• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 // mathutil.h: Math and bit manipulation functions.
8 
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11 
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18 
19 #include <anglebase/numerics/safe_math.h>
20 
21 #include "common/debug.h"
22 #include "common/platform.h"
23 
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 }  // namespace angle
29 
30 namespace gl
31 {
32 
33 const unsigned int Float32One   = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35 
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39     static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40     return (x & (x - 1)) == 0 && (x != 0);
41 }
42 
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46     static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47     int r = 0;
48     while ((x >> r) > 1)
49         r++;
50     return r;
51 }
52 
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55     if (x != 0)
56         x--;
57     x |= x >> 1;
58     x |= x >> 2;
59     x |= x >> 4;
60     x |= x >> 8;
61     x |= x >> 16;
62     x++;
63 
64     return x;
65 }
66 
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70     // For floating-point types with denormalization, min returns the minimum positive normalized
71     // value. To find the value that has no values less than it, use numeric_limits::lowest.
72     constexpr const long double destLo =
73         static_cast<long double>(std::numeric_limits<DestT>::lowest());
74     constexpr const long double destHi =
75         static_cast<long double>(std::numeric_limits<DestT>::max());
76     constexpr const long double srcLo =
77         static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78     constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79 
80     if (destHi < srcHi)
81     {
82         DestT destMax = std::numeric_limits<DestT>::max();
83         if (value >= static_cast<SrcT>(destMax))
84         {
85             return destMax;
86         }
87     }
88 
89     if (destLo > srcLo)
90     {
91         DestT destLow = std::numeric_limits<DestT>::lowest();
92         if (value <= static_cast<SrcT>(destLow))
93         {
94             return destLow;
95         }
96     }
97 
98     return static_cast<DestT>(value);
99 }
100 
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106     return static_cast<unsigned int>(value);
107 }
108 
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112     return static_cast<int>(value);
113 }
114 
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118     // Since NaNs fail all comparison tests, a NaN value will default to min
119     return x > min ? (x > max ? max : x) : min;
120 }
121 
clamp01(float x)122 inline float clamp01(float x)
123 {
124     return clamp(x, 0.0f, 1.0f);
125 }
126 
127 template <const int n>
unorm(float x)128 inline unsigned int unorm(float x)
129 {
130     const unsigned int max = 0xFFFFFFFF >> (32 - n);
131 
132     if (x > 1)
133     {
134         return max;
135     }
136     else if (x < 0)
137     {
138         return 0;
139     }
140     else
141     {
142         return (unsigned int)(max * x + 0.5f);
143     }
144 }
145 
supportsSSE2()146 inline bool supportsSSE2()
147 {
148 #if defined(ANGLE_USE_SSE)
149     static bool checked  = false;
150     static bool supports = false;
151 
152     if (checked)
153     {
154         return supports;
155     }
156 
157 #    if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
158     {
159         int info[4];
160         __cpuid(info, 0);
161 
162         if (info[0] >= 1)
163         {
164             __cpuid(info, 1);
165 
166             supports = (info[3] >> 26) & 1;
167         }
168     }
169 #    endif  // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
170     checked = true;
171     return supports;
172 #else  // defined(ANGLE_USE_SSE)
173     return false;
174 #endif
175 }
176 
177 template <typename destType, typename sourceType>
bitCast(const sourceType & source)178 destType bitCast(const sourceType &source)
179 {
180     size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
181     destType output;
182     memcpy(&output, &source, copySize);
183     return output;
184 }
185 
186 // https://stackoverflow.com/a/37581284
187 template <typename T>
normalize(T value)188 static constexpr double normalize(T value)
189 {
190     return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
191                      : static_cast<double>(value) / std::numeric_limits<T>::max();
192 }
193 
float32ToFloat16(float fp32)194 inline unsigned short float32ToFloat16(float fp32)
195 {
196     unsigned int fp32i = bitCast<unsigned int>(fp32);
197     unsigned int sign  = (fp32i & 0x80000000) >> 16;
198     unsigned int abs   = fp32i & 0x7FFFFFFF;
199 
200     if (abs > 0x7F800000)
201     {  // NaN
202         return 0x7FFF;
203     }
204     else if (abs > 0x47FFEFFF)
205     {  // Infinity
206         return static_cast<uint16_t>(sign | 0x7C00);
207     }
208     else if (abs < 0x38800000)  // Denormal
209     {
210         unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
211         int e                 = 113 - (abs >> 23);
212 
213         if (e < 24)
214         {
215             abs = mantissa >> e;
216         }
217         else
218         {
219             abs = 0;
220         }
221 
222         return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
