 0.5f * avg_filter_gain;
232 }
233
234 // Make sure gain is within flooring range.
235 return std::min(std::max(gain, minimum_attenuating_gain), 1.f);
236 }
237
238 } // namespace
239
ChannelState(const SuppressionParams & suppression_params,size_t num_bands)240 NoiseSuppressor::ChannelState::ChannelState(
241 const SuppressionParams& suppression_params,
242 size_t num_bands)
243 : wiener_filter(suppression_params),
244 noise_estimator(suppression_params),
245 process_delay_memory(num_bands > 1 ? num_bands - 1 : 0) {
246 analyze_analysis_memory.fill(0.f);
247 prev_analysis_signal_spectrum.fill(1.f);
248 process_analysis_memory.fill(0.f);
249 process_synthesis_memory.fill(0.f);
250 for (auto& d : process_delay_memory) {
251 d.fill(0.f);
252 }
253 }
254
NoiseSuppressor(const NsConfig & config,size_t sample_rate_hz,size_t num_channels)255 NoiseSuppressor::NoiseSuppressor(const NsConfig& config,
256 size_t sample_rate_hz,
257 size_t num_channels)
258 : num_bands_(NumBandsForRate(sample_rate_hz)),
259 num_channels_(num_channels),
260 suppression_params_(config.target_level),
261 filter_bank_states_heap_(NumChannelsOnHeap(num_channels_)),
262 upper_band_gains_heap_(NumChannelsOnHeap(num_channels_)),
263 energies_before_filtering_heap_(NumChannelsOnHeap(num_channels_)),
264 gain_adjustments_heap_(NumChannelsOnHeap(num_channels_)),
265 channels_(num_channels_) {
266 for (size_t ch = 0; ch < num_channels_; ++ch) {
267 channels_[ch] =
268 std::make_unique<ChannelState>(suppression_params_, num_bands_);
269 }
270 }
271
AggregateWienerFilters(rtc::ArrayView<float,kFftSizeBy2Plus1> filter) const272 void NoiseSuppressor::AggregateWienerFilters(
273 rtc::ArrayView<float, kFftSizeBy2Plus1> filter) const {
274 rtc::ArrayView<const float, kFftSizeBy2Plus1> filter0 =
275 channels_[0]->wiener_filter.get_filter();
276 std::copy(filter0.begin(), filter0.end(), filter.begin());
277
278 for (size_t ch = 1; ch < num_channels_; ++ch) {
279 rtc::ArrayView<const float, kFftSizeBy2Plus1> filter_ch =
280 channels_[ch]->wiener_filter.get_filter();
281
282 for (size_t k = 0; k < kFftSizeBy2Plus1; ++k) {
283 filter[k] = std::min(filter[k], filter_ch[k]);
284 }
285 }
286 }
287
Analyze(const AudioBuffer & audio)288 void NoiseSuppressor::Analyze(const AudioBuffer& audio) {
289 // Prepare the noise estimator for the analysis stage.
290 for (size_t ch = 0; ch < num_channels_; ++ch) {
291 channels_[ch]->noise_estimator.PrepareAnalysis();
292 }
293
294 // Check for zero frames.
295 bool zero_frame = true;
296 for (size_t ch = 0; ch < num_channels_; ++ch) {
297 rtc::ArrayView<const float, kNsFrameSize> y_band0(
298 &audio.split_bands_const(ch)[0][0], kNsFrameSize);
299 float energy = ComputeEnergyOfExtendedFrame(
300 y_band0, channels_[ch]->analyze_analysis_memory);
301 if (energy > 0.f) {
302 zero_frame = false;
303 break;
304 }
305 }
306
307 if (zero_frame) {
308 // We want to avoid updating statistics in this case:
309 // Updating feature statistics when we have zeros only will cause
310 // thresholds to move towards zero signal situations. This in turn has the
311 // effect that once the signal is "turned on" (non-zero values) everything
312 // will be treated as speech and there is no noise suppression effect.
313 // Depending on the duration of the inactive signal it takes a
314 // considerable amount of time for the system to learn what is noise and
315 // what is speech.
316 return;
317 }
318
319 // Only update analysis counter for frames that are properly analyzed.
320 if (++num_analyzed_frames_ < 0) {
321 num_analyzed_frames_ = 0;
322 }
323
324 // Analyze all channels.
325 for (size_t ch = 0; ch < num_channels_; ++ch) {
326 std::unique_ptr<ChannelState>& ch_p = channels_[ch];
327 rtc::ArrayView<const float, kNsFrameSize> y_band0(
328 &audio.split_bands_const(ch)[0][0], kNsFrameSize);
329
330 // Form an extended frame and apply analysis filter bank windowing.
331 std::array<float, kFftSize> extended_frame;
332 FormExtendedFrame(y_band0, ch_p->analyze_analysis_memory, extended_frame);
333 ApplyFilterBankWindow(extended_frame);
334
335 // Compute the magnitude spectrum.
