/external/skia/site/docs/dev/design/conical/ |
D | _index.md | 71 1. All centers $C_t = (x_t, 0)$ must be on the $x$ axis 72 2. The radius $r_t$ is $x_t r_1$. 73 3. Given $x_t$ , we can derive $t = f + (1 - f) x_t$ 75 From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$ 76 so we're only interested positive solution $x_t$. Again, if there are multiple 77 $x_t$ solutions, we may want to find the bigger one if $1 - f > 0$, and smaller 83 **Theorem 1.** The solution to $x_t$ is 91 Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce 92 valid $x_t > 0$. Case 3 may have no solution at all if 96 $(x_t - x)^2 + y^2 = (x_t r_1)^2$ and eliminate negative $x_t$ solutions get us [all …]
|
/external/skqp/site/dev/design/conical/ |
D | index.md | 61 1. All centers $C_t = (x_t, 0)$ must be on the $x$ axis 62 2. The radius $r_t$ is $x_t r_1$. 63 3. Given $x_t$ , we can derive $t = f + (1 - f) x_t$ 65 From now on, we'll focus on how to quickly computes $x_t$. Note that $r_t > 0$ so we're only 66 interested positive solution $x_t$. Again, if there are multiple $x_t$ solutions, we may want to 72 **Theorem 1.** The solution to $x_t$ is 78 Case 2 always produces a valid $x_t$. Case 1 and 3 requires $x > 0$ to produce valid $x_t > 0$. Case 81 *Proof.* Algebriacally, solving the quadratic equation $(x_t - x)^2 + y^2 = (x_t r_1)^2$ and 82 eliminate negative $x_t$ solutions get us the theorem. 89 1. we still need to compute $t$ from $x_t$ (remember that $t = f + (1-f) x_t$); [all …]
|
/external/tensorflow/tensorflow/core/grappler/optimizers/ |
D | debug_stripper_test.cc | 126 Tensor x_t(DT_FLOAT, TensorShape({})); in TEST_F() local 128 x_t.flat<float>()(0) = 1.0f; in TEST_F() 131 EvaluateNodes(item.graph, {"z"}, {{"x", x_t}, {"y", y_t}}); in TEST_F() 133 EvaluateNodes(output, {"z"}, {{"x", x_t}, {"y", y_t}}); in TEST_F() 185 Tensor x_t(DT_FLOAT, TensorShape({})); in TEST_F() local 187 x_t.flat<float>()(0) = 1.0f; in TEST_F() 190 EvaluateNodes(item.graph, {"z"}, {{"x", x_t}, {"y", y_t}}); in TEST_F() 192 EvaluateNodes(output, {"z"}, {{"x", x_t}, {"y", y_t}}); in TEST_F() 223 Tensor x_t(DT_FLOAT, TensorShape({})); in TEST_F() local 224 x_t.flat<float>()(0) = 1.0f; in TEST_F() [all …]
|
D | constant_folding_test.cc | 49 Tensor x_t(DTYPE, TensorShape({2, 2})); in SimpleNeutralElementTest() local 53 x_t.flat<T>()(i) = T(i + 1); in SimpleNeutralElementTest() 120 EvaluateNodes(item.graph, item.fetch, {{"x", x_t}}); in SimpleNeutralElementTest() 121 auto tensors = EvaluateNodes(output, item.fetch, {{"x", x_t}}); in SimpleNeutralElementTest() 388 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); in TEST_F() local 393 EvaluateNodes(item.graph, fetch, {{"x", x_t}, {"y", y_t}}); in TEST_F() 396 auto tensors = EvaluateNodes(output, fetch, {{"x", x_t}, {"y", y_t}}); in TEST_F() 445 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({2, 2})); in TEST_F() local 448 auto tensor_expected = EvaluateNodes(item.graph, fetch, {{"x", x_t}}); in TEST_F() 451 auto tensors = EvaluateNodes(output, fetch, {{"x", x_t}}); in TEST_F() [all …]
|
D | arithmetic_optimizer_test.cc | 856 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 3, 28, 28})); in TEST_F() local 858 EvaluateNodes(item.graph, item.fetch, {{"Placeholder", x_t}}); in TEST_F() 868 auto tensors = EvaluateNodes(output, item.fetch, {{"Placeholder", x_t}}); in TEST_F() 895 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({3, 3, 28, 28})); in TEST_F() local 898 item.feed = {{"Placeholder", x_t}}; in TEST_F() 924 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({4, 3, 28, 28})); in TEST_F() local 927 item.feed = {{"Placeholder", x_t}}; in TEST_F() 956 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({4, 3, 28, 28})); in TEST_F() local 959 item.feed = {{"Placeholder", x_t}}; in TEST_F() 988 auto x_t = GenerateRandomTensor<DT_FLOAT>(TensorShape({8, 3, 28, 28})); in TEST_F() local [all …]
