/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
D | StandardDeviation.java | 48 private Variance variance = null; field in StandardDeviation 55 variance = new Variance(); in StandardDeviation() 64 variance = new Variance(m2); in StandardDeviation() 88 variance = new Variance(isBiasCorrected); in StandardDeviation() 103 variance = new Variance(isBiasCorrected, m2); in StandardDeviation() 111 variance.increment(d); in increment() 118 return variance.getN(); in getN() 126 return FastMath.sqrt(variance.getResult()); in getResult() 134 variance.clear(); in clear() 153 return FastMath.sqrt(variance.evaluate(values)); in evaluate() [all …]
|
D | Kurtosis.java | 111 double variance = moment.m2 / (moment.n - 1); in getResult() local 112 if (moment.n <= 3 || variance < 10E-20) { in getResult() 119 ((n - 1) * (n -2) * (n -3) * variance * variance); in getResult() 171 Variance variance = new Variance(); in evaluate() local 172 variance.incrementAll(values, begin, length); in evaluate() 173 double mean = variance.moment.m1; in evaluate() 174 double stdDev = FastMath.sqrt(variance.getResult()); in evaluate()
|
D | Skewness.java | 107 double variance = moment.m2 / (moment.n - 1); in getResult() local 108 if (variance < 10E-20) { in getResult() 113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); in getResult() 172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); in evaluate() local 179 accum3 /= variance * FastMath.sqrt(variance); in evaluate()
|
/external/tensorflow/tensorflow/python/keras/layers/preprocessing/ |
D | normalization.py | 91 def __init__(self, axis=-1, mean=None, variance=None, **kwargs): argument 110 if isinstance(variance, variables.Variable): 113 if mean is not None and variance is not None: 115 variance = convert_to_ndarray(variance) 116 elif mean is not None or variance is not None: 119 'must be set. Got mean: {} and variance: {}'.format(mean, variance)) 121 self.variance_val = variance 156 self.variance = self.add_weight( 175 self.variance.assign(variance_val) 199 total_variance = ((self.variance + [all …]
|
D | normalization_v1.py | 85 variance = kwargs.pop('variance', None) 99 if isinstance(variance, variables.Variable): 102 if mean is not None and variance is not None: 104 variance = convert_to_ndarray(variance) 105 elif mean is not None or variance is not None: 108 'must be set. Got mean: {} and variance: {}'.format(mean, variance)) 111 self.variance_val = variance 148 self.variance = self._add_state_variable( 177 variance = array_ops.reshape(self.variance, self._broadcast_shape) 179 math_ops.maximum(math_ops.sqrt(variance), K.epsilon())) [all …]
|
/external/guava/android/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 74 private final double variance; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 78 this.variance = variance; in MeanAndVariance() 83 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode() 90 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 96 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 108 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 125 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 140 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm 166 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
|
/external/guava/guava-tests/benchmark/com/google/common/math/ |
D | StatsBenchmark.java | 74 private final double variance; field in StatsBenchmark.MeanAndVariance 76 MeanAndVariance(double mean, double variance) { in MeanAndVariance() argument 78 this.variance = variance; in MeanAndVariance() 83 return Doubles.hashCode(mean) * 31 + Doubles.hashCode(variance); in hashCode() 90 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 96 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 108 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 125 MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm) { in variance() method 140 abstract MeanAndVariance variance(double[] values, MeanAlgorithm meanAlgorithm); in variance() method in StatsBenchmark.VarianceAlgorithm 166 tmp += varianceAlgorithm.variance(values[i & 0xFF], meanAlgorithm).hashCode(); in meanAndVariance()
|
/external/tensorflow/tensorflow/lite/delegates/gpu/metal/kernels/ |
D | mean_stddev_normalization_test.mm | 31 // zero mean, zero variance 35 // zero mean, small variance 39 // zero mean, large variance 43 // small mean, zero variance 47 // small mean, small variance 51 // small mean, large variance 55 // large mean, zero variance 59 // large mean, small variance 63 // large mean, large variance
|
/external/tensorflow/tensorflow/core/kernels/mkl/ |
D | mkl_fused_batch_norm_op_test.cc | 46 const Tensor& mean, const Tensor& variance, 52 const Tensor& scale, const Tensor& mean, const Tensor& variance, 100 Tensor variance(dtype, {depth}); in VerifyTensorsClose() local 101 variance.flat<T>() = in VerifyTensorsClose() 102 variance.flat<T>().template setRandom<random_gen_>().abs(); in VerifyTensorsClose() 111 run(input, scale, offset, mean, variance, exponential_avg_factor, in VerifyTensorsClose() 113 run_mkl(input, scale, offset, mean, variance, exponential_avg_factor, in VerifyTensorsClose() 154 Tensor variance(dtype, {out_channels}); in VerifyTensorsCloseForGrad() local 155 variance.flat<T>() = in VerifyTensorsCloseForGrad() 156 variance.flat<T>().template setRandom<random_gen_>().abs(); in VerifyTensorsCloseForGrad() [all …]
|
/external/webrtc/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
/external/libtextclassifier/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/openscreen/third_party/abseil/src/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
D | chi_square.cc | 125 const double variance = 2.0 / (9 * dof); in ChiSquareValue() local 127 if (variance != 0) { in ChiSquareValue() 128 return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; in ChiSquareValue() 172 const double variance = 2.0 / (9 * dof); in ChiSquarePValue() local 174 if (variance != 0) { in ChiSquarePValue() 175 const double z = (chi_square_scaled - mean) / std::sqrt(variance); in ChiSquarePValue()
|
/external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
/external/angle/third_party/abseil-cpp/absl/random/internal/ |
D | distribution_test_util_test.cc | 162 m.variance = 1; in TEST() 167 m.variance = 1; in TEST() 172 m.variance = 100; in TEST() 180 m.variance = 1; in TEST() 185 m.variance = 1; in TEST() 190 m.variance = 100; in TEST()
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
D | api_def_FusedBatchNormV3.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 85 The data type for the scale, offset, mean, and variance. 91 A small float number added to the variance of x.
