1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor-inl.h"
18
19 #include <vector>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_method-inl.h"
24 #include "base/logging.h" // For VLOG.
25 #include "base/mutex.h"
26 #include "base/quasi_atomic.h"
27 #include "base/stl_util.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "class_linker.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file_types.h"
33 #include "dex/dex_instruction-inl.h"
34 #include "entrypoints/entrypoint_utils-inl.h"
35 #include "lock_word-inl.h"
36 #include "mirror/class-inl.h"
37 #include "mirror/object-inl.h"
38 #include "object_callbacks.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "stack.h"
41 #include "thread.h"
42 #include "thread_list.h"
43 #include "verifier/method_verifier.h"
44 #include "well_known_classes.h"
45 #include <android-base/properties.h>
46
47 static_assert(ART_USE_FUTEXES);
48
49 namespace art {
50
51 using android::base::StringPrintf;
52
53 static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1;
54 static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor;
55
56 /*
57 * Every Object has a monitor associated with it, but not every Object is actually locked. Even
58 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
59 * or b) wait() is called on the Object, or (c) we need to lock an object that also has an
60 * identity hashcode.
61 *
62 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
63 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us,
64 * though, because we have a full 32 bits to work with.
65 *
66 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition
67 * from the "thin" state to the "fat" state and this transition is referred to as inflation. We
68 * deflate locks from time to time as part of heap trimming.
69 *
70 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
71 * in the LockWord value type.
72 *
73 * Monitors provide:
74 * - mutually exclusive access to resources
75 * - a way for multiple threads to wait for notification
76 *
77 * In effect, they fill the role of both mutexes and condition variables.
78 *
79 * Only one thread can own the monitor at any time. There may be several threads waiting on it
80 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified
81 * at any given time.
82 */
83
84 uint32_t Monitor::lock_profiling_threshold_ = 0;
85 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0;
86
Init(uint32_t lock_profiling_threshold,uint32_t stack_dump_lock_profiling_threshold)87 void Monitor::Init(uint32_t lock_profiling_threshold,
88 uint32_t stack_dump_lock_profiling_threshold) {
89 // It isn't great to always include the debug build fudge factor for command-
90 // line driven arguments, but it's easier to adjust here than in the build.
91 lock_profiling_threshold_ =
92 lock_profiling_threshold * kDebugThresholdFudgeFactor;
93 stack_dump_lock_profiling_threshold_ =
94 stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor;
95 }
96
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)97 Monitor::Monitor(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code)
98 : monitor_lock_("a monitor lock", kMonitorLock),
99 num_waiters_(0),
100 owner_(owner),
101 lock_count_(0),
102 obj_(GcRoot<mirror::Object>(obj)),
103 wait_set_(nullptr),
104 wake_set_(nullptr),
105 hash_code_(hash_code),
106 lock_owner_(nullptr),
107 lock_owner_method_(nullptr),
108 lock_owner_dex_pc_(0),
109 lock_owner_sum_(0),
110 lock_owner_request_(nullptr),
111 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
112 #ifdef __LP64__
113 DCHECK(false) << "Should not be reached in 64b";
114 next_free_ = nullptr;
115 #endif
116 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
117 // with the owner unlocking the thin-lock.
118 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
119 // The identity hash code is set for the life time of the monitor.
120
121 bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
122 if (monitor_timeout_enabled) {
123 MaybeEnableTimeout();
124 }
125 }
126
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code,MonitorId id)127 Monitor::Monitor(Thread* self,
128 Thread* owner,
129 ObjPtr<mirror::Object> obj,
130 int32_t hash_code,
131 MonitorId id)
132 : monitor_lock_("a monitor lock", kMonitorLock),
133 num_waiters_(0),
134 owner_(owner),
135 lock_count_(0),
136 obj_(GcRoot<mirror::Object>(obj)),
137 wait_set_(nullptr),
138 wake_set_(nullptr),
139 hash_code_(hash_code),
140 lock_owner_(nullptr),
141 lock_owner_method_(nullptr),
142 lock_owner_dex_pc_(0),
143 lock_owner_sum_(0),
144 lock_owner_request_(nullptr),
145 monitor_id_(id) {
146 #ifdef __LP64__
147 next_free_ = nullptr;
148 #endif
149 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
150 // with the owner unlocking the thin-lock.
151 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
152 // The identity hash code is set for the life time of the monitor.
153
154 bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled();
155 if (monitor_timeout_enabled) {
156 MaybeEnableTimeout();
157 }
158 }
159
GetHashCode()160 int32_t Monitor::GetHashCode() {
161 int32_t hc = hash_code_.load(std::memory_order_relaxed);
162 if (!HasHashCode()) {
163 // Use a strong CAS to prevent spurious failures since these can make the boot image
164 // non-deterministic.
165 hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode());
166 hc = hash_code_.load(std::memory_order_relaxed);
167 }
168 DCHECK(HasHashCode());
169 return hc;
170 }
171
SetLockingMethod(Thread * owner)172 void Monitor::SetLockingMethod(Thread* owner) {
173 DCHECK(owner == Thread::Current() || owner->IsSuspended());
174 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
175 // abort.
176 ArtMethod* lock_owner_method;
177 uint32_t lock_owner_dex_pc;
178 lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false);
179 if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) {
180 // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare
181 // enough that it's OK to walk the stack twice.
182 struct NextMethodVisitor final : public StackVisitor {
183 explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
184 : StackVisitor(thread,
185 nullptr,
186 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
187 false),
188 count_(0),
189 method_(nullptr),
190 dex_pc_(0) {}
191 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
192 ArtMethod* m = GetMethod();
193 if (m->IsRuntimeMethod()) {
194 // Continue if this is a runtime method.
195 return true;
196 }
197 count_++;
198 if (count_ == 2u) {
199 method_ = m;
200 dex_pc_ = GetDexPc(false);
201 return false;
202 }
203 return true;
204 }
205 size_t count_;
206 ArtMethod* method_;
207 uint32_t dex_pc_;
208 };
209 NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed));
210 nmv.WalkStack();
211 lock_owner_method = nmv.method_;
212 lock_owner_dex_pc = nmv.dex_pc_;
213 }
214 SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
215 DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
216 }
217
SetLockingMethodNoProxy(Thread * owner)218 void Monitor::SetLockingMethodNoProxy(Thread *owner) {
219 DCHECK(owner == Thread::Current());
220 uint32_t lock_owner_dex_pc;
221 ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc);
222 // We don't expect a proxy method here.
223 DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
224 SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
225 }
226
Install(Thread * self)227 bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
228 // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated
229 // than what clang thread safety analysis understands.
230 // Monitor is not yet public.
231 Thread* owner = owner_.load(std::memory_order_relaxed);
232 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
233 // Propagate the lock state.
234 LockWord lw(GetObject()->GetLockWord(false));
235 switch (lw.GetState()) {
236 case LockWord::kThinLocked: {
237 DCHECK(owner != nullptr);
238 CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner());
239 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
240 lock_count_ = lw.ThinLockCount();
241 monitor_lock_.ExclusiveLockUncontendedFor(owner);
242 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid())
243 << " my tid = " << SafeGetTid(self);
244 LockWord fat(this, lw.GCState());
245 // Publish the updated lock word, which may race with other threads.
246 bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
247 if (success) {
248 if (ATraceEnabled()) {
249 SetLockingMethod(owner);
250 }
251 return true;
252 } else {
253 monitor_lock_.ExclusiveUnlockUncontended();
254 return false;
255 }
256 }
257 case LockWord::kHashCode: {
258 CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast<int32_t>(lw.GetHashCode()));
259 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
260 LockWord fat(this, lw.GCState());
261 return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
262 }
263 case LockWord::kFatLocked: {
264 // The owner_ is suspended but another thread beat us to install a monitor.