336 std::array<float, kFftSize> real;
337 std::array<float, kFftSize> imag;
338 fft_.Fft(extended_frame, real, imag);
339
340 std::array<float, kFftSizeBy2Plus1> signal_spectrum;
341 ComputeMagnitudeSpectrum(real, imag, signal_spectrum);
342
343 // Compute energies.
344 float signal_energy = 0.f;
345 for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
346 signal_energy += real[i] * real[i] + imag[i] * imag[i];
347 }
348 signal_energy /= kFftSizeBy2Plus1;
349
350 float signal_spectral_sum = 0.f;
351 for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
352 signal_spectral_sum += signal_spectrum[i];
353 }
354
355 // Estimate the noise spectra and the probability estimates of speech
356 // presence.
357 ch_p->noise_estimator.PreUpdate(num_analyzed_frames_, signal_spectrum,
358 signal_spectral_sum);
359
360 std::array<float, kFftSizeBy2Plus1> post_snr;
361 std::array<float, kFftSizeBy2Plus1> prior_snr;
362 ComputeSnr(ch_p->wiener_filter.get_filter(),
363 ch_p->prev_analysis_signal_spectrum, signal_spectrum,
364 ch_p->noise_estimator.get_prev_noise_spectrum(),
365 ch_p->noise_estimator.get_noise_spectrum(), prior_snr, post_snr);
366
367 ch_p->speech_probability_estimator.Update(
368 num_analyzed_frames_, prior_snr, post_snr,
369 ch_p->noise_estimator.get_conservative_noise_spectrum(),
370 signal_spectrum, signal_spectral_sum, signal_energy);
371
372 ch_p->noise_estimator.PostUpdate(
373 ch_p->speech_probability_estimator.get_probability(), signal_spectrum);
374
375 // Store the magnitude spectrum to make it avalilable for the process
376 // method.
377 std::copy(signal_spectrum.begin(), signal_spectrum.end(),
378 ch_p->prev_analysis_signal_spectrum.begin());
379 }
380 }
381
Process(AudioBuffer * audio)382 void NoiseSuppressor::Process(AudioBuffer* audio) {
383 // Select the space for storing data during the processing.
384 std::array<FilterBankState, kMaxNumChannelsOnStack> filter_bank_states_stack;
385 rtc::ArrayView<FilterBankState> filter_bank_states(
386 filter_bank_states_stack.data(), num_channels_);
387 std::array<float, kMaxNumChannelsOnStack> upper_band_gains_stack;
388 rtc::ArrayView<float> upper_band_gains(upper_band_gains_stack.data(),
389 num_channels_);
390 std::array<float, kMaxNumChannelsOnStack> energies_before_filtering_stack;
391 rtc::ArrayView<float> energies_before_filtering(
392 energies_before_filtering_stack.data(), num_channels_);
393 std::array<float, kMaxNumChannelsOnStack> gain_adjustments_stack;
394 rtc::ArrayView<float> gain_adjustments(gain_adjustments_stack.data(),
395 num_channels_);
396 if (NumChannelsOnHeap(num_channels_) > 0) {
397 // If the stack-allocated space is too small, use the heap for storing the
398 // data.
399 filter_bank_states = rtc::ArrayView<FilterBankState>(
400 filter_bank_states_heap_.data(), num_channels_);
401 upper_band_gains =
402 rtc::ArrayView<float>(upper_band_gains_heap_.data(), num_channels_);
403 energies_before_filtering = rtc::ArrayView<float>(
404 energies_before_filtering_heap_.data(), num_channels_);
405 gain_adjustments =
406 rtc::ArrayView<float>(gain_adjustments_heap_.data(), num_channels_);
407 }
408
409 // Compute the suppression filters for all channels.
410 for (size_t ch = 0; ch < num_channels_; ++ch) {
411 // Form an extended frame and apply analysis filter bank windowing.
412 rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
413 kNsFrameSize);
414
415 FormExtendedFrame(y_band0, channels_[ch]->process_analysis_memory,
416 filter_bank_states[ch].extended_frame);
417
418 ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
419
420 energies_before_filtering[ch] =
421 ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
422
423 // Perform filter bank analysis and compute the magnitude spectrum.
424 fft_.Fft(filter_bank_states[ch].extended_frame, filter_bank_states[ch].real,
425 filter_bank_states[ch].imag);
426
427 std::array<float, kFftSizeBy2Plus1> signal_spectrum;
428 ComputeMagnitudeSpectrum(filter_bank_states[ch].real,
429 filter_bank_states[ch].imag, signal_spectrum);
430
431 // Compute the frequency domain gain filter for noise attenuation.
