/packages/modules/NeuralNetworks/common/operations/ |
D | Reduce.cpp | 85 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validateProdSum() 108 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validateMaxMin() 124 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validateLogical() 133 NN_RET_CHECK_LE(inputRank, 4); in prepare()
|
D | Squeeze.cpp | 64 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 80 NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4); in prepare()
|
D | Dequantize.cpp | 87 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 108 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in prepare()
|
D | Transpose.cpp | 94 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 123 NN_RET_CHECK_LE(numInputDims, 4); in prepare()
|
D | Elementwise.cpp | 122 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validateFloor() 138 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in prepareFloor()
|
D | Slice.cpp | 134 NN_RET_CHECK_LE(beginData[i], getSizeOfDimension(inputShape, i)); in prepare() 136 NN_RET_CHECK_LE(sliceBegin + sliceSize, getSizeOfDimension(inputShape, i)); in prepare()
|
D | LocalResponseNormalization.cpp | 175 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 189 NN_RET_CHECK_LE(numDimensions, 4); in prepare()
|
D | Concatenation.cpp | 173 NN_RET_CHECK_LE(inputRank, 4); in validate() 190 NN_RET_CHECK_LE(numDimensions, 4); in prepare()
|
D | Broadcast.cpp | 476 NN_RET_CHECK_LE(getNumberOfDimensions(input1), 4); in validate() 477 NN_RET_CHECK_LE(getNumberOfDimensions(input2), 4); in validate() 489 NN_RET_CHECK_LE(getNumberOfDimensions(input1), 4); in prepare() 490 NN_RET_CHECK_LE(getNumberOfDimensions(input2), 4); in prepare()
|
D | L2Normalization.cpp | 229 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 243 NN_RET_CHECK_LE(numDimensions, 4); in prepare()
|
D | Softmax.cpp | 256 NN_RET_CHECK_LE(inputRank, 4); in validate() 277 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in prepare()
|
D | HeatmapMaxKeypoint.cpp | 107 NN_RET_CHECK_LE(boxInfoBase[0], boxInfoBase[2]); in heatmapMaxKeypointFloat32Nhwc() 108 NN_RET_CHECK_LE(boxInfoBase[1], boxInfoBase[3]); in heatmapMaxKeypointFloat32Nhwc()
|
D | TopK_V2.cpp | 99 NN_RET_CHECK_LE(k, inputShape.dimensions.back()); in prepare()
|
D | ChannelShuffle.cpp | 71 NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4); in validate()
|
D | Gather.cpp | 50 NN_RET_CHECK_LE(0u, inputIndex); in eval()
|
D | RoiAlign.cpp | 226 NN_RET_CHECK_LE(wRoiStart, wRoiEnd); in roiAlignQuantNhwc() 227 NN_RET_CHECK_LE(hRoiStart, hRoiEnd); in roiAlignQuantNhwc()
|
D | Activation.cpp | 384 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate() 412 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in prepare()
|
D | StridedSlice.cpp | 135 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validate()
|
D | FullyConnected.cpp | 199 NN_RET_CHECK_LE(getNumberOfDimensions(input), 4); in validateShapes()
|
D | GenerateProposals.cpp | 82 NN_RET_CHECK_LE(roiBase[0], roiBase[2]); in bboxTransformFloat32() 83 NN_RET_CHECK_LE(roiBase[1], roiBase[3]); in bboxTransformFloat32() 529 NN_RET_CHECK_LE(roi[0], roi[2]); in boxWithNmsLimitFloat32Compute() 530 NN_RET_CHECK_LE(roi[1], roi[3]); in boxWithNmsLimitFloat32Compute()
|
/packages/modules/NeuralNetworks/common/ |
D | AidlValidateHal.cpp | 60 NN_RET_CHECK_LE(role.probability, 1.0f); in validateMemoryDesc() 74 NN_RET_CHECK_LE(role.probability, 1.0f); in validateMemoryDesc()
|
D | ValidateHal.cpp | 891 NN_RET_CHECK_LE(role.frequency, 1.0f); in validateMemoryDesc() 905 NN_RET_CHECK_LE(role.frequency, 1.0f); in validateMemoryDesc()
|
D | OperationsUtils.cpp | 188 NN_RET_CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max()); in QuantizeMultiplier()
|
/packages/modules/NeuralNetworks/runtime/ |
D | TypeManager.cpp | 219 NN_RET_CHECK_LE(mPrefixToExtension.size(), kMaxPrefix) << "Too many extensions in use"; in getExtensionPrefix()
|
/packages/modules/NeuralNetworks/common/include/nnapi/ |
D | TypeUtils.h | 212 #define NN_RET_CHECK_LE(x, y) NN_RET_CHECK_OP(x, y, <=) macro
|