1# Copyright 2014 The Android Open Source Project 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14"""Verifies the DNG RAW model parameters are correct.""" 15 16 17import logging 18import math 19import os.path 20import matplotlib 21from matplotlib import pylab 22from mobly import test_runner 23 24import its_base_test 25import camera_properties_utils 26import capture_request_utils 27import image_processing_utils 28import its_session_utils 29 30 31BAYER_LIST = ['R', 'GR', 'GB', 'B'] 32NAME = os.path.splitext(os.path.basename(__file__))[0] 33NUM_STEPS = 4 34PATCH_H = 0.02 # center 2% 35PATCH_W = 0.02 36PATCH_X = 0.5 - PATCH_W/2 37PATCH_Y = 0.5 - PATCH_H/2 38VAR_ATOL_THRESH = 0.0012 # absolute variance delta threshold 39VAR_RTOL_THRESH = 0.2 # relative variance delta threshold 40 41 42class DngNoiseModelTest(its_base_test.ItsBaseTest): 43 """Verify that the DNG raw model parameters are correct. 44 45 Pass if the difference between expected and computed variances is small, 46 defined as being within an absolute variance delta or relative variance 47 delta of the expected variance, whichever is larger. This is to allow the 48 test to pass in the presence of some randomness (since this test is 49 measuring noise of a small patch) and some imperfect scene conditions 50 (since ITS doesn't require a perfectly uniformly lit scene). 51 """ 52 53 def test_dng_noise_model(self): 54 logging.debug('Starting %s', NAME) 55 with its_session_utils.ItsSession( 56 device_id=self.dut.serial, 57 camera_id=self.camera_id, 58 hidden_physical_id=self.hidden_physical_id) as cam: 59 props = cam.get_camera_properties() 60 props = cam.override_with_hidden_physical_camera_props(props) 61 log_path = self.log_path 62 63 # check SKIP conditions 64 camera_properties_utils.skip_unless( 65 camera_properties_utils.raw(props) and 66 camera_properties_utils.raw16(props) and 67 camera_properties_utils.manual_sensor(props) and 68 camera_properties_utils.per_frame_control(props) and 69 not camera_properties_utils.mono_camera(props)) 70 71 # Load chart for scene 72 its_session_utils.load_scene( 73 cam, props, self.scene, self.tablet, self.chart_distance) 74 75 # Expose for the scene with min sensitivity 76 white_level = float(props['android.sensor.info.whiteLevel']) 77 cfa_idxs = image_processing_utils.get_canonical_cfa_order(props) 78 sens_min, _ = props['android.sensor.info.sensitivityRange'] 79 sens_max_ana = props['android.sensor.maxAnalogSensitivity'] 80 sens_step = (sens_max_ana - sens_min) // NUM_STEPS 81 s_ae, e_ae, _, _, _ = cam.do_3a(get_results=True, do_af=False) 82 # Focus at zero to intentionally blur the scene as much as possible. 83 f_dist = 0.0 84 s_e_prod = s_ae * e_ae 85 sensitivities = range(sens_min, sens_max_ana+1, sens_step) 86 87 var_exp = [[], [], [], []] 88 var_meas = [[], [], [], []] 89 sens_valid = [] 90 for sens in sensitivities: 91 # Capture a raw frame with the desired sensitivity 92 exp = int(s_e_prod / float(sens)) 93 req = capture_request_utils.manual_capture_request(sens, exp, f_dist) 94 cap = cam.do_capture(req, cam.CAP_RAW) 95 planes = image_processing_utils.convert_capture_to_planes(cap, props) 96 s_read = cap['metadata']['android.sensor.sensitivity'] 97 logging.debug('iso_write: %d, iso_read: %d', sens, s_read) 98 if self.debug_mode: 99 