223     }
224     else
225     {
226         return static_cast<unsigned short>(
227             sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
228     }
229 }
230 
231 float float16ToFloat32(unsigned short h);
232 
233 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
234 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
235 
float32ToFloat11(float fp32)236 inline unsigned short float32ToFloat11(float fp32)
237 {
238     const unsigned int float32MantissaMask     = 0x7FFFFF;
239     const unsigned int float32ExponentMask     = 0x7F800000;
240     const unsigned int float32SignMask         = 0x80000000;
241     const unsigned int float32ValueMask        = ~float32SignMask;
242     const unsigned int float32ExponentFirstBit = 23;
243     const unsigned int float32ExponentBias     = 127;
244 
245     const unsigned short float11Max          = 0x7BF;
246     const unsigned short float11MantissaMask = 0x3F;
247     const unsigned short float11ExponentMask = 0x7C0;
248     const unsigned short float11BitMask      = 0x7FF;
249     const unsigned int float11ExponentBias   = 14;
250 
251     const unsigned int float32Maxfloat11 = 0x477E0000;
252     const unsigned int float32Minfloat11 = 0x38800000;
253 
254     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
255     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
256 
257     unsigned int float32Val = float32Bits & float32ValueMask;
258 
259     if ((float32Val & float32ExponentMask) == float32ExponentMask)
260     {
261         // INF or NAN
262         if ((float32Val & float32MantissaMask) != 0)
263         {
264             return float11ExponentMask |
265                    (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
266                     float11MantissaMask);
267         }
268         else if (float32Sign)
269         {
270             // -INF is clamped to 0 since float11 is positive only
271             return 0;
272         }
273         else
274         {
275             return float11ExponentMask;
276         }
277     }
278     else if (float32Sign)
279     {
280         // float11 is positive only, so clamp to zero
281         return 0;
282     }
283     else if (float32Val > float32Maxfloat11)
284     {
285         // The number is too large to be represented as a float11, set to max
286         return float11Max;
287     }
288     else
289     {
290         if (float32Val < float32Minfloat11)
291         {
292             // The number is too small to be represented as a normalized float11
293             // Convert it to a denormalized value.
294             const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
295                                        (float32Val >> float32ExponentFirstBit);
296             float32Val =
297                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
298         }
299         else
300         {
301             // Rebias the exponent to represent the value as a normalized float11
302             float32Val += 0xC8000000;
303         }
304 
305         return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
306     }
307 }
308 
float32ToFloat10(float fp32)309 inline unsigned short float32ToFloat10(float fp32)
310 {
311     const unsigned int float32MantissaMask     = 0x7FFFFF;
312     const unsigned int float32ExponentMask     = 0x7F800000;
313     const unsigned int float32SignMask         = 0x80000000;
314     const unsigned int float32ValueMask        = ~float32SignMask;
315     const unsigned int float32ExponentFirstBit = 23;
316     const unsigned int float32ExponentBias     = 127;
317 
318     const unsigned short float10Max          = 0x3DF;
319     const unsigned short float10MantissaMask = 0x1F;
320     const unsigned short float10ExponentMask = 0x3E0;
321     const unsigned short float10BitMask      = 0x3FF;
322     const unsigned int float10ExponentBias   = 14;
323 
324     const unsigned int float32Maxfloat10 = 0x477C0000;
325     const unsigned int float32Minfloat10 = 0x38800000;
326 
327     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
328     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
329 
330     unsigned int float32Val = float32Bits & float32ValueMask;
331 
332     if ((float32Val & float32ExponentMask) == float32ExponentMask)
333     {
334         // INF or NAN
335         if ((float32Val & float32MantissaMask) != 0)
336         {
337             return float10ExponentMask |
338                    (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
339                     float10MantissaMask);
340         }
341         else if (float32Sign)
342         {
343             // -INF is clamped to 0 since float11 is positive only
344             return 0;
345         }
346         else
347         {
348             return float10ExponentMask;
349         }
350     }
351     else if (float32Sign)
352     {
353         // float10 is positive only, so clamp to zero
354         return 0;
355     }
356     else if (float32Val > float32Maxfloat10)
357     {
358         // The number is too large to be represented as a float11, set to max
359         return float10Max;
360     }
361     else
362     {
363         if (float32Val < float32Minfloat10)
364         {
365             // The number is too small to be represented as a normalized float11
366             // Convert it to a denormalized value.
