1 // Copyright (C) 2018 The Android Open Source Project
2 // Copyright (C) 2018 Google Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 #include "HostVisibleMemoryVirtualization.h"
16
17 #include "android/base/AndroidSubAllocator.h"
18
19 #include "Resources.h"
20 #include "VkEncoder.h"
21
22 #include "../OpenglSystemCommon/EmulatorFeatureInfo.h"
23
24 #include <log/log.h>
25
26 #include <set>
27
28 #ifdef ANDROID
29 #include <unistd.h>
30 #include <errno.h>
31 #endif
32 #include <sys/mman.h>
33
34 using android::base::guest::SubAllocator;
35
36 namespace goldfish_vk {
37
canFitVirtualHostVisibleMemoryInfo(const VkPhysicalDeviceMemoryProperties * memoryProperties)38 bool canFitVirtualHostVisibleMemoryInfo(
39 const VkPhysicalDeviceMemoryProperties* memoryProperties) {
40 uint32_t typeCount =
41 memoryProperties->memoryTypeCount;
42 uint32_t heapCount =
43 memoryProperties->memoryHeapCount;
44
45 bool canFit = true;
46
47 if (typeCount == VK_MAX_MEMORY_TYPES) {
48 canFit = false;
49 ALOGE("Underlying device has no free memory types");
50 }
51
52 if (heapCount == VK_MAX_MEMORY_HEAPS) {
53 canFit = false;
54 ALOGE("Underlying device has no free memory heaps");
55 }
56
57 uint32_t numFreeMemoryTypes = VK_MAX_MEMORY_TYPES - typeCount;
58 uint32_t hostVisibleMemoryTypeCount = 0;
59
60 if (hostVisibleMemoryTypeCount > numFreeMemoryTypes) {
61 ALOGE("Underlying device has too many host visible memory types (%u)"
62 "and not enough free types (%u)",
63 hostVisibleMemoryTypeCount, numFreeMemoryTypes);
64 canFit = false;
65 }
66
67 return canFit;
68 }
69
initHostVisibleMemoryVirtualizationInfo(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceMemoryProperties * memoryProperties,const EmulatorFeatureInfo * featureInfo,HostVisibleMemoryVirtualizationInfo * info_out)70 void initHostVisibleMemoryVirtualizationInfo(
71 VkPhysicalDevice physicalDevice,
72 const VkPhysicalDeviceMemoryProperties* memoryProperties,
73 const EmulatorFeatureInfo* featureInfo,
74 HostVisibleMemoryVirtualizationInfo* info_out) {
75
76 if (info_out->initialized) return;
77
78 info_out->hostMemoryProperties = *memoryProperties;
79 info_out->initialized = true;
80
81 info_out->memoryPropertiesSupported =
82 canFitVirtualHostVisibleMemoryInfo(memoryProperties);
83
84 info_out->directMemSupported = featureInfo->hasDirectMem;
85 info_out->virtioGpuNextSupported = featureInfo->hasVirtioGpuNext;
86
87 if (!info_out->memoryPropertiesSupported ||
88 (!info_out->directMemSupported &&
89 !info_out->virtioGpuNextSupported)) {
90 info_out->virtualizationSupported = false;
91 return;
92 }
93
94 info_out->virtualizationSupported = true;
95
96 info_out->physicalDevice = physicalDevice;
97 info_out->guestMemoryProperties = *memoryProperties;
98
99 uint32_t typeCount =
100 memoryProperties->memoryTypeCount;
101 uint32_t heapCount =
102 memoryProperties->memoryHeapCount;
103
104 uint32_t firstFreeTypeIndex = typeCount;
105 uint32_t firstFreeHeapIndex = heapCount;
106
107 for (uint32_t i = 0; i < typeCount; ++i) {
108
109 // Set up identity mapping and not-both
110 // by default, to be edited later.
111 info_out->memoryTypeIndexMappingToHost[i] = i;
112 info_out->memoryHeapIndexMappingToHost[i] = i;
113
114 info_out->memoryTypeIndexMappingFromHost[i] = i;
115 info_out->memoryHeapIndexMappingFromHost[i] = i;
116
117 info_out->memoryTypeBitsShouldAdvertiseBoth[i] = false;
118
119 const auto& type = memoryProperties->memoryTypes[i];
120
121 if (type.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
122 uint32_t heapIndex = type.heapIndex;
123
124 auto& guestMemoryType =
125 info_out->guestMemoryProperties.memoryTypes[i];
126
127 auto& newVirtualMemoryType =
128 info_out->guestMemoryProperties.memoryTypes[firstFreeTypeIndex];
129
130 auto& newVirtualMemoryHeap =
131 info_out->guestMemoryProperties.memoryHeaps[firstFreeHeapIndex];
132
133 // Remove all references to host visible in the guest memory type at
134 // index i, while transferring them to the new virtual memory type.
