• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // Contains the implementation of the operations.
18 
19 #define LOG_TAG "Operations"
20 
21 #include <vector>
22 
23 #include "OperationResolver.h"
24 #include "Operations.h"
25 #include "Tracing.h"
26 
27 namespace android {
28 namespace nn {
29 namespace squeeze {
30 
31 constexpr uint32_t kNumInputs = 2;
32 constexpr uint32_t kInputTensor = 0;
33 constexpr uint32_t kSqueezeDims = 1;
34 
35 constexpr uint32_t kNumOutputs = 1;
36 constexpr uint32_t kOutputTensor = 0;
37 
validate(const IOperationValidationContext * context)38 Result<Version> validate(const IOperationValidationContext* context) {
39     NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
40     NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
41     OperandType inputType = context->getInputType(kInputTensor);
42     NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
43                  inputType == OperandType::TENSOR_FLOAT32 ||
44                  inputType == OperandType::TENSOR_QUANT8_ASYMM ||
45                  inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
46             << "Unsupported input operand type for SQUEEZE op: " << inputType;
47 
48     Version minSupportedVersion;
49     if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
50         minSupportedVersion = Version::ANDROID_R;
51     } else if (inputType == OperandType::TENSOR_FLOAT16) {
52         minSupportedVersion = Version::ANDROID_Q;
53     } else {
54         minSupportedVersion = Version::ANDROID_P;
55     }
56 
57     NN_RET_CHECK(validateInputTypes(context, {
58                                                      inputType,
59                                                      OperandType::TENSOR_INT32,
60                                              }));
61     NN_RET_CHECK(validateOutputTypes(context, {inputType}));
62     const Shape& input = context->getInputShape(kInputTensor);
63     if (hasKnownRank(input)) {
64         NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
65     }
66     return minSupportedVersion;
67 }
68 
69 #ifdef NN_INCLUDE_CPU_IMPLEMENTATION
prepare(IOperationExecutionContext * context)70 bool prepare(IOperationExecutionContext* context) {
71     // Only the squeeze dims tensor can be omitted.
72     NN_RET_CHECK(!context->isOmittedInput(kInputTensor));
73     NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor));
74 
75     const int32_t* squeezeDims = context->getInputBuffer<int32_t>(kSqueezeDims);
76     const Shape inputShape = context->getInputShape(kInputTensor);
77     const Shape squeezeDimsShape = context->getInputShape(kSqueezeDims);
78     int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));
79 
80     NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4);
81 
82     // squeezeDims need to be provided as a 1-D int32 tensor.
83     NN_OPS_CHECK(squeezeDimsShape.type == OperandType::TENSOR_INT32);
84     NN_OPS_CHECK(getNumberOfDimensions(squeezeDimsShape) == 1);
85 
86     std::vector<bool> shouldSqueeze(numInputDims, false);
87     int32_t numDimsSqueezed = 0;
88 
89     if (context->isOmittedInput(kSqueezeDims)) {
90         // If squeezeDims is omitted, all dims with value 1 will be squeezed.
91         for (int32_t idx = 0; idx < numInputDims; ++idx) {
92             if (getSizeOfDimension(inputShape, idx) == 1) {
93                 shouldSqueeze[idx] = true;
94                 ++numDimsSqueezed;
95             }
96         }
97     } else {
98         int32_t squeezeDimsSize = static_cast<int32_t>(getSizeOfDimension(squeezeDimsShape, 0));
99         for (int32_t idx = 0; idx < squeezeDimsSize; ++idx) {
100             int32_t current =
101                     squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx];
102             NN_OPS_CHECK(current >= 0 && current < numInputDims &&
103                          getSizeOfDimension(inputShape, current) == 1);
104             if (!shouldSqueeze[current]) ++numDimsSqueezed;
105             shouldSqueeze[current] = true;
106         }
107     }
108 
109     // Sets output dimensions.
110     std::vector<uint32_t> outDims(numInputDims - numDimsSqueezed);
111     if (numInputDims == numDimsSqueezed) {
112         // Handle edge case where squeeze removes all dimensions.
113         outDims.push_back(1);
114     } else {
115         for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) {
116             if (!shouldSqueeze[inIdx]) {
117                 outDims[outIdx++] = getSizeOfDimension(inputShape, inIdx);
118             }
119         }
120     }
121     Shape outputShape(inputShape);
122     outputShape.dimensions = outDims;
123 
124     return context->setOutputShape(kOutputTensor, outputShape);
125 }
126 
execute(IOperationExecutionContext * context)127 bool execute(IOperationExecutionContext* context) {
128     switch (context->getInputType(kInputTensor)) {
129         case OperandType::TENSOR_FLOAT16:
130         case OperandType::TENSOR_FLOAT32:
131         case OperandType::TENSOR_QUANT8_ASYMM:
132         case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
133             return copyData(context->getInputBuffer(kInputTensor),
134                             context->getInputShape(kInputTensor),
135                             context->getOutputBuffer(kOutputTensor),
136                             context->getOutputShape(kOutputTensor));
137         default:
138             NN_RET_CHECK_FAIL() << "Unsupported tensor type for SQUEEZE op.";
139     }
140 }
141 #endif  // NN_INCLUDE_CPU_IMPLEMENTATION
142 
143 }  // namespace squeeze
144 
145 NN_REGISTER_OPERATION(SQUEEZE, "SQUEEZE", squeeze::validate, squeeze::prepare, squeeze::execute,
146                       .allowOmittedOperand = true);
147 
148 }  // namespace nn
149 }  // namespace android
150