432 channels_[ch]->wiener_filter.Update(
433 num_analyzed_frames_,
434 channels_[ch]->noise_estimator.get_noise_spectrum(),
435 channels_[ch]->noise_estimator.get_prev_noise_spectrum(),
436 channels_[ch]->noise_estimator.get_parametric_noise_spectrum(),
437 signal_spectrum);
438
439 if (num_bands_ > 1) {
440 // Compute the time-domain gain for attenuating the noise in the upper
441 // bands.
442
443 upper_band_gains[ch] = ComputeUpperBandsGain(
444 suppression_params_.minimum_attenuating_gain,
445 channels_[ch]->wiener_filter.get_filter(),
446 channels_[ch]->speech_probability_estimator.get_probability(),
447 channels_[ch]->prev_analysis_signal_spectrum, signal_spectrum);
448 }
449 }
450
451 // Aggregate the Wiener filters for all channels.
452 std::array<float, kFftSizeBy2Plus1> filter_data;
453 rtc::ArrayView<const float, kFftSizeBy2Plus1> filter = filter_data;
454 if (num_channels_ == 1) {
455 filter = channels_[0]->wiener_filter.get_filter();
456 } else {
457 AggregateWienerFilters(filter_data);
458 }
459
460 for (size_t ch = 0; ch < num_channels_; ++ch) {
461 // Apply the filter to the lower band.
462 for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
463 filter_bank_states[ch].real[i] *= filter[i];
464 filter_bank_states[ch].imag[i] *= filter[i];
465 }
466 }
467
468 // Perform filter bank synthesis
469 for (size_t ch = 0; ch < num_channels_; ++ch) {
470 fft_.Ifft(filter_bank_states[ch].real, filter_bank_states[ch].imag,
471 filter_bank_states[ch].extended_frame);
472 }
473
474 for (size_t ch = 0; ch < num_channels_; ++ch) {
475 const float energy_after_filtering =
476 ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
477
478 // Apply synthesis window.
479 ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
480
481 // Compute the adjustment of the noise attenuation filter based on the
482 // effect of the attenuation.
483 gain_adjustments[ch] =
484 channels_[ch]->wiener_filter.ComputeOverallScalingFactor(
485 num_analyzed_frames_,
486 channels_[ch]->speech_probability_estimator.get_prior_probability(),
487 energies_before_filtering[ch], energy_after_filtering);
488 }
489
490 // Select and apply adjustment of the noise attenuation filter based on the
491 // effect of the attenuation.
492 float gain_adjustment = gain_adjustments[0];
493 for (size_t ch = 1; ch < num_channels_; ++ch) {
494 gain_adjustment = std::min(gain_adjustment, gain_adjustments[ch]);
495 }
496 for (size_t ch = 0; ch < num_channels_; ++ch) {
497 for (size_t i = 0; i < kFftSize; ++i) {
498 filter_bank_states[ch].extended_frame[i] =
499 gain_adjustment * filter_bank_states[ch].extended_frame[i];
500 }
501 }
502
503 // Use overlap-and-add to form the output frame of the lowest band.
504 for (size_t ch = 0; ch < num_channels_; ++ch) {
505 rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
506 kNsFrameSize);
507 OverlapAndAdd(filter_bank_states[ch].extended_frame,
508 channels_[ch]->process_synthesis_memory, y_band0);
509 }
510
511 if (num_bands_ > 1) {
512 // Select the noise attenuating gain to apply to the upper band.
513 float upper_band_gain = upper_band_gains[0];
514 for (size_t ch = 1; ch < num_channels_; ++ch) {
515 upper_band_gain = std::min(upper_band_gain, upper_band_gains[ch]);
516 }
517
518 // Process the upper bands.
519 for (size_t ch = 0; ch < num_channels_; ++ch) {
520 for (size_t b = 1; b < num_bands_; ++b) {
521 // Delay the upper bands to match the delay of the filterbank applied to
522 // the lowest band.
523 rtc::ArrayView<float, kNsFrameSize> y_band(
524 &audio->split_bands(ch)[b][0], kNsFrameSize);
525 std::array<float, kNsFrameSize> delayed_frame;
526 DelaySignal(y_band, channels_[ch]->process_delay_memory[b - 1],
527 delayed_frame);
528
529 // Apply the time-domain noise-attenuating gain.
530 for (size_t j = 0; j < kNsFrameSize; j++) {
531 y_band[j] = upper_band_gain * delayed_frame[j];
532 }
533 }
534 }
535 }
536
537 // Limit the output the allowed range.
538 for (size_t ch = 0; ch < num_channels_; ++ch) {
539 for (size_t b = 0; b < num_bands_; ++b) {
540 rtc::ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0],
541 kNsFrameSize);
542 for (size_t j = 0; j < kNsFrameSize; j++) {
543 y_band[j] = std::min(std::max(y_band[j], -32768.f), 32767.f);
544 }
545 }
546 }
547 }
548
549 } // namespace webrtc
550