135 newVirtualMemoryType = type;
136
137 // Set this memory type to have a separate heap.
138 newVirtualMemoryType.heapIndex = firstFreeHeapIndex;
139
140 newVirtualMemoryType.propertyFlags =
141 type.propertyFlags &
142 ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
143
144 guestMemoryType.propertyFlags =
145 type.propertyFlags & \
146 ~(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
147 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
148 VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
149
150 // In the corresponding new memory heap, copy the information over,
151 // remove device local flags, and resize it based on what is
152 // supported by the PCI device.
153 newVirtualMemoryHeap =
154 memoryProperties->memoryHeaps[heapIndex];
155 newVirtualMemoryHeap.flags =
156 newVirtualMemoryHeap.flags &
157 ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
158
159 // TODO: Figure out how to support bigger sizes
160 newVirtualMemoryHeap.size = VIRTUAL_HOST_VISIBLE_HEAP_SIZE;
161
162 info_out->memoryTypeIndexMappingToHost[firstFreeTypeIndex] = i;
163 info_out->memoryHeapIndexMappingToHost[firstFreeHeapIndex] = i;
164
165 info_out->memoryTypeIndexMappingFromHost[i] = firstFreeTypeIndex;
166 info_out->memoryHeapIndexMappingFromHost[i] = firstFreeHeapIndex;
167
168 // Was the original memory type also a device local type? If so,
169 // advertise both types in resulting type bits.
170 info_out->memoryTypeBitsShouldAdvertiseBoth[i] =
171 type.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT ||
172 type.propertyFlags == 0;
173
174 ++firstFreeTypeIndex;
175
176 // Explicitly only create one new heap.
177 // ++firstFreeHeapIndex;
178 }
179 }
180
181 info_out->guestMemoryProperties.memoryTypeCount = firstFreeTypeIndex;
182 info_out->guestMemoryProperties.memoryHeapCount = firstFreeHeapIndex + 1;
183
184 for (uint32_t i = info_out->guestMemoryProperties.memoryTypeCount; i < VK_MAX_MEMORY_TYPES; ++i) {
185 memset(&info_out->guestMemoryProperties.memoryTypes[i],
186 0x0, sizeof(VkMemoryType));
187 }
188 }
189
isHostVisibleMemoryTypeIndexForGuest(const HostVisibleMemoryVirtualizationInfo * info,uint32_t index)190 bool isHostVisibleMemoryTypeIndexForGuest(
191 const HostVisibleMemoryVirtualizationInfo* info,
192 uint32_t index) {
193
194 const auto& props =
195 info->virtualizationSupported ?
196 info->guestMemoryProperties :
197 info->hostMemoryProperties;
198
199 return props.memoryTypes[index].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
200 }
201
isDeviceLocalMemoryTypeIndexForGuest(const HostVisibleMemoryVirtualizationInfo * info,uint32_t index)202 bool isDeviceLocalMemoryTypeIndexForGuest(
203 const HostVisibleMemoryVirtualizationInfo* info,
204 uint32_t index) {
205
206 const auto& props =
207 info->virtualizationSupported ?
208 info->guestMemoryProperties :
209 info->hostMemoryProperties;
210
211 return props.memoryTypes[index].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
212 }
213
finishHostMemAllocInit(VkEncoder *,VkDevice device,uint32_t memoryTypeIndex,VkDeviceSize nonCoherentAtomSize,VkDeviceSize allocSize,VkDeviceSize mappedSize,uint8_t * mappedPtr,HostMemAlloc * out)214 VkResult finishHostMemAllocInit(
215 VkEncoder*,
216 VkDevice device,
217 uint32_t memoryTypeIndex,
218 VkDeviceSize nonCoherentAtomSize,
219 VkDeviceSize allocSize,
220 VkDeviceSize mappedSize,
221 uint8_t* mappedPtr,
222 HostMemAlloc* out) {
223
224 out->device = device;
225 out->memoryTypeIndex = memoryTypeIndex;
226 out->nonCoherentAtomSize = nonCoherentAtomSize;
227 out->allocSize = allocSize;
228 out->mappedSize = mappedSize;
229 out->mappedPtr = mappedPtr;
230
231 // because it's not just nonCoherentAtomSize granularity,
232 // people will also use it for uniform buffers, images, etc.