img = image_processing_utils.convert_capture_to_rgb_image( 100 cap, props=props) 101 image_processing_utils.write_image( 102 img, '%s_%d.jpg' % (os.path.join(log_path, NAME), sens)) 103 104 # Test each raw color channel (R, GR, GB, B) 105 noise_profile = cap['metadata']['android.sensor.noiseProfile'] 106 assert len(noise_profile) == len(BAYER_LIST) 107 for i, ch in enumerate(BAYER_LIST): 108 # Get the noise model parameters for this channel of this shot. 109 s, o = noise_profile[cfa_idxs[i]] 110 111 # Use a very small patch to ensure gross uniformity (i.e. so 112 # non-uniform lighting or vignetting doesn't affect the variance 113 # calculation) 114 black_level = image_processing_utils.get_black_level( 115 i, props, cap['metadata']) 116 level_range = white_level - black_level 117 plane = image_processing_utils.get_image_patch( 118 planes[i], PATCH_X, PATCH_Y, PATCH_W, PATCH_H) 119 patch_raw = plane * white_level 120 patch_norm = ((patch_raw - black_level) / level_range) 121 122 # exit if distribution is clipped at 0, otherwise continue 123 mean_img_ch = patch_norm.mean() 124 var_model = s * mean_img_ch + o 125 # This computation is suspicious because if the data were clipped, 126 # the mean and standard deviation could be affected in a way that 127 # affects this check. However, empirically, the mean and standard 128 # deviation change more slowly than the clipping point itself does, 129 # so the check remains correct even after the signal starts to clip. 130 mean_minus_3sigma = mean_img_ch - math.sqrt(var_model) * 3 131 if mean_minus_3sigma < 0: 132 e_msg = 'Pixel distribution crosses 0. Likely black level ' 133 e_msg += 'over-clips. Linear model is not valid. ' 134 e_msg += 'mean: %.3e, var: %.3e, u-3s: %.3e' % ( 135 mean_img_ch, var_model, mean_minus_3sigma) 136 assert mean_minus_3sigma < 0, e_msg 137 else: 138 var = image_processing_utils.compute_image_variances(patch_norm)[0] 139 var_meas[i].append(var) 140 var_exp[i].append(var_model) 141 abs_diff = abs(var - var_model) 142 logging.debug('%s mean: %.3f, var: %.3e, var_model: %.3e', 143 ch, mean_img_ch, var, var_model) 144 if var_model: 145 rel_diff = abs_diff / var_model 146 else: 147 raise AssertionError(f'{ch} model variance = 0!') 148 logging.debug('abs_diff: %.5f, rel_diff: %.3f', abs_diff, rel_diff) 149 sens_valid.append(sens) 150 151 # plot data and models 152 pylab.figure(NAME) 153 for i, ch in enumerate(BAYER_LIST): 154 pylab.plot(sens_valid, var_exp[i], 'rgkb'[i], label=ch+' expected') 155 pylab.plot(sens_valid, var_meas[i], 'rgkb'[i]+'.--', label=ch+' measured') 156 pylab.title(NAME) 157 pylab.xlabel('Sensitivity') 158 pylab.ylabel('Center patch variance') 159 pylab.ticklabel_format(axis='y', style='sci', scilimits=(-6, -6)) 160 pylab.legend(loc=2) 161 matplotlib.pyplot.savefig('%s_plot.png' % os.path.join(log_path, NAME)) 162 163 # PASS/FAIL check 164 for i, ch in enumerate(BAYER_LIST): 165 var_diffs = [abs(var_meas[i][j] - var_exp[i][j]) 166 for j in range(len(sens_valid))] 167 logging.debug('%s variance diffs: %s', ch, str(var_diffs)) 168 for j, diff in enumerate(var_diffs): 169 thresh = max(VAR_ATOL_THRESH, VAR_RTOL_THRESH*var_exp[i][j]) 170 assert diff <= thresh, 'var diff: %.5f, thresh: %.4f' % (diff, thresh) 171 172if __name__ == '__main__': 173 test_runner.main() 174