265 return false;
266 }
267 case LockWord::kUnlocked: {
268 LOG(FATAL) << "Inflating unlocked lock word";
269 UNREACHABLE();
270 }
271 default: {
272 LOG(FATAL) << "Invalid monitor state " << lw.GetState();
273 UNREACHABLE();
274 }
275 }
276 }
277
~Monitor()278 Monitor::~Monitor() {
279 // Deflated monitors have a null object.
280 }
281
AppendToWaitSet(Thread * thread)282 void Monitor::AppendToWaitSet(Thread* thread) {
283 // Not checking that the owner is equal to this thread, since we've released
284 // the monitor by the time this method is called.
285 DCHECK(thread != nullptr);
286 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
287 if (wait_set_ == nullptr) {
288 wait_set_ = thread;
289 return;
290 }
291
292 // push_back.
293 Thread* t = wait_set_;
294 while (t->GetWaitNext() != nullptr) {
295 t = t->GetWaitNext();
296 }
297 t->SetWaitNext(thread);
298 }
299
RemoveFromWaitSet(Thread * thread)300 void Monitor::RemoveFromWaitSet(Thread *thread) {
301 DCHECK(owner_ == Thread::Current());
302 DCHECK(thread != nullptr);
303 auto remove = [&](Thread*& set){
304 if (set != nullptr) {
305 if (set == thread) {
306 set = thread->GetWaitNext();
307 thread->SetWaitNext(nullptr);
308 return true;
309 }
310 Thread* t = set;
311 while (t->GetWaitNext() != nullptr) {
312 if (t->GetWaitNext() == thread) {
313 t->SetWaitNext(thread->GetWaitNext());
314 thread->SetWaitNext(nullptr);
315 return true;
316 }
317 t = t->GetWaitNext();
318 }
319 }
320 return false;
321 };
322 if (remove(wait_set_)) {
323 return;
324 }
325 remove(wake_set_);
326 }
327
SetObject(ObjPtr<mirror::Object> object)328 void Monitor::SetObject(ObjPtr<mirror::Object> object) {
329 obj_ = GcRoot<mirror::Object>(object);
330 }
331
332 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
333 // potential tracing points.
AtraceMonitorLock(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)334 void Monitor::AtraceMonitorLock(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
335 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) {
336 AtraceMonitorLockImpl(self, obj, is_wait);
337 }
338 }
339
AtraceMonitorLockImpl(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)340 void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
341 // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
342 // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
343 // stack walk than if !is_wait.
344 const size_t wanted_frame_number = is_wait ? 1U : 0U;
345
346 ArtMethod* method = nullptr;
347 uint32_t dex_pc = 0u;
348
349 size_t current_frame_number = 0u;
350 StackVisitor::WalkStack(
351 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
352 [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
353 ArtMethod* m = stack_visitor->GetMethod();
354 if (m == nullptr || m->IsRuntimeMethod()) {
355 // Runtime method, upcall, or resolution issue. Skip.
356 return true;
357 }
358
359 // Is this the requested frame?
360 if (current_frame_number == wanted_frame_number) {
361 method = m;
362 dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/);
363 return false;
364 }
365
366 // Look for more.
367 current_frame_number++;
368 return true;
369 },
370 self,
371 /* context= */ nullptr,
372 art::StackVisitor::StackWalkKind::kIncludeInlinedFrames);
373
374 const char* prefix = is_wait ? "Waiting on " : "Locking ";
375
376 const char* filename;
377 int32_t line_number;
378 TranslateLocation(method, dex_pc, &filename, &line_number);
379
380 // It would be nice to have a stable "ID" for the object here. However, the only stable thing
381 // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
382 // times when it is unsafe to make that call (see stack dumping for an explanation). More
383 // importantly, we would have to give up on thin-locking when adding systrace locks, as the
384 // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
385 //
386 // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
387 // also do not have to be stable, as the monitor may be deflated.
388 std::string tmp = StringPrintf("%s %d at %s:%d",
389 prefix,
390 (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj.Ptr()))),
391 (filename != nullptr ? filename : "null"),
392 line_number);
393 ATraceBegin(tmp.c_str());
394 }
395
AtraceMonitorUnlock()396 void Monitor::AtraceMonitorUnlock() {
397 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
398 ATraceEnd();
399 }
400 }
401
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)402 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
403 pid_t owner_tid,
404 ArtMethod* owners_method,
405 uint32_t owners_dex_pc,
406 size_t num_waiters) {
407 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
408 const char* owners_filename;
409 int32_t owners_line_number = 0;
410 if (owners_method != nullptr) {
411 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
412 }
413 std::ostringstream oss;
414 oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
415 if (owners_method != nullptr) {
416 oss << " at " << owners_method->PrettyMethod();
417 oss << "(" << owners_filename << ":" << owners_line_number << ")";
418 }
419 oss << " waiters=" << num_waiters;
420 return oss.str();
421 }
422
TryLock(Thread * self,bool spin)423 bool Monitor::TryLock(Thread* self, bool spin) {
424 Thread *owner = owner_.load(std::memory_order_relaxed);
425 if (owner == self) {
426 lock_count_++;
427 CHECK_NE(lock_count_, 0u); // Abort on overflow.
428 } else {
429 bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self)
430 : monitor_lock_.ExclusiveTryLock(self);
431 if (!success) {
432 return false;
433 }
434 DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
435 owner_.store(self, std::memory_order_relaxed);
436 CHECK_EQ(lock_count_, 0u);
437 if (ATraceEnabled()) {
438 SetLockingMethodNoProxy(self);
439 }
440 }
441 DCHECK(monitor_lock_.IsExclusiveHeld(self));
442 AtraceMonitorLock(self, GetObject(), /* is_wait= */ false);
443 return true;
444 }
445
446 template <LockReason reason>
Lock(Thread * self)447 void Monitor::Lock(Thread* self) {
448 bool called_monitors_callback = false;
449 if (TryLock(self, /*spin=*/ true)) {
450 // TODO: This preserves original behavior. Correct?
451 if (called_monitors_callback) {
452 CHECK(reason == LockReason::kForLock);
453 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
454 }
455 return;
456 }
457 // Contended; not reentrant. We hold no locks, so tread carefully.
458 const bool log_contention = (lock_profiling_threshold_ != 0);
459 uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
460
461 Thread *orig_owner = nullptr;
462 ArtMethod* owners_method;
463 uint32_t owners_dex_pc;
464
465 // Do this before releasing the mutator lock so that we don't get deflated.
466 size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed);
467
468 bool started_trace = false;
469 if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) {
470 // Acquiring thread_list_lock_ ensures that owner doesn't disappear while
471 // we're looking at it.
472 Locks::thread_list_lock_->ExclusiveLock(self);
473 orig_owner = owner_.load(std::memory_order_relaxed);
474 if (orig_owner != nullptr) { // Did the owner_ give the lock up?
475 const uint32_t orig_owner_thread_id = orig_owner->GetThreadId();
476 GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
477 std::ostringstream oss;
478 std::string name;
479 orig_owner->GetThreadName(name);
480 oss << PrettyContentionInfo(name,
481 orig_owner_thread_id,
482 owners_method,
483 owners_dex_pc,
484 num_waiters);
485 Locks::thread_list_lock_->ExclusiveUnlock(self);
486 // Add info for contending thread.