233 // that need some bigger alignment
234 // #define HIGHEST_BUFFER_OR_IMAGE_ALIGNMENT 1024
235 // bug: 145153816
236 // HACK: Make it 65k so yuv images are happy on vk cts 1.2.1
237 // TODO: Use a munmap/mmap MAP_FIXED scheme to realign memories
238 // if it's found that the buffer or image bind alignment will be violated
239 #define HIGHEST_BUFFER_OR_IMAGE_ALIGNMENT 65536
240
241 uint64_t neededPageSize = out->nonCoherentAtomSize;
242 if (HIGHEST_BUFFER_OR_IMAGE_ALIGNMENT >
243 neededPageSize) {
244 neededPageSize = HIGHEST_BUFFER_OR_IMAGE_ALIGNMENT;
245 }
246
247 out->subAlloc = new
248 SubAllocator(
249 out->mappedPtr,
250 out->mappedSize,
251 neededPageSize);
252
253 out->initialized = true;
254 out->initResult = VK_SUCCESS;
255 return VK_SUCCESS;
256 }
257
destroyHostMemAlloc(bool freeMemorySyncSupported,VkEncoder * enc,VkDevice device,HostMemAlloc * toDestroy)258 void destroyHostMemAlloc(
259 bool freeMemorySyncSupported,
260 VkEncoder* enc,
261 VkDevice device,
262 HostMemAlloc* toDestroy) {
263
264 if (toDestroy->initResult != VK_SUCCESS) return;
265 if (!toDestroy->initialized) return;
266
267 #ifdef ANDROID
268 if (toDestroy->fd > 0) {
269
270 if (toDestroy->memoryAddr) {
271 int ret = munmap((void*)toDestroy->memoryAddr, toDestroy->memorySize);
272 ALOGE("%s: trying to unmap addr = 0x%" PRIx64", size = %d, ret = %d, errno = %d\n", __func__, toDestroy->memoryAddr, (int32_t)toDestroy->memorySize, ret, errno);
273 }
274
275 ALOGE("%s: trying to close fd = %d\n", __func__, toDestroy->fd);
276 int ret = close(toDestroy->fd);
277 if (ret != 0) {
278 ALOGE("%s: fail to close fd = %d, ret = %d, errno = %d\n", __func__, toDestroy->fd, ret, errno);
279 } else {
280 ALOGE("%s: successfully close fd = %d, ret = %d\n", __func__, toDestroy->fd, ret);
281 }
282 }
283 #endif
284
285 if (freeMemorySyncSupported) {
286 enc->vkFreeMemorySyncGOOGLE(device, toDestroy->memory, nullptr, false /* no lock */);
287 } else {
288 enc->vkFreeMemory(device, toDestroy->memory, nullptr, false /* no lock */);
289 }
290
291 delete toDestroy->subAlloc;
292 }
293
subAllocHostMemory(HostMemAlloc * alloc,const VkMemoryAllocateInfo * pAllocateInfo,SubAlloc * out)294 void subAllocHostMemory(
295 HostMemAlloc* alloc,
296 const VkMemoryAllocateInfo* pAllocateInfo,
297 SubAlloc* out) {
298
299 VkDeviceSize mappedSize =
300 alloc->nonCoherentAtomSize * (
301 (pAllocateInfo->allocationSize +
302 alloc->nonCoherentAtomSize - 1) /
303 alloc->nonCoherentAtomSize);
304
305 ALOGV("%s: alloc size %u mapped size %u ncaSize %u\n", __func__,
306 (unsigned int)pAllocateInfo->allocationSize,
307 (unsigned int)mappedSize,
308 (unsigned int)alloc->nonCoherentAtomSize);
309
310 void* subMapped = alloc->subAlloc->alloc(mappedSize);
311 out->mappedPtr = (uint8_t*)subMapped;
312
313 out->subAllocSize = pAllocateInfo->allocationSize;
314 out->subMappedSize = mappedSize;
315
316 out->baseMemory = alloc->memory;
317 out->baseOffset = alloc->subAlloc->getOffset(subMapped);
318
319 out->subMemory = new_from_host_VkDeviceMemory(VK_NULL_HANDLE);
320 out->subAlloc = alloc->subAlloc;
321 }
322
subFreeHostMemory(SubAlloc * toFree)323 void subFreeHostMemory(SubAlloc* toFree) {
324 delete_goldfish_VkDeviceMemory(toFree->subMemory);
325 toFree->subAlloc->free(toFree->mappedPtr);
326 memset(toFree, 0x0, sizeof(SubAlloc));
327 }
328
canSubAlloc(android::base::guest::SubAllocator * subAlloc,VkDeviceSize size)329 bool canSubAlloc(android::base::guest::SubAllocator* subAlloc, VkDeviceSize size) {
330 auto ptr = subAlloc->alloc(size);
331 if (!ptr) return false;
332 subAlloc->free(ptr);
333 return true;
334 }
335
isNoFlagsMemoryTypeIndexForGuest(const HostVisibleMemoryVirtualizationInfo * info,uint32_t index)336 bool isNoFlagsMemoryTypeIndexForGuest(
337 const HostVisibleMemoryVirtualizationInfo* info,
338 uint32_t index) {
339 const auto& props =
340 info->virtualizationSupported ?
341 info->guestMemoryProperties :
342 info->hostMemoryProperties;
343 return props.memoryTypes[index].propertyFlags == 0;
344 }
345
346
347 } // namespace goldfish_vk
348