|
/external/llvm-project/compiler-rt/test/builtins/Unit/ |
D | compiler_rt_logbl_test.c | 19 twords x_t, crt_value_t, libm_value_t; in test__compiler_rt_logbl() local 20 x_t.all = toRep(x); in test__compiler_rt_logbl() 26 x_t.s.high, x_t.s.low, crt_value_t.s.high, crt_value_t.s.low, in test__compiler_rt_logbl()
|
/external/skqp/src/gpu/gradients/ |
D | GrTwoPointConicalGradientLayout.fp | 39 // calculations of t and x_t below overflow and produce an incorrect interpolant (which then 69 float x_t = -1; 71 x_t = dot(p, p) / p.x; 73 x_t = length(p) - p.x * invR1; 81 // is really critical, maybe we should just compute the area where temp and x_t are 85 x_t = -sqrt(temp) - p.x * invR1; 87 x_t = sqrt(temp) - p.x * invR1; 92 // The final calculation of t from x_t has lots of static optimizations but only do them 93 // when x_t is positive (which can be assumed true if isWellBehaved is true) 97 if (x_t <= 0.0) { [all …]
|
/external/skia/src/gpu/gradients/ |
D | GrTwoPointConicalGradientLayout.fp | 56 float x_t = -1; 58 x_t = dot(p, p) / p.x; 60 x_t = length(p) - p.x * invR1; 68 // is really critical, maybe we should just compute the area where temp and x_t are 72 x_t = -sqrt(temp) - p.x * invR1; 74 x_t = sqrt(temp) - p.x * invR1; 79 // The final calculation of t from x_t has lots of static optimizations but only do them 80 // when x_t is positive (which can be assumed true if isWellBehaved is true) 84 if (x_t <= 0.0) { 90 t = x_t; [all …]
|
/external/tensorflow/tensorflow/core/kernels/ |
D | fused_batch_norm_op_test.cc | 209 Tensor x_t(dtype, data_format == FORMAT_NHWC ? TensorShape({n, h, w, c}) in FusedBatchNormInference() local 211 x_t.flat<T>().setRandom(); in FusedBatchNormInference() 218 Node* x = test::graph::Constant(g, x_t, "x"); in FusedBatchNormInference() 251 Tensor x_t(dtype, shape); in FusedBatchNormGrad() local 252 x_t.flat<T>().setRandom(); in FusedBatchNormGrad() 258 Node* x = test::graph::Constant(g, x_t, "x"); in FusedBatchNormGrad()
|
D | fused_batch_norm_ex_op_test.cc | 556 Tensor x_t(dtype, data_format == FORMAT_NHWC ? TensorShape({n, h, w, c}) in FusedBatchNormEx() local 558 x_t.flat<T>().setRandom(); in FusedBatchNormEx() 563 Node* x = test::graph::Constant(g, x_t, "x"); in FusedBatchNormEx()
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
D | sparse_tensor_dense_matmul_op_test.py | 343 x_t = constant_op.constant(x) 346 x_t, y_t, adjoint_a, adjoint_b) 349 x_t = constant_op.constant(x) 352 x_t, y_t, adjoint_a, adjoint_b)
|
D | unique_op_test.py | 147 x_t = array_ops.placeholder(dtypes.int32, shape=None) 148 _, idx = gen_array_ops.unique_v2(x_t, axis=[0])
|
D | functional_ops_test.py | 394 x_t = array_ops.transpose(x) 398 result_t = functional_ops.scan(lambda a, x: a + x, x_t, infer_shape=False) 401 result_t_grad = gradients_impl.gradients(result_t, [x_t])[0]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | student_t.py | 285 x_t = self.df / (y**2. + self.df) 286 neg_cdf = 0.5 * math_ops.betainc(0.5 * self.df, 0.5, x_t)
|
/external/tensorflow/tensorflow/core/framework/ |
D | tensor_util_test.cc | 544 Tensor x_t; in CompareTensorValues() local 545 EXPECT_TRUE(x_t.FromProto(x)); in CompareTensorValues() 548 test::ExpectTensorEqual<T>(x_t, y_t); in CompareTensorValues()
|
/external/tensorflow/tensorflow/python/ops/ |
D | rnn.py | 61 x_t = array_ops.transpose( 63 x_t.set_shape( 67 return x_t
|
/external/python/cpython3/Lib/test/ |
D | mime.types | 1192 model/vnd.parasolid.transmit.text x_t xmt_txt
|