487 uint32_t pc;
488 ArtMethod* m = self->GetCurrentMethod(&pc);
489 const char* filename;
490 int32_t line_number;
491 TranslateLocation(m, pc, &filename, &line_number);
492 oss << " blocking from "
493 << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
494 << ":" << line_number << ")";
495 ATraceBegin(oss.str().c_str());
496 started_trace = true;
497 } else {
498 Locks::thread_list_lock_->ExclusiveUnlock(self);
499 }
500 }
501 if (log_contention) {
502 // Request the current holder to set lock_owner_info.
503 // Do this even if tracing is enabled, so we semi-consistently get the information
504 // corresponding to MonitorExit.
505 // TODO: Consider optionally obtaining a stack trace here via a checkpoint. That would allow
506 // us to see what the other thread is doing while we're waiting.
507 orig_owner = owner_.load(std::memory_order_relaxed);
508 lock_owner_request_.store(orig_owner, std::memory_order_relaxed);
509 }
510 // Call the contended locking cb once and only once. Also only call it if we are locking for
511 // the first time, not during a Wait wakeup.
512 if (reason == LockReason::kForLock && !called_monitors_callback) {
513 called_monitors_callback = true;
514 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this);
515 }
516 self->SetMonitorEnterObject(GetObject().Ptr());
517 {
518 ScopedThreadSuspension tsc(self, kBlocked); // Change to blocked and give up mutator_lock_.
519
520 // Acquire monitor_lock_ without mutator_lock_, expecting to block this time.
521 // We already tried spinning above. The shutdown procedure currently assumes we stop
522 // touching monitors shortly after we suspend, so don't spin again here.
523 monitor_lock_.ExclusiveLock(self);
524
525 if (log_contention && orig_owner != nullptr) {
526 // Woken from contention.
527 uint64_t wait_ms = MilliTime() - wait_start_ms;
528 uint32_t sample_percent;
529 if (wait_ms >= lock_profiling_threshold_) {
530 sample_percent = 100;
531 } else {
532 sample_percent = 100 * wait_ms / lock_profiling_threshold_;
533 }
534 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
535 // Do this unconditionally for consistency. It's possible another thread
536 // snuck in in the middle, and tracing was enabled. In that case, we may get its
537 // MonitorEnter information. We can live with that.
538 GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
539
540 // Reacquire mutator_lock_ for logging.
541 ScopedObjectAccess soa(self);
542
543 const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 &&
544 wait_ms > stack_dump_lock_profiling_threshold_;
545
546 // Acquire thread-list lock to find thread and keep it from dying until we've got all
547 // the info we need.
548 Locks::thread_list_lock_->ExclusiveLock(self);
549
550 // Is there still a thread at the same address as the original owner?
551 // We tolerate the fact that it may occasionally be the wrong one.
552 if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) {
553 uint32_t original_owner_tid = orig_owner->GetTid(); // System thread id.
554 std::string original_owner_name;
555 orig_owner->GetThreadName(original_owner_name);
556 std::string owner_stack_dump;
557
558 if (should_dump_stacks) {
559 // Very long contention. Dump stacks.
560 struct CollectStackTrace : public Closure {
561 void Run(art::Thread* thread) override
562 REQUIRES_SHARED(art::Locks::mutator_lock_) {
563 thread->DumpJavaStack(oss);
564 }
565
566 std::ostringstream oss;
567 };
568 CollectStackTrace owner_trace;
569 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its
570 // execution.
571 orig_owner->RequestSynchronousCheckpoint(&owner_trace);
572 owner_stack_dump = owner_trace.oss.str();
573 } else {
574 Locks::thread_list_lock_->ExclusiveUnlock(self);
575 }
576
577 // This is all the data we need. We dropped the thread-list lock, it's OK for the
578 // owner to go away now.
579
580 if (should_dump_stacks) {
581 // Give the detailed traces for really long contention.
582 // This must be here (and not above) because we cannot hold the thread-list lock
583 // while running the checkpoint.
584 std::ostringstream self_trace_oss;
585 self->DumpJavaStack(self_trace_oss);
586
587 uint32_t pc;
588 ArtMethod* m = self->GetCurrentMethod(&pc);
589
590 LOG(WARNING) << "Long "
591 << PrettyContentionInfo(original_owner_name,
592 original_owner_tid,
593 owners_method,
594 owners_dex_pc,
595 num_waiters)
596 << " in " << ArtMethod::PrettyMethod(m) << " for "
597 << PrettyDuration(MsToNs(wait_ms)) << "\n"
598 << "Current owner stack:\n" << owner_stack_dump
599 << "Contender stack:\n" << self_trace_oss.str();
600 } else if (wait_ms > kLongWaitMs && owners_method != nullptr) {
601 uint32_t pc;
602 ArtMethod* m = self->GetCurrentMethod(&pc);
603 // TODO: We should maybe check that original_owner is still a live thread.
604 LOG(WARNING) << "Long "
605 << PrettyContentionInfo(original_owner_name,
606 original_owner_tid,
607 owners_method,
608 owners_dex_pc,
609 num_waiters)
610 << " in " << ArtMethod::PrettyMethod(m) << " for "
611 << PrettyDuration(MsToNs(wait_ms));
612 }
613 LogContentionEvent(self,
614 wait_ms,
615 sample_percent,
616 owners_method,
617 owners_dex_pc);
618 } else {
619 Locks::thread_list_lock_->ExclusiveUnlock(self);
620 }
621 }
622 }
623 }
624 // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable.
625
626 // We avoided touching monitor fields while suspended, so set owner_ here.
627 owner_.store(self, std::memory_order_relaxed);
628 DCHECK_EQ(lock_count_, 0u);
629
630 if (ATraceEnabled()) {
631 SetLockingMethodNoProxy(self);
632 }
633 if (started_trace) {
634 ATraceEnd();
635 }
636 self->SetMonitorEnterObject(nullptr);
637 num_waiters_.fetch_sub(1, std::memory_order_relaxed);
638 DCHECK(monitor_lock_.IsExclusiveHeld(self));
639 // We need to pair this with a single contended locking call. NB we match the RI behavior and call
640 // this even if MonitorEnter failed.
641 if (called_monitors_callback) {
642 CHECK(reason == LockReason::kForLock);
643 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
644 }
645 }
646
647 template void Monitor::Lock<LockReason::kForLock>(Thread* self);
648 template void Monitor::Lock<LockReason::kForWait>(Thread* self);
649
650 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
651 __attribute__((format(printf, 1, 2)));
652
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)653 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
654 REQUIRES_SHARED(Locks::mutator_lock_) {
655 va_list args;
656 va_start(args, fmt);
657 Thread* self = Thread::Current();
658 self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
659 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
660 std::ostringstream ss;
661 self->Dump(ss);
662 LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
663 << self->GetException()->Dump() << "\n" << ss.str();
664 }
665 va_end(args);
666 }
667
ThreadToString(Thread * thread)668 static std::string ThreadToString(Thread* thread) {
669 if (thread == nullptr) {
670 return "nullptr";
671 }
672 std::ostringstream oss;
673 // TODO: alternatively, we could just return the thread's name.
674 oss << *thread;
675 return oss.str();
676 }
677
FailedUnlock(ObjPtr<mirror::Object> o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)678 void Monitor::FailedUnlock(ObjPtr<mirror::Object> o,
679 uint32_t expected_owner_thread_id,
680 uint32_t found_owner_thread_id,
681 Monitor* monitor) {
682 std::string current_owner_string;
683 std::string expected_owner_string;
684 std::string found_owner_string;
685 uint32_t current_owner_thread_id = 0u;
686 {
687 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
688 ThreadList* const thread_list = Runtime::Current()->GetThreadList();
689 Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
690 Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
691
692 // Re-read owner now that we hold lock.
