• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/distribution_test_util.h"
16 
17 #include "gtest/gtest.h"
18 
19 namespace {
20 
TEST(TestUtil,InverseErf)21 TEST(TestUtil, InverseErf) {
22   const struct {
23     const double z;
24     const double value;
25   } kErfInvTable[] = {
26       {0.0000001, 8.86227e-8},
27       {0.00001, 8.86227e-6},
28       {0.5, 0.4769362762044},
29       {0.6, 0.5951160814499},
30       {0.99999, 3.1234132743},
31       {0.9999999, 3.7665625816},
32       {0.999999944, 3.8403850690566985},  // = log((1-x) * (1+x)) =~ 16.004
33       {0.999999999, 4.3200053849134452},
34   };
35 
36   for (const auto& data : kErfInvTable) {
37     auto value = absl::random_internal::erfinv(data.z);
38 
39     // Log using the Wolfram-alpha function name & parameters.
40     EXPECT_NEAR(value, data.value, 1e-8)
41         << " InverseErf[" << data.z << "]  (expected=" << data.value << ")  -> "
42         << value;
43   }
44 }
45 
46 const struct {
47   const double p;
48   const double q;
49   const double x;
50   const double alpha;
51 } kBetaTable[] = {
52     {0.5, 0.5, 0.01, 0.06376856085851985},
53     {0.5, 0.5, 0.1, 0.2048327646991335},
54     {0.5, 0.5, 1, 1},
55     {1, 0.5, 0, 0},
56     {1, 0.5, 0.01, 0.005012562893380045},
57     {1, 0.5, 0.1, 0.0513167019494862},
58     {1, 0.5, 0.5, 0.2928932188134525},
59     {1, 1, 0.5, 0.5},
60     {2, 2, 0.1, 0.028},
61     {2, 2, 0.2, 0.104},
62     {2, 2, 0.3, 0.216},
63     {2, 2, 0.4, 0.352},
64     {2, 2, 0.5, 0.5},
65     {2, 2, 0.6, 0.648},
66     {2, 2, 0.7, 0.784},
67     {2, 2, 0.8, 0.896},
68     {2, 2, 0.9, 0.972},
69     {5.5, 5, 0.5, 0.4361908850559777},
70     {10, 0.5, 0.9, 0.1516409096346979},
71     {10, 5, 0.5, 0.08978271484375},
72     {10, 5, 1, 1},
73     {10, 10, 0.5, 0.5},
74     {20, 5, 0.8, 0.4598773297575791},
75     {20, 10, 0.6, 0.2146816102371739},
76     {20, 10, 0.8, 0.9507364826957875},
77     {20, 20, 0.5, 0.5},
78     {20, 20, 0.6, 0.8979413687105918},
79     {30, 10, 0.7, 0.2241297491808366},
80     {30, 10, 0.8, 0.7586405487192086},
81     {40, 20, 0.7, 0.7001783247477069},
82     {1, 0.5, 0.1, 0.0513167019494862},
83     {1, 0.5, 0.2, 0.1055728090000841},
84     {1, 0.5, 0.3, 0.1633399734659245},
85     {1, 0.5, 0.4, 0.2254033307585166},
86     {1, 2, 0.2, 0.36},
87     {1, 3, 0.2, 0.488},
88     {1, 4, 0.2, 0.5904},
89     {1, 5, 0.2, 0.67232},
90     {2, 2, 0.3, 0.216},
91     {3, 2, 0.3, 0.0837},
92     {4, 2, 0.3, 0.03078},
93     {5, 2, 0.3, 0.010935},
94 
95     // These values test small & large points along the range of the Beta
96     // function.
97     //
98     // When selecting test points, remember that if BetaIncomplete(x, p, q)
99     // returns the same value to within the limits of precision over a large
100     // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
101     // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
102 
103     // BetaRegularized[x, 0.00001, 0.00001],
104     // For x in {~0.001 ... ~0.999}, => ~0.5
105     {1e-5, 1e-5, 1e-5, 0.4999424388184638311},
106     {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
107 
108     // BetaRegularized[x, 0.00001, 10000].
109     // For x in {~epsilon ... 1.0}, => ~1
110     {1e-5, 1e5, 1e-6, 0.9999817708130066936},
111     {1e-5, 1e5, (1.0 - 1e-7), 1.0},
112 
113     // BetaRegularized[x, 10000, 0.00001].
114     // For x in {0 .. 1-epsilon}, => ~0
115     {1e5, 1e-5, 1e-6, 0},
116     {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
117 };
118 
TEST(BetaTest,BetaIncomplete)119 TEST(BetaTest, BetaIncomplete) {
120   for (const auto& data : kBetaTable) {
121     auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
122 
123     // Log using the Wolfram-alpha function name & parameters.
124     EXPECT_NEAR(value, data.alpha, 1e-12)
125         << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
126         << "]  (expected=" << data.alpha << ")  -> " << value;
127   }
128 }
129 
TEST(BetaTest,BetaIncompleteInv)130 TEST(BetaTest, BetaIncompleteInv) {
131   for (const auto& data : kBetaTable) {
132     auto value =
133         absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
134 
135     // Log using the Wolfram-alpha function name & parameters.
136     EXPECT_NEAR(value, data.x, 1e-6)
137         << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
138         << data.q << "]  (expected=" << data.x << ")  -> " << value;
139   }
140 }
141 
TEST(MaxErrorTolerance,MaxErrorTolerance)142 TEST(MaxErrorTolerance, MaxErrorTolerance) {
143   std::vector<std::pair<double, double>> cases = {
144       {0.0000001, 8.86227e-8 * 1.41421356237},
145       {0.00001, 8.86227e-6 * 1.41421356237},
146       {0.5, 0.4769362762044 * 1.41421356237},
147       {0.6, 0.5951160814499 * 1.41421356237},
148       {0.99999, 3.1234132743 * 1.41421356237},
149       {0.9999999, 3.7665625816 * 1.41421356237},
150       {0.999999944, 3.8403850690566985 * 1.41421356237},
151       {0.999999999, 4.3200053849134452 * 1.41421356237}};
152   for (auto entry : cases) {
153     EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
154                 entry.second, 1e-8);
155   }
156 }
157 
TEST(ZScore,WithSameMean)158 TEST(ZScore, WithSameMean) {
159   absl::random_internal::DistributionMoments m;
160   m.n = 100;
161   m.mean = 5;
162   m.variance = 1;
163   EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
164 
165   m.n = 1;
166   m.mean = 0;
167   m.variance = 1;
168   EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
169 
170   m.n = 10000;
171   m.mean = -5;
172   m.variance = 100;
173   EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
174 }
175 
TEST(ZScore,DifferentMean)176 TEST(ZScore, DifferentMean) {
177   absl::random_internal::DistributionMoments m;
178   m.n = 100;
179   m.mean = 5;
180   m.variance = 1;
181   EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
182 
183   m.n = 1;
184   m.mean = 0;
185   m.variance = 1;
186   EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
187 
188   m.n = 10000;
189   m.mean = -5;
190   m.variance = 100;
191   EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
192 }
193 }  // namespace
194