1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/random/internal/distribution_test_util.h"
16
17 #include "gtest/gtest.h"
18
19 namespace {
20
TEST(TestUtil,InverseErf)21 TEST(TestUtil, InverseErf) {
22 const struct {
23 const double z;
24 const double value;
25 } kErfInvTable[] = {
26 {0.0000001, 8.86227e-8},
27 {0.00001, 8.86227e-6},
28 {0.5, 0.4769362762044},
29 {0.6, 0.5951160814499},
30 {0.99999, 3.1234132743},
31 {0.9999999, 3.7665625816},
32 {0.999999944, 3.8403850690566985}, // = log((1-x) * (1+x)) =~ 16.004
33 {0.999999999, 4.3200053849134452},
34 };
35
36 for (const auto& data : kErfInvTable) {
37 auto value = absl::random_internal::erfinv(data.z);
38
39 // Log using the Wolfram-alpha function name & parameters.
40 EXPECT_NEAR(value, data.value, 1e-8)
41 << " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
42 << value;
43 }
44 }
45
46 const struct {
47 const double p;
48 const double q;
49 const double x;
50 const double alpha;
51 } kBetaTable[] = {
52 {0.5, 0.5, 0.01, 0.06376856085851985},
53 {0.5, 0.5, 0.1, 0.2048327646991335},
54 {0.5, 0.5, 1, 1},
55 {1, 0.5, 0, 0},
56 {1, 0.5, 0.01, 0.005012562893380045},
57 {1, 0.5, 0.1, 0.0513167019494862},
58 {1, 0.5, 0.5, 0.2928932188134525},
59 {1, 1, 0.5, 0.5},
60 {2, 2, 0.1, 0.028},
61 {2, 2, 0.2, 0.104},
62 {2, 2, 0.3, 0.216},
63 {2, 2, 0.4, 0.352},
64 {2, 2, 0.5, 0.5},
65 {2, 2, 0.6, 0.648},
66 {2, 2, 0.7, 0.784},
67 {2, 2, 0.8, 0.896},
68 {2, 2, 0.9, 0.972},
69 {5.5, 5, 0.5, 0.4361908850559777},
70 {10, 0.5, 0.9, 0.1516409096346979},
71 {10, 5, 0.5, 0.08978271484375},
72 {10, 5, 1, 1},
73 {10, 10, 0.5, 0.5},
74 {20, 5, 0.8, 0.4598773297575791},
75 {20, 10, 0.6, 0.2146816102371739},
76 {20, 10, 0.8, 0.9507364826957875},
77 {20, 20, 0.5, 0.5},
78 {20, 20, 0.6, 0.8979413687105918},
79 {30, 10, 0.7, 0.2241297491808366},
80 {30, 10, 0.8, 0.7586405487192086},
81 {40, 20, 0.7, 0.7001783247477069},
82 {1, 0.5, 0.1, 0.0513167019494862},
83 {1, 0.5, 0.2, 0.1055728090000841},
84 {1, 0.5, 0.3, 0.1633399734659245},
85 {1, 0.5, 0.4, 0.2254033307585166},
86 {1, 2, 0.2, 0.36},
87 {1, 3, 0.2, 0.488},
88 {1, 4, 0.2, 0.5904},
89 {1, 5, 0.2, 0.67232},
90 {2, 2, 0.3, 0.216},
91 {3, 2, 0.3, 0.0837},
92 {4, 2, 0.3, 0.03078},
93 {5, 2, 0.3, 0.010935},
94
95 // These values test small & large points along the range of the Beta
96 // function.
97 //
98 // When selecting test points, remember that if BetaIncomplete(x, p, q)
99 // returns the same value to within the limits of precision over a large
100 // domain of the input, x, then BetaIncompleteInv(alpha, p, q) may return an
101 // essentially arbitrary value where BetaIncomplete(x, p, q) =~ alpha.
102
103 // BetaRegularized[x, 0.00001, 0.00001],
104 // For x in {~0.001 ... ~0.999}, => ~0.5
105 {1e-5, 1e-5, 1e-5, 0.4999424388184638311},
106 {1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
107
108 // BetaRegularized[x, 0.00001, 10000].
109 // For x in {~epsilon ... 1.0}, => ~1
110 {1e-5, 1e5, 1e-6, 0.9999817708130066936},
111 {1e-5, 1e5, (1.0 - 1e-7), 1.0},
112
113 // BetaRegularized[x, 10000, 0.00001].
114 // For x in {0 .. 1-epsilon}, => ~0
115 {1e5, 1e-5, 1e-6, 0},
116 {1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
117 };
118
TEST(BetaTest,BetaIncomplete)119 TEST(BetaTest, BetaIncomplete) {
120 for (const auto& data : kBetaTable) {
121 auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
122
123 // Log using the Wolfram-alpha function name & parameters.
124 EXPECT_NEAR(value, data.alpha, 1e-12)
125 << " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
126 << "] (expected=" << data.alpha << ") -> " << value;
127 }
128 }
129
TEST(BetaTest,BetaIncompleteInv)130 TEST(BetaTest, BetaIncompleteInv) {
131 for (const auto& data : kBetaTable) {
132 auto value =
133 absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
134
135 // Log using the Wolfram-alpha function name & parameters.
136 EXPECT_NEAR(value, data.x, 1e-6)
137 << " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
138 << data.q << "] (expected=" << data.x << ") -> " << value;
139 }
140 }
141
TEST(MaxErrorTolerance,MaxErrorTolerance)142 TEST(MaxErrorTolerance, MaxErrorTolerance) {
143 std::vector<std::pair<double, double>> cases = {
144 {0.0000001, 8.86227e-8 * 1.41421356237},
145 {0.00001, 8.86227e-6 * 1.41421356237},
146 {0.5, 0.4769362762044 * 1.41421356237},
147 {0.6, 0.5951160814499 * 1.41421356237},
148 {0.99999, 3.1234132743 * 1.41421356237},
149 {0.9999999, 3.7665625816 * 1.41421356237},
150 {0.999999944, 3.8403850690566985 * 1.41421356237},
151 {0.999999999, 4.3200053849134452 * 1.41421356237}};
152 for (auto entry : cases) {
153 EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
154 entry.second, 1e-8);
155 }
156 }
157
TEST(ZScore,WithSameMean)158 TEST(ZScore, WithSameMean) {
159 absl::random_internal::DistributionMoments m;
160 m.n = 100;
161 m.mean = 5;
162 m.variance = 1;
163 EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
164
165 m.n = 1;
166 m.mean = 0;
167 m.variance = 1;
168 EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
169
170 m.n = 10000;
171 m.mean = -5;
172 m.variance = 100;
173 EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
174 }
175
TEST(ZScore,DifferentMean)176 TEST(ZScore, DifferentMean) {
177 absl::random_internal::DistributionMoments m;
178 m.n = 100;
179 m.mean = 5;
180 m.variance = 1;
181 EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
182
183 m.n = 1;
184 m.mean = 0;
185 m.variance = 1;
186 EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
187
188 m.n = 10000;
189 m.mean = -5;
190 m.variance = 100;
191 EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
192 }
193 } // namespace
194