693 Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
694 if (current_owner != nullptr) {
695 current_owner_thread_id = current_owner->GetThreadId();
696 }
697 // Get short descriptions of the threads involved.
698 current_owner_string = ThreadToString(current_owner);
699 expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
700 found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
701 }
702
703 if (current_owner_thread_id == 0u) {
704 if (found_owner_thread_id == 0u) {
705 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
706 " on thread '%s'",
707 mirror::Object::PrettyTypeOf(o).c_str(),
708 expected_owner_string.c_str());
709 } else {
710 // Race: the original read found an owner but now there is none
711 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
712 " (where now the monitor appears unowned) on thread '%s'",
713 found_owner_string.c_str(),
714 mirror::Object::PrettyTypeOf(o).c_str(),
715 expected_owner_string.c_str());
716 }
717 } else {
718 if (found_owner_thread_id == 0u) {
719 // Race: originally there was no owner, there is now
720 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
721 " (originally believed to be unowned) on thread '%s'",
722 current_owner_string.c_str(),
723 mirror::Object::PrettyTypeOf(o).c_str(),
724 expected_owner_string.c_str());
725 } else {
726 if (found_owner_thread_id != current_owner_thread_id) {
727 // Race: originally found and current owner have changed
728 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
729 " owned by '%s') on object of type '%s' on thread '%s'",
730 found_owner_string.c_str(),
731 current_owner_string.c_str(),
732 mirror::Object::PrettyTypeOf(o).c_str(),
733 expected_owner_string.c_str());
734 } else {
735 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
736 " on thread '%s",
737 current_owner_string.c_str(),
738 mirror::Object::PrettyTypeOf(o).c_str(),
739 expected_owner_string.c_str());
740 }
741 }
742 }
743 }
744
Unlock(Thread * self)745 bool Monitor::Unlock(Thread* self) {
746 DCHECK(self != nullptr);
747 Thread* owner = owner_.load(std::memory_order_relaxed);
748 if (owner == self) {
749 // We own the monitor, so nobody else can be in here.
750 CheckLockOwnerRequest(self);
751 AtraceMonitorUnlock();
752 if (lock_count_ == 0) {
753 owner_.store(nullptr, std::memory_order_relaxed);
754 SignalWaiterAndReleaseMonitorLock(self);
755 } else {
756 --lock_count_;
757 DCHECK(monitor_lock_.IsExclusiveHeld(self));
758 DCHECK_EQ(owner_.load(std::memory_order_relaxed), self);
759 // Keep monitor_lock_, but pretend we released it.
760 FakeUnlockMonitorLock();
761 }
762 return true;
763 }
764 // We don't own this, so we're not allowed to unlock it.
765 // The JNI spec says that we should throw IllegalMonitorStateException in this case.
766 uint32_t owner_thread_id = 0u;
767 {
768 MutexLock mu(self, *Locks::thread_list_lock_);
769 owner = owner_.load(std::memory_order_relaxed);
770 if (owner != nullptr) {
771 owner_thread_id = owner->GetThreadId();
772 }
773 }
774 FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
775 // Pretend to release monitor_lock_, which we should not.
776 FakeUnlockMonitorLock();
777 return false;
778 }
779
SignalWaiterAndReleaseMonitorLock(Thread * self)780 void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) {
781 // We want to release the monitor and signal up to one thread that was waiting
782 // but has since been notified.
783 DCHECK_EQ(lock_count_, 0u);
784 DCHECK(monitor_lock_.IsExclusiveHeld(self));
785 while (wake_set_ != nullptr) {
786 // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to
787 // return, notify can't move the current thread from wait_set_ to wake_set_ until this
788 // method is done checking wake_set_.
789 Thread* thread = wake_set_;
790 wake_set_ = thread->GetWaitNext();
791 thread->SetWaitNext(nullptr);
792 DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
793
794 // Check to see if the thread is still waiting.
795 {
796 // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with
797 // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock
798 // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll,
799 // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must
800 // have already been released from wait(), since we have not released monitor_lock_ until
801 // after we've chosen our thread to wake, so there is no risk of the following lock ordering
802 // leading to deadlock:
803 // Thread 1 waits
804 // Thread 2 waits
805 // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_
806 // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it
807 // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it
808 //
809 // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is
810 // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding
811 // their own and cause deadlock.
812 MutexLock wait_mu(self, *thread->GetWaitMutex());
813 if (thread->GetWaitMonitor() != nullptr) {
814 // Release the lock, so that a potentially awakened thread will not
815 // immediately contend on it. The lock ordering here is:
816 // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex
817 monitor_lock_.Unlock(self); // Releases contenders.
818 thread->GetWaitConditionVariable()->Signal(self);
819 return;
820 }
821 }
822 }
823 monitor_lock_.Unlock(self);
824 DCHECK(!monitor_lock_.IsExclusiveHeld(self));
825 }
826
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)827 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
828 bool interruptShouldThrow, ThreadState why) {
829 DCHECK(self != nullptr);
830 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
831
832 // Make sure that we hold the lock.
833 if (owner_.load(std::memory_order_relaxed) != self) {
834 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
835 return;
836 }
837
838 // We need to turn a zero-length timed wait into a regular wait because
839 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
840 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
841 why = kWaiting;
842 }
843
844 // Enforce the timeout range.
845 if (ms < 0 || ns < 0 || ns > 999999) {
846 self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
847 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
848 return;
849 }
850
851 CheckLockOwnerRequest(self);
852
853 /*
854 * Release our hold - we need to let it go even if we're a few levels
855 * deep in a recursive lock, and we need to restore that later.
856 */
857 unsigned int prev_lock_count = lock_count_;
858 lock_count_ = 0;
859
860 AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest
861 // nesting, but that is enough for the visualization, and corresponds to
862 // the single Lock() we do afterwards.
863 AtraceMonitorLock(self, GetObject(), /* is_wait= */ true);
864
865 bool was_interrupted = false;
866 bool timed_out = false;
867 // Update monitor state now; it's not safe once we're "suspended".
868 owner_.store(nullptr, std::memory_order_relaxed);
869 num_waiters_.fetch_add(1, std::memory_order_relaxed);
870 {
871 // Update thread state. If the GC wakes up, it'll ignore us, knowing
872 // that we won't touch any references in this state, and we'll check
873 // our suspend mode before we transition out.
874 ScopedThreadSuspension sts(self, why);
875
876 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
877 MutexLock mu(self, *self->GetWaitMutex());
878
879 /*
880 * Add ourselves to the set of threads waiting on this monitor.
881 * It's important that we are only added to the wait set after
882 * acquiring our GetWaitMutex, so that calls to Notify() that occur after we
883 * have released monitor_lock_ will not move us from wait_set_ to wake_set_
884 * until we've signalled contenders on this monitor.
885 */
886 AppendToWaitSet(self);
887
888 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
889 // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
890 // up.
891 DCHECK(self->GetWaitMonitor() == nullptr);
892 self->SetWaitMonitor(this);
893
894 // Release the monitor lock.
895 DCHECK(monitor_lock_.IsExclusiveHeld(self));
896 SignalWaiterAndReleaseMonitorLock(self);
897
898 // Handle the case where the thread was interrupted before we called wait().
899 if (self->IsInterrupted()) {
900 was_interrupted = true;
901 } else {
902 // Wait for a notification or a timeout to occur.
903 if (why == kWaiting) {
904 self->GetWaitConditionVariable()->Wait(self);
905 } else {
906 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
907 timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
908 }
909 was_interrupted = self->IsInterrupted();
910 }
911 }
912
913 {
914 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
915 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
916 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
917 // are waiting on "null".)
