1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_UTILS_FLATTENABLE_H
18 #define ANDROID_UTILS_FLATTENABLE_H
19
20
21 #include <stdint.h>
22 #include <string.h>
23 #include <sys/types.h>
24 #include <utils/Errors.h>
25 #include <utils/Debug.h>
26
27 #include <type_traits>
28
29 namespace android {
30
31
32 class FlattenableUtils {
33 public:
34 template<size_t N>
align(size_t size)35 static size_t align(size_t size) {
36 static_assert(!(N & (N - 1)), "Can only align to a power of 2.");
37 return (size + (N-1)) & ~(N-1);
38 }
39
40 template<size_t N>
align(void const * & buffer)41 static size_t align(void const*& buffer) {
42 static_assert(!(N & (N - 1)), "Can only align to a power of 2.");
43 uintptr_t b = uintptr_t(buffer);
44 buffer = reinterpret_cast<void*>((uintptr_t(buffer) + (N-1)) & ~(N-1));
45 return size_t(uintptr_t(buffer) - b);
46 }
47
48 template<size_t N>
align(void * & buffer)49 static size_t align(void*& buffer) {
50 return align<N>( const_cast<void const*&>(buffer) );
51 }
52
advance(void * & buffer,size_t & size,size_t offset)53 static void advance(void*& buffer, size_t& size, size_t offset) {
54 buffer = reinterpret_cast<void*>( uintptr_t(buffer) + offset );
55 size -= offset;
56 }
57
advance(void const * & buffer,size_t & size,size_t offset)58 static void advance(void const*& buffer, size_t& size, size_t offset) {
59 buffer = reinterpret_cast<void const*>( uintptr_t(buffer) + offset );
60 size -= offset;
61 }
62
63 // write a POD structure
64 template<typename T>
write(void * & buffer,size_t & size,const T & value)65 static void write(void*& buffer, size_t& size, const T& value) {
66 static_assert(std::is_trivially_copyable<T>::value,
67 "Cannot flatten a non-trivially-copyable type");
68 memcpy(buffer, &value, sizeof(T));
69 advance(buffer, size, sizeof(T));
70 }
71
72 // read a POD structure
73 template<typename T>
read(void const * & buffer,size_t & size,T & value)74 static void read(void const*& buffer, size_t& size, T& value) {
75 static_assert(std::is_trivially_copyable<T>::value,
76 "Cannot unflatten a non-trivially-copyable type");
77 memcpy(&value, buffer, sizeof(T));
78 advance(buffer, size, sizeof(T));
79 }
80 };
81
82
83 /*
84 * The Flattenable protocol allows an object to serialize itself out
85 * to a byte-buffer and an array of file descriptors.
86 * Flattenable objects must implement this protocol.
87 */
88
89 template <typename T>
90 class Flattenable {
91 public:
92 // size in bytes of the flattened object
93 inline size_t getFlattenedSize() const;
94
95 // number of file descriptors to flatten
96 inline size_t getFdCount() const;
97
98 // flattens the object into buffer.
99 // size should be at least of getFlattenedSize()
100 // file descriptors are written in the fds[] array but ownership is
101 // not transfered (ie: they must be dupped by the caller of
102 // flatten() if needed).
103 inline status_t flatten(void*& buffer, size_t& size, int*& fds, size_t& count) const;
104
105 // unflattens the object from buffer.
106 // size should be equal to the value of getFlattenedSize() when the
107 // object was flattened.
108 // unflattened file descriptors are found in the fds[] array and
109 // don't need to be dupped(). ie: the caller of unflatten doesn't
110 // keep ownership. If a fd is not retained by unflatten() it must be
111 // explicitly closed.
112 inline status_t unflatten(void const*& buffer, size_t& size, int const*& fds, size_t& count);
113 };
114
115 template<typename T>
getFlattenedSize()116 inline size_t Flattenable<T>::getFlattenedSize() const {
117 return static_cast<T const*>(this)->T::getFlattenedSize();
118 }
119 template<typename T>
getFdCount()120 inline size_t Flattenable<T>::getFdCount() const {
121 return static_cast<T const*>(this)->T::getFdCount();
122 }
123 template<typename T>
flatten(void * & buffer,size_t & size,int * & fds,size_t & count)124 inline status_t Flattenable<T>::flatten(
125 void*& buffer, size_t& size, int*& fds, size_t& count) const {
126 return static_cast<T const*>(this)->T::flatten(buffer, size, fds, count);
127 }
128 template<typename T>
unflatten(void const * & buffer,size_t & size,int const * & fds,size_t & count)129 inline status_t Flattenable<T>::unflatten(
130 void const*& buffer, size_t& size, int const*& fds, size_t& count) {
131 return static_cast<T*>(this)->T::unflatten(buffer, size, fds, count);
132 }
133
134 /*
135 * LightFlattenable is a protocol allowing object to serialize themselves out
136 * to a byte-buffer. Because it doesn't handle file-descriptors,
137 * LightFlattenable is usually more size efficient than Flattenable.
138 * LightFlattenable objects must implement this protocol.
139 */
140 template <typename T>
141 class LightFlattenable {
142 public:
143 // returns whether this object always flatten into the same size.
144 // for efficiency, this should always be inline.
145 inline bool isFixedSize() const;
146
147 // returns size in bytes of the flattened object. must be a constant.
148 inline size_t getFlattenedSize() const;
149
150 // flattens the object into buffer.
151 inline status_t flatten(void* buffer, size_t size) const;
152
153 // unflattens the object from buffer of given size.
154 inline status_t unflatten(void const* buffer, size_t size);
155 };
156
157 template <typename T>
isFixedSize()158 inline bool LightFlattenable<T>::isFixedSize() const {
159 return static_cast<T const*>(this)->T::isFixedSize();
160 }
161 template <typename T>
getFlattenedSize()162 inline size_t LightFlattenable<T>::getFlattenedSize() const {
163 return static_cast<T const*>(this)->T::getFlattenedSize();
164 }
165 template <typename T>
flatten(void * buffer,size_t size)166 inline status_t LightFlattenable<T>::flatten(void* buffer, size_t size) const {
167 return static_cast<T const*>(this)->T::flatten(buffer, size);
168 }
169 template <typename T>
unflatten(void const * buffer,size_t size)170 inline status_t LightFlattenable<T>::unflatten(void const* buffer, size_t size) {
171 return static_cast<T*>(this)->T::unflatten(buffer, size);
172 }
173
174 /*
175 * LightFlattenablePod is an implementation of the LightFlattenable protocol
176 * for POD (plain-old-data) objects.
177 * Simply derive from LightFlattenablePod<Foo> to make Foo flattenable; no
178 * need to implement any methods; obviously Foo must be a POD structure.
179 */
180 template <typename T>
181 class LightFlattenablePod : public LightFlattenable<T> {
182 public:
isFixedSize()183 inline bool isFixedSize() const {
184 return true;
185 }
186
getFlattenedSize()187 inline size_t getFlattenedSize() const {
188 return sizeof(T);
189 }
flatten(void * buffer,size_t size)190 inline status_t flatten(void* buffer, size_t size) const {
191 if (size < sizeof(T)) return NO_MEMORY;
192 memcpy(buffer, static_cast<T const*>(this), sizeof(T));
193 return NO_ERROR;
194 }
unflatten(void const * buffer,size_t)195 inline status_t unflatten(void const* buffer, size_t) {
196 memcpy(static_cast<T*>(this), buffer, sizeof(T));
197 return NO_ERROR;
198 }
199 };
200
201 } // namespace android
202
203 #endif /* ANDROID_UTILS_FLATTENABLE_H */
204