|
D | api_def_FusedBatchNormV2.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 The data type for the scale, offset, mean, and variance. 84 A small float number added to the variance of x.
|
D | api_def_FusedBatchNorm.pbtxt | 29 name: "variance" 31 A 1D Tensor for population variance. Used for inference only; 51 A 1D Tensor for the computed batch variance, to be used by 52 TensorFlow to compute the running variance. 65 A 1D Tensor for the computed batch variance (inverted variance 78 A small float number added to the variance of x.
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
D | StatisticalSummaryValues.java | 39 private final double variance; field in StatisticalSummaryValues 63 public StatisticalSummaryValues(double mean, double variance, long n, in StatisticalSummaryValues() argument 67 this.variance = variance; in StatisticalSummaryValues() 113 return FastMath.sqrt(variance); in getStandardDeviation() 120 return variance; in getVariance()
|
/external/tensorflow/tensorflow/python/keras/layers/ |
D | normalization.py | 564 def _maybe_add_or_remove_bessels_correction(variance, remove=True): argument 571 return variance 573 array_ops.size(inputs) / array_ops.size(variance), variance.dtype) 576 math_ops.cast(1.0, variance.dtype)) / sample_size 579 sample_size - math_ops.cast(1.0, variance.dtype)) 580 return variance * factor 588 variance=_maybe_add_or_remove_bessels_correction( 604 variance=self.moving_variance, 617 output, mean, variance = control_flow_util.smart_cond( 619 variance = _maybe_add_or_remove_bessels_correction(variance, remove=True) [all …]
|
/external/libaom/libaom/av1/encoder/ |
D | var_based_part.c | 100 v->variance = in get_variance() 161 vt.part_variances->none.variance < threshold) { in set_vt_partitioning() 172 vt.part_variances->none.variance > (threshold << 4))) { in set_vt_partitioning() 178 vt.part_variances->none.variance < threshold) { in set_vt_partitioning() 188 if (vt.part_variances->vert[0].variance < threshold && in set_vt_partitioning() 189 vt.part_variances->vert[1].variance < threshold && in set_vt_partitioning() 203 if (vt.part_variances->horz[0].variance < threshold && in set_vt_partitioning() 204 vt.part_variances->horz[1].variance < threshold && in set_vt_partitioning() 415 if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) in set_low_temp_var_flag_64x64() 419 if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2)) in set_low_temp_var_flag_64x64() [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | quantized_instance_norm.cc | 42 const uint32_t cols, float* mean, float* variance) { in ColMeanAndVariance() argument 128 vst1q_f32(variance + col_offset, vmulq_n_f32(M2A[3], inv_rows)); in ColMeanAndVariance() 129 vst1q_f32(variance + col_offset + 4, vmulq_n_f32(M2A[2], inv_rows)); in ColMeanAndVariance() 130 vst1q_f32(variance + col_offset + 8, vmulq_n_f32(M2A[1], inv_rows)); in ColMeanAndVariance() 131 vst1q_f32(variance + col_offset + 12, vmulq_n_f32(M2A[0], inv_rows)); in ColMeanAndVariance() 150 const float32x4_t variance[4] = {vld1q_f32(variance_ptr + col_offset), in MinAndMax() local 155 vrsqrteq_f32(vaddq_f32(variance[0], eps)), in MinAndMax() 156 vrsqrteq_f32(vaddq_f32(variance[1], eps)), in MinAndMax() 157 vrsqrteq_f32(vaddq_f32(variance[2], eps)), in MinAndMax() 158 vrsqrteq_f32(vaddq_f32(variance[3], eps))}; in MinAndMax() [all …]
|