918 MutexLock mu(self, *self->GetWaitMutex());
919 DCHECK(self->GetWaitMonitor() != nullptr);
920 self->SetWaitMonitor(nullptr);
921 }
922
923 // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
924 // If the GC requires acquiring the monitor for enqueuing cleared references, this would
925 // cause a deadlock if the monitor is held.
926 if (was_interrupted && interruptShouldThrow) {
927 /*
928 * We were interrupted while waiting, or somebody interrupted an
929 * un-interruptible thread earlier and we're bailing out immediately.
930 *
931 * The doc sayeth: "The interrupted status of the current thread is
932 * cleared when this exception is thrown."
933 */
934 self->SetInterrupted(false);
935 self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
936 }
937
938 AtraceMonitorUnlock(); // End Wait().
939
940 // We just slept, tell the runtime callbacks about this.
941 Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out);
942
943 // Re-acquire the monitor and lock.
944 Lock<LockReason::kForWait>(self);
945 lock_count_ = prev_lock_count;
946 DCHECK(monitor_lock_.IsExclusiveHeld(self));
947 self->GetWaitMutex()->AssertNotHeld(self);
948
949 num_waiters_.fetch_sub(1, std::memory_order_relaxed);
950 RemoveFromWaitSet(self);
951 }
952
Notify(Thread * self)953 void Monitor::Notify(Thread* self) {
954 DCHECK(self != nullptr);
955 // Make sure that we hold the lock.
956 if (owner_.load(std::memory_order_relaxed) != self) {
957 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
958 return;
959 }
960 // Move one thread from waiters to wake set
961 Thread* to_move = wait_set_;
962 if (to_move != nullptr) {
963 wait_set_ = to_move->GetWaitNext();
964 to_move->SetWaitNext(wake_set_);
965 wake_set_ = to_move;
966 }
967 }
968
NotifyAll(Thread * self)969 void Monitor::NotifyAll(Thread* self) {
970 DCHECK(self != nullptr);
971 // Make sure that we hold the lock.
972 if (owner_.load(std::memory_order_relaxed) != self) {
973 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
974 return;
975 }
976
977 // Move all threads from waiters to wake set
978 Thread* to_move = wait_set_;
979 if (to_move != nullptr) {
980 wait_set_ = nullptr;
981 Thread* move_to = wake_set_;
982 if (move_to == nullptr) {
983 wake_set_ = to_move;
984 return;
985 }
986 while (move_to->GetWaitNext() != nullptr) {
987 move_to = move_to->GetWaitNext();
988 }
989 move_to->SetWaitNext(to_move);
990 }
991 }
992
Deflate(Thread * self,ObjPtr<mirror::Object> obj)993 bool Monitor::Deflate(Thread* self, ObjPtr<mirror::Object> obj) {
994 DCHECK(obj != nullptr);
995 // Don't need volatile since we only deflate with mutators suspended.
996 LockWord lw(obj->GetLockWord(false));
997 // If the lock isn't an inflated monitor, then we don't need to deflate anything.
998 if (lw.GetState() == LockWord::kFatLocked) {
999 Monitor* monitor = lw.FatLockMonitor();
1000 DCHECK(monitor != nullptr);
1001 // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor.
1002 if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) {
1003 return false;
1004 }
1005 if (!monitor->monitor_lock_.ExclusiveTryLock(self)) {
1006 // We cannot deflate a monitor that's currently held. It's unclear whether we should if
1007 // we could.
1008 return false;
1009 }
1010 DCHECK_EQ(monitor->lock_count_, 0u);
1011 DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast<Thread*>(nullptr));
1012 if (monitor->HasHashCode()) {
1013 LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
1014 // Assume no concurrent read barrier state changes as mutators are suspended.
1015 obj->SetLockWord(new_lw, false);
1016 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
1017 } else {
1018 // No lock and no hash, just put an empty lock word inside the object.
1019 LockWord new_lw = LockWord::FromDefault(lw.GCState());
1020 // Assume no concurrent read barrier state changes as mutators are suspended.
1021 obj->SetLockWord(new_lw, false);
1022 VLOG(monitor) << "Deflated" << obj << " to empty lock word";
1023 }
1024 monitor->monitor_lock_.ExclusiveUnlock(self);
1025 DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self)));
1026 // The monitor is deflated, mark the object as null so that we know to delete it during the
1027 // next GC.
1028 monitor->obj_ = GcRoot<mirror::Object>(nullptr);
1029 }
1030 return true;
1031 }
1032
Inflate(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)1033 void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) {
1034 DCHECK(self != nullptr);
1035 DCHECK(obj != nullptr);
1036 // Allocate and acquire a new monitor.
1037 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
1038 DCHECK(m != nullptr);
1039 if (m->Install(self)) {
1040 if (owner != nullptr) {
1041 VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
1042 << " created monitor " << m << " for object " << obj;
1043 } else {
1044 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
1045 << " created monitor " << m << " for object " << obj;
1046 }
1047 Runtime::Current()->GetMonitorList()->Add(m);
1048 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
1049 } else {
1050 MonitorPool::ReleaseMonitor(self, m);
1051 }
1052 }
1053
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)1054 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
1055 uint32_t hash_code) {
1056 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
1057 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1058 if (owner_thread_id == self->GetThreadId()) {
1059 // We own the monitor, we can easily inflate it.
1060 Inflate(self, self, obj.Get(), hash_code);
1061 } else {
1062 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1063 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
1064 self->SetMonitorEnterObject(obj.Get());
1065 bool timed_out;
1066 Thread* owner;
1067 {
1068 ScopedThreadSuspension sts(self, kWaitingForLockInflation);
1069 owner = thread_list->SuspendThreadByThreadId(owner_thread_id,
1070 SuspendReason::kInternal,
1071 &timed_out);
1072 }
1073 if (owner != nullptr) {
1074 // We succeeded in suspending the thread, check the lock's status didn't change.
1075 lock_word = obj->GetLockWord(true);
1076 if (lock_word.GetState() == LockWord::kThinLocked &&
1077 lock_word.ThinLockOwner() == owner_thread_id) {
1078 // Go ahead and inflate the lock.
1079 Inflate(self, owner, obj.Get(), hash_code);
1080 }
1081 bool resumed = thread_list->Resume(owner, SuspendReason::kInternal);
1082 DCHECK(resumed);
1083 }
1084 self->SetMonitorEnterObject(nullptr);
1085 }
1086 }
1087
1088 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(ObjPtr<mirror::Object> obj)1089 static ObjPtr<mirror::Object> FakeLock(ObjPtr<mirror::Object> obj)
1090 EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1091 return obj;
1092 }
1093
1094 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(ObjPtr<mirror::Object> obj)1095 static ObjPtr<mirror::Object> FakeUnlock(ObjPtr<mirror::Object> obj)
1096 UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1097 return obj;
1098 }
1099
MonitorEnter(Thread * self,ObjPtr<mirror::Object> obj,bool trylock)1100 ObjPtr<mirror::Object> Monitor::MonitorEnter(Thread* self,
1101 ObjPtr<mirror::Object> obj,
1102 bool trylock) {
1103 DCHECK(self != nullptr);
1104 DCHECK(obj != nullptr);
1105 self->AssertThreadSuspensionIsAllowable();
1106 obj = FakeLock(obj);
1107 uint32_t thread_id = self->GetThreadId();
1108 size_t contention_count = 0;
1109 constexpr size_t kExtraSpinIters = 100;
1110 StackHandleScope<1> hs(self);
1111 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1112 while (true) {
1113 // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
1114 // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
1115 // we can fix it later, in an infrequently executed case, with a fence.
1116 LockWord lock_word = h_obj->GetLockWord(false);
1117 switch (lock_word.GetState()) {
1118 case LockWord::kUnlocked: {
1119 // No ordering required for preceding lockword read, since we retest.
1120 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
1121 if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) {
1122 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1123 return h_obj.Get(); // Success!
1124 }
1125 continue; // Go again.
1126 }
1127 case LockWord::kThinLocked: {
1128 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1129 if (owner_thread_id == thread_id) {
1130 // No ordering required for initial lockword read.
1131 // We own the lock, increase the recursion count.
1132 uint32_t new_count = lock_word.ThinLockCount() + 1;
1133 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
1134 LockWord thin_locked(LockWord::FromThinLockId(thread_id,
1135 new_count,
1136 lock_word.GCState()));
1137 // Only this thread pays attention to the count. Thus there is no need for stronger
1138 // than relaxed memory ordering.
1139 if (!kUseReadBarrier) {
1140 h_obj->SetLockWord(thin_locked, /* as_volatile= */ false);
1141 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1142 return h_obj.Get(); // Success!
1143 } else {
1144 // Use CAS to preserve the read barrier state.
1145 if (h_obj->CasLockWord(lock_word,
1146 thin_locked,
1147 CASMode::kWeak,
1148 std::memory_order_relaxed)) {
1149 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1150 return h_obj.Get(); // Success!
1151 }
1152 }
1153 continue; // Go again.
1154 } else {
1155 // We'd overflow the recursion count, so inflate the monitor.
1156 InflateThinLocked(self, h_obj, lock_word, 0);
1157 }
1158 } else {
1159 if (trylock) {
1160 return nullptr;
1161 }
1162 // Contention.
1163 contention_count++;
1164 Runtime* runtime = Runtime::Current();
1165 if (contention_count
1166 <= kExtraSpinIters + runtime->GetMaxSpinsBeforeThinLockInflation()) {
1167 // TODO: Consider switching the thread state to kWaitingForLockInflation when we are
1168 // yielding. Use sched_yield instead of NanoSleep since NanoSleep can wait much longer
1169 // than the parameter you pass in. This can cause thread suspension to take excessively
1170 // long and make long pauses. See b/16307460.
1171 if (contention_count > kExtraSpinIters) {
1172 sched_yield();
1173 }
1174 } else {
1175 contention_count = 0;
1176 // No ordering required for initial lockword read. Install rereads it anyway.
1177 InflateThinLocked(self, h_obj, lock_word, 0);
1178 }
1179 }
1180 continue; // Start from the beginning.
1181 }
1182 case LockWord::kFatLocked: {
1183 // We should have done an acquire read of the lockword initially, to ensure
1184 // visibility of the monitor data structure. Use an explicit fence instead.
1185 std::atomic_thread_fence(std::memory_order_acquire);
1186 Monitor* mon = lock_word.FatLockMonitor();
1187 if (trylock) {
1188 return mon->TryLock(self) ? h_obj.Get() : nullptr;
1189 } else {
1190 mon->Lock(self);
1191 DCHECK(mon->monitor_lock_.IsExclusiveHeld(self));
1192 return h_obj.Get(); // Success!
1193 }
1194 }
1195 case LockWord::kHashCode:
1196 // Inflate with the existing hashcode.
1197 // Again no ordering required for initial lockword read, since we don't rely
1198 // on the visibility of any prior computation.
1199 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
1200 continue; // Start from the beginning.
1201 default: {
1202 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1203 UNREACHABLE();
1204 }
1205 }
1206 }
1207 }
1208
MonitorExit(Thread * self,ObjPtr<mirror::Object> obj)1209 bool Monitor::MonitorExit(Thread* self, ObjPtr<mirror::Object> obj) {
1210 DCHECK(self != nullptr);
1211 DCHECK(obj != nullptr);
1212 self->AssertThreadSuspensionIsAllowable();
1213 obj = FakeUnlock(obj);
1214 StackHandleScope<1> hs(self);
1215 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1216 while (true) {
1217 LockWord lock_word = obj->GetLockWord(true);
1218 switch (lock_word.GetState()) {
1219 case LockWord::kHashCode:
1220 // Fall-through.
1221 case LockWord::kUnlocked:
1222 FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1223 return false; // Failure.
1224 case LockWord::kThinLocked: {
1225 uint32_t thread_id = self->GetThreadId();
1226 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1227 if (owner_thread_id != thread_id) {
1228 FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1229 return false; // Failure.
1230 } else {
1231 // We own the lock, decrease the recursion count.
1232 LockWord new_lw = LockWord::Default();
1233 if (lock_word.ThinLockCount() != 0) {
1234 uint32_t new_count = lock_word.ThinLockCount() - 1;
1235 new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1236 } else {
1237 new_lw = LockWord::FromDefault(lock_word.GCState());
1238 }
1239 if (!kUseReadBarrier) {
1240 DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1241 // TODO: This really only needs memory_order_release, but we currently have
1242 // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1243 // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1244 h_obj->SetLockWord(new_lw, true);
1245 AtraceMonitorUnlock();
1246 // Success!
1247 return true;
1248 } else {
1249 // Use CAS to preserve the read barrier state.
1250 if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) {
1251 AtraceMonitorUnlock();
1252 // Success!
1253 return true;
1254 }
1255 }
1256 continue; // Go again.
1257 }
1258 }
1259 case LockWord::kFatLocked: {
1260 Monitor* mon = lock_word.FatLockMonitor();
1261 return mon->Unlock(self);
1262 }
1263 default: {
1264 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1265 UNREACHABLE();
1266 }
1267 }
1268 }
1269 }
1270
Wait(Thread * self,ObjPtr<mirror::Object> obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1271 void Monitor::Wait(Thread* self,
1272 ObjPtr<mirror::Object> obj,
1273 int64_t ms,
1274 int32_t ns,
1275 bool interruptShouldThrow,
1276 ThreadState why) {
1277 DCHECK(self != nullptr);
1278 DCHECK(obj != nullptr);
1279 StackHandleScope<1> hs(self);
1280 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1281
1282 Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms);
1283 if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) {
1284 // See b/65558434 for information on handling of exceptions here.
1285 return;
1286 }
1287
1288 LockWord lock_word = h_obj->GetLockWord(true);
1289 while (lock_word.GetState() != LockWord::kFatLocked) {
1290 switch (lock_word.GetState()) {
1291 case LockWord::kHashCode:
1292 // Fall-through.
1293 case LockWord::kUnlocked:
1294 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1295 return; // Failure.
1296 case LockWord::kThinLocked: {
1297 uint32_t thread_id = self->GetThreadId();
1298 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1299 if (owner_thread_id != thread_id) {
1300 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1301 return; // Failure.
1302 } else {
1303 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1304 // re-load.
1305 Inflate(self, self, h_obj.Get(), 0);
1306 lock_word = h_obj->GetLockWord(true);
1307 }
1308 break;
1309 }
1310 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through.
1311 default: {
1312 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1313 UNREACHABLE();
1314 }
1315 }
1316 }
1317 Monitor* mon = lock_word.FatLockMonitor();
1318 mon->Wait(self, ms, ns, interruptShouldThrow, why);
1319 }
1320
DoNotify(Thread * self,ObjPtr<mirror::Object> obj,bool notify_all)1321 void Monitor::DoNotify(Thread* self, ObjPtr<mirror::Object> obj, bool notify_all) {
1322 DCHECK(self != nullptr);
1323 DCHECK(obj != nullptr);
1324 LockWord lock_word = obj->GetLockWord(true);
1325 switch (lock_word.GetState()) {
1326 case LockWord::kHashCode:
1327 // Fall-through.
1328 case LockWord::kUnlocked:
1329 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1330 return; // Failure.
1331 case LockWord::kThinLocked: {
1332 uint32_t thread_id = self->GetThreadId();
1333 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1334 if (owner_thread_id != thread_id) {
1335 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1336 return; // Failure.
1337 } else {
1338 // We own the lock but there's no Monitor and therefore no waiters.
1339 return; // Success.
1340 }
1341 }
1342 case LockWord::kFatLocked: {
1343 Monitor* mon = lock_word.FatLockMonitor();
1344 if (notify_all) {
1345 mon->NotifyAll(self);
1346 } else {
1347 mon->Notify(self);
1348 }
1349 return; // Success.
1350 }
1351 default: {
1352 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1353 UNREACHABLE();
1354 }
1355 }
1356 }
1357
GetLockOwnerThreadId(ObjPtr<mirror::Object> obj)1358 uint32_t Monitor::GetLockOwnerThreadId(ObjPtr<mirror::Object> obj) {
1359 DCHECK(obj != nullptr);
1360 LockWord lock_word = obj->GetLockWord(true);
1361 switch (lock_word.GetState()) {
1362 case LockWord::kHashCode:
1363 // Fall-through.
1364 case LockWord::kUnlocked:
1365 return ThreadList::kInvalidThreadId;
1366 case LockWord::kThinLocked:
1367 return lock_word.ThinLockOwner();
1368 case LockWord::kFatLocked: {
1369 Monitor* mon = lock_word.FatLockMonitor();
1370 return mon->GetOwnerThreadId();
1371 }
1372 default: {
1373 LOG(FATAL) << "Unreachable";
1374 UNREACHABLE();
1375 }
1376 }
1377 }
1378
FetchState(const Thread * thread,ObjPtr<mirror::Object> * monitor_object,uint32_t * lock_owner_tid)1379 ThreadState Monitor::FetchState(const Thread* thread,
1380 /* out */ ObjPtr<mirror::Object>* monitor_object,
1381 /* out */ uint32_t* lock_owner_tid) {
1382 DCHECK(monitor_object != nullptr);
1383 DCHECK(lock_owner_tid != nullptr);
1384
1385 *monitor_object = nullptr;
1386 *lock_owner_tid = ThreadList::kInvalidThreadId;
1387
1388 ThreadState state = thread->GetState();
1389
1390 switch (state) {
1391 case kWaiting:
1392 case kTimedWaiting:
1393 case kSleeping:
1394 {
1395 Thread* self = Thread::Current();
1396 MutexLock mu(self, *thread->GetWaitMutex());
1397 Monitor* monitor = thread->GetWaitMonitor();
1398 if (monitor != nullptr) {
1399 *monitor_object = monitor->GetObject();
1400 }
1401 }
1402 break;
1403
1404 case kBlocked:
1405 case kWaitingForLockInflation:
1406 {
1407 ObjPtr<mirror::Object> lock_object = thread->GetMonitorEnterObject();
1408 if (lock_object != nullptr) {
1409 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1410 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1411 // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1412 // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1413 // it here.
1414 lock_object = ReadBarrier::Mark(lock_object.Ptr());
1415 }
1416 *monitor_object = lock_object;
1417 *lock_owner_tid = lock_object->GetLockOwnerThreadId();
1418 }
1419 }
1420 break;
1421
1422 default:
1423 break;
1424 }
1425
1426 return state;
1427 }
1428
GetContendedMonitor(Thread * thread)1429 ObjPtr<mirror::Object> Monitor::GetContendedMonitor(Thread* thread) {
1430 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1431 // definition of contended that includes a monitor a thread is trying to enter...
1432 ObjPtr<mirror::Object> result = thread->GetMonitorEnterObject();
1433 if (result == nullptr) {
1434 // ...but also a monitor that the thread is waiting on.
1435 MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1436 Monitor* monitor = thread->GetWaitMonitor();
1437 if (monitor != nullptr) {
1438 result = monitor->GetObject();
1439 }
1440 }
1441 return result;
1442 }
1443
VisitLocks(StackVisitor * stack_visitor,void (* callback)(ObjPtr<mirror::Object>,void *),void * callback_context,bool abort_on_failure)1444 void Monitor::VisitLocks(StackVisitor* stack_visitor,
1445 void (*callback)(ObjPtr<mirror::Object>, void*),
1446 void* callback_context,
1447 bool abort_on_failure) {
1448 ArtMethod* m = stack_visitor->GetMethod();
1449 CHECK(m != nullptr);
1450
1451 // Native methods are an easy special case.
1452 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1453 if (m->IsNative()) {
1454 if (m->IsSynchronized()) {
1455 DCHECK(!m->IsCriticalNative());
1456 DCHECK(!m->IsFastNative());
1457 ObjPtr<mirror::Object> lock;
1458 if (m->IsStatic()) {
1459 // Static methods synchronize on the declaring class object.
1460 lock = m->GetDeclaringClass();
1461 } else {
1462 // Instance methods synchronize on the `this` object.
1463 // The `this` reference is stored in the first out vreg in the caller's frame.
1464 uint8_t* sp = reinterpret_cast<uint8_t*>(stack_visitor->GetCurrentQuickFrame());
1465 size_t frame_size = stack_visitor->GetCurrentQuickFrameInfo().FrameSizeInBytes();
1466 lock = reinterpret_cast<StackReference<mirror::Object>*>(
1467 sp + frame_size + static_cast<size_t>(kRuntimePointerSize))->AsMirrorPtr();
1468 }
1469 callback(lock, callback_context);
1470 }
1471 return;
1472 }
1473
1474 // Proxy methods should not be synchronized.
1475 if (m->IsProxyMethod()) {
1476 CHECK(!m->IsSynchronized());
1477 return;
1478 }
1479
1480 // Is there any reason to believe there's any synchronization in this method?
1481 CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod();
1482 CodeItemDataAccessor accessor(m->DexInstructionData());
1483 if (accessor.TriesSize() == 0) {
1484 return; // No "tries" implies no synchronization, so no held locks to report.
1485 }
1486
1487 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1488 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1489 // inconsistent stack anyways.
1490 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1491 if (!abort_on_failure && dex_pc == dex::kDexNoIndex) {
1492 LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1493 return;
1494 }
1495
1496 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1497 // the locks held in this stack frame.
1498 std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs;
1499 verifier::MethodVerifier::FindLocksAtDexPc(m,
1500 dex_pc,
1501 &monitor_enter_dex_pcs,
1502 Runtime::Current()->GetTargetSdkVersion());
1503 for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) {
1504 // As a debug check, check that dex PC corresponds to a monitor-enter.
1505 if (kIsDebugBuild) {
1506 const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc);
1507 CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER)
1508 << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was "
1509 << reinterpret_cast<const void*>(&monitor_enter_instruction);
1510 }
1511
1512 // Iterate through the set of dex registers, as the compiler may not have held all of them
1513 // live.
1514 bool success = false;
1515 for (uint32_t dex_reg : dex_lock_info.dex_registers) {
1516 uint32_t value;
1517
1518 // For optimized code we expect the DexRegisterMap to be present - monitor information
1519 // not be optimized out.
1520 success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value);
1521 if (success) {
1522 ObjPtr<mirror::Object> o = reinterpret_cast<mirror::Object*>(value);
1523 callback(o, callback_context);
1524 break;
1525 }
1526 }
1527 DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc "
1528 << dex_lock_info.dex_pc
1529 << " in method "
1530 << m->PrettyMethod();
1531 if (!success) {
1532 LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc
1533 << " but was not able to fetch a corresponding object!";
1534 }
1535 }
1536 }
1537
IsValidLockWord(LockWord lock_word)1538 bool Monitor::IsValidLockWord(LockWord lock_word) {
1539 switch (lock_word.GetState()) {
1540 case LockWord::kUnlocked:
1541 // Nothing to check.
1542 return true;
1543 case LockWord::kThinLocked:
1544 // Basic consistency check of owner.
1545 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1546 case LockWord::kFatLocked: {
1547 // Check the monitor appears in the monitor list.
1548 Monitor* mon = lock_word.FatLockMonitor();
1549 MonitorList* list = Runtime::Current()->GetMonitorList();
1550 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1551 for (Monitor* list_mon : list->list_) {
1552 if (mon == list_mon) {
1553 return true; // Found our monitor.
1554 }
1555 }
1556 return false; // Fail - unowned monitor in an object.
1557 }
1558 case LockWord::kHashCode:
1559 return true;
1560 default:
1561 LOG(FATAL) << "Unreachable";
1562 UNREACHABLE();
1563 }
1564 }
1565
IsLocked()1566 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1567 return GetOwner() != nullptr;
1568 }
1569
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1570 void Monitor::TranslateLocation(ArtMethod* method,
1571 uint32_t dex_pc,
1572 const char** source_file,
1573 int32_t* line_number) {
1574 // If method is null, location is unknown
1575 if (method == nullptr) {
1576 *source_file = "";
1577 *line_number = 0;
1578 return;
1579 }
1580 *source_file = method->GetDeclaringClassSourceFile();
1581 if (*source_file == nullptr) {
1582 *source_file = "";
1583 }
1584 *line_number = method->GetLineNumFromDexPC(dex_pc);
1585 }
1586
GetOwnerThreadId()1587 uint32_t Monitor::GetOwnerThreadId() {
1588 // Make sure owner is not deallocated during access.
1589 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1590 Thread* owner = GetOwner();
1591 if (owner != nullptr) {
1592 return owner->GetThreadId();
1593 } else {
1594 return ThreadList::kInvalidThreadId;
1595 }
1596 }
1597
MonitorList()1598 MonitorList::MonitorList()
1599 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1600 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1601 }
1602
~MonitorList()1603 MonitorList::~MonitorList() {
1604 Thread* self = Thread::Current();
1605 MutexLock mu(self, monitor_list_lock_);
1606 // Release all monitors to the pool.
1607 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1608 // clear faster in the pool.
1609 MonitorPool::ReleaseMonitors(self, &list_);
1610 }
1611
DisallowNewMonitors()1612 void MonitorList::DisallowNewMonitors() {
1613 CHECK(!kUseReadBarrier);
1614 MutexLock mu(Thread::Current(), monitor_list_lock_);
1615 allow_new_monitors_ = false;
1616 }
1617
AllowNewMonitors()1618 void MonitorList::AllowNewMonitors() {
1619 CHECK(!kUseReadBarrier);
1620 Thread* self = Thread::Current();
1621 MutexLock mu(self, monitor_list_lock_);
1622 allow_new_monitors_ = true;
1623 monitor_add_condition_.Broadcast(self);
1624 }
1625
BroadcastForNewMonitors()1626 void MonitorList::BroadcastForNewMonitors() {
1627 Thread* self = Thread::Current();
1628 MutexLock mu(self, monitor_list_lock_);
1629 monitor_add_condition_.Broadcast(self);
1630 }
1631
Add(Monitor * m)1632 void MonitorList::Add(Monitor* m) {
1633 Thread* self = Thread::Current();
1634 MutexLock mu(self, monitor_list_lock_);
1635 // CMS needs this to block for concurrent reference processing because an object allocated during
1636 // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1637 // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant.
1638 while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1639 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1640 // presence of threads blocking for weak ref access.
1641 self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1642 monitor_add_condition_.WaitHoldingLocks(self);
1643 }
1644 list_.push_front(m);
1645 }
1646
SweepMonitorList(IsMarkedVisitor * visitor)1647 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1648 Thread* self = Thread::Current();
1649 MutexLock mu(self, monitor_list_lock_);
1650 for (auto it = list_.begin(); it != list_.end(); ) {
1651 Monitor* m = *it;
1652 // Disable the read barrier in GetObject() as this is called by GC.
1653 ObjPtr<mirror::Object> obj = m->GetObject<kWithoutReadBarrier>();
1654 // The object of a monitor can be null if we have deflated it.
1655 ObjPtr<mirror::Object> new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr;
1656 if (new_obj == nullptr) {
1657 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1658 << obj;
1659 MonitorPool::ReleaseMonitor(self, m);
1660 it = list_.erase(it);
1661 } else {
1662 m->SetObject(new_obj);
1663 ++it;
1664 }
1665 }
1666 }
1667
Size()1668 size_t MonitorList::Size() {
1669 Thread* self = Thread::Current();
1670 MutexLock mu(self, monitor_list_lock_);
1671 return list_.size();
1672 }
1673
1674 class MonitorDeflateVisitor : public IsMarkedVisitor {
1675 public:
MonitorDeflateVisitor()1676 MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1677
IsMarked(mirror::Object * object)1678 mirror::Object* IsMarked(mirror::Object* object) override
1679 REQUIRES_SHARED(Locks::mutator_lock_) {
1680 if (Monitor::Deflate(self_, object)) {
1681 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1682 ++deflate_count_;
1683 // If we deflated, return null so that the monitor gets removed from the array.
1684 return nullptr;
1685 }
1686 return object; // Monitor was not deflated.
1687 }
1688
1689 Thread* const self_;
1690 size_t deflate_count_;
1691 };
1692
DeflateMonitors()1693 size_t MonitorList::DeflateMonitors() {
1694 MonitorDeflateVisitor visitor;
1695 Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1696 SweepMonitorList(&visitor);
1697 return visitor.deflate_count_;
1698 }
1699
MonitorInfo(ObjPtr<mirror::Object> obj)1700 MonitorInfo::MonitorInfo(ObjPtr<mirror::Object> obj) : owner_(nullptr), entry_count_(0) {
1701 DCHECK(obj != nullptr);
1702 LockWord lock_word = obj->GetLockWord(true);
1703 switch (lock_word.GetState()) {
1704 case LockWord::kUnlocked:
1705 // Fall-through.
1706 case LockWord::kForwardingAddress:
1707 // Fall-through.
1708 case LockWord::kHashCode:
1709 break;
1710 case LockWord::kThinLocked:
1711 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1712 DCHECK(owner_ != nullptr) << "Thin-locked without owner!";
1713 entry_count_ = 1 + lock_word.ThinLockCount();
1714 // Thin locks have no waiters.
1715 break;
1716 case LockWord::kFatLocked: {
1717 Monitor* mon = lock_word.FatLockMonitor();
1718 owner_ = mon->owner_.load(std::memory_order_relaxed);
1719 // Here it is okay for the owner to be null since we don't reset the LockWord back to
1720 // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat
1721 // lock without an owner.
1722 // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so
1723 // we must see consistent values.
1724 if (owner_ != nullptr) {
1725 entry_count_ = 1 + mon->lock_count_;
1726 } else {
1727 DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!";
1728 }
1729 for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1730 waiters_.push_back(waiter);
1731 }
1732 break;
1733 }
1734 }
1735 }
1736
MaybeEnableTimeout()1737 void Monitor::MaybeEnableTimeout() {
1738 std::string current_package = Runtime::Current()->GetProcessPackageName();
1739 bool enabled_for_app = android::base::GetBoolProperty("debug.art.monitor.app", false);
1740 if (current_package == "android" || enabled_for_app) {
1741 monitor_lock_.setEnableMonitorTimeout();
1742 monitor_lock_.setMonitorId(monitor_id_);
1743 }
1744 }
1745
1746 } // namespace art
1747