367             const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
368                                        (float32Val >> float32ExponentFirstBit);
369             float32Val =
370                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
371         }
372         else
373         {
374             // Rebias the exponent to represent the value as a normalized float11
375             float32Val += 0xC8000000;
376         }
377 
378         return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
379     }
380 }
381 
float11ToFloat32(unsigned short fp11)382 inline float float11ToFloat32(unsigned short fp11)
383 {
384     unsigned short exponent = (fp11 >> 6) & 0x1F;
385     unsigned short mantissa = fp11 & 0x3F;
386 
387     if (exponent == 0x1F)
388     {
389         // INF or NAN
390         return bitCast<float>(0x7f800000 | (mantissa << 17));
391     }
392     else
393     {
394         if (exponent != 0)
395         {
396             // normalized
397         }
398         else if (mantissa != 0)
399         {
400             // The value is denormalized
401             exponent = 1;
402 
403             do
404             {
405                 exponent--;
406                 mantissa <<= 1;
407             } while ((mantissa & 0x40) == 0);
408 
409             mantissa = mantissa & 0x3F;
410         }
411         else  // The value is zero
412         {
413             exponent = static_cast<unsigned short>(-112);
414         }
415 
416         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
417     }
418 }
419 
float10ToFloat32(unsigned short fp11)420 inline float float10ToFloat32(unsigned short fp11)
421 {
422     unsigned short exponent = (fp11 >> 5) & 0x1F;
423     unsigned short mantissa = fp11 & 0x1F;
424 
425     if (exponent == 0x1F)
426     {
427         // INF or NAN
428         return bitCast<float>(0x7f800000 | (mantissa << 17));
429     }
430     else
431     {
432         if (exponent != 0)
433         {
434             // normalized
435         }
436         else if (mantissa != 0)
437         {
438             // The value is denormalized
439             exponent = 1;
440 
441             do
442             {
443                 exponent--;
444                 mantissa <<= 1;
445             } while ((mantissa & 0x20) == 0);
446 
447             mantissa = mantissa & 0x1F;
448         }
449         else  // The value is zero
450         {
451             exponent = static_cast<unsigned short>(-112);
452         }
453 
454         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
455     }
456 }
457 
458 // Convers to and from float and 16.16 fixed point format.
459 
ConvertFixedToFloat(uint32_t fixedInput)460 inline float ConvertFixedToFloat(uint32_t fixedInput)
461 {
462     return static_cast<float>(fixedInput) / 65536.0f;
463 }
464 
ConvertFloatToFixed(float floatInput)465 inline uint32_t ConvertFloatToFixed(float floatInput)
466 {
467     static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
468     static constexpr uint32_t kLowest  = static_cast<uint32_t>(-32768 * 65536 + 65535);
469 
470     if (floatInput > 32767.65535)
471     {
472         return kHighest;
473     }
474     else if (floatInput < -32768.65535)
475     {
476         return kLowest;
477     }
478     else
479     {
480         return static_cast<uint32_t>(floatInput * 65536);
481     }
482 }
483 
484 template <typename T>
normalizedToFloat(T input)485 inline float normalizedToFloat(T input)
486 {
487     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
488 
489     if (sizeof(T) > 2)
490     {
491         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
492         constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
493         return static_cast<float>(input * inverseMax);
494     }
495     else
496     {
497         constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
498         return input * inverseMax;
499     }
500 }
501 
502 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)503 inline float normalizedToFloat(T input)
504 {
505     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
506     static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
507     ASSERT((input & ~((1 << inputBitCount) - 1)) == 0);
508 
509     if (inputBitCount > 23)
510     {
511         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
512         constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
513         return static_cast<float>(input * inverseMax);
514     }
515     else
516     {
517         constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
518         return input * inverseMax;
519     }
520 }
521 
522 template <typename T>
floatToNormalized(float input)523 inline T floatToNormalized(float input)
524 {
525     if (sizeof(T) > 2)
526     {
527         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
528         return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
529     }
530     else
531     {
532         return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
533     }
534 }
535 
536 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)537 inline T floatToNormalized(float input)
538 {
539     static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
540 
541     if (outputBitCount > 23)
542     {
543         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
544         return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
545     }
546     else
547     {
548         return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
549     }
550 }
551 
552 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)553 inline T getShiftedData(T input)
554 {
555     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
556                   "T must have at least as many bits as inputBitCount + inputBitStart.");
557     const T mask = (1 << inputBitCount) - 1;
558     return (input >> inputBitStart) & mask;
559 }
560 
561 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)562 inline T shiftData(T input)
563 {
564     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
565                   "T must have at least as many bits as inputBitCount + inputBitStart.");
566     const T mask = (1 << inputBitCount) - 1;
567     return (input & mask) << inputBitStart;
568 }
569 
CountLeadingZeros(uint32_t x)570 inline unsigned int CountLeadingZeros(uint32_t x)
571 {
572     // Use binary search to find the amount of leading zeros.
573     unsigned int zeros = 32u;
574     uint32_t y;
575 
576     y = x >> 16u;
577     if (y != 0)
578     {
579         zeros = zeros - 16u;
580         x     = y;
581     }
582     y = x >> 8u;
583     if (y != 0)
584     {
585         zeros = zeros - 8u;
586         x     = y;
587     }
588     y = x >> 4u;
589     if (y != 0)
590     {
591         zeros = zeros - 4u;
592         x     = y;
593     }
594     y = x >> 2u;
595     if (y != 0)
596     {
597         zeros = zeros - 2u;
598         x     = y;
599     }
600     y = x >> 1u;
601     if (y != 0)
602     {
603         return zeros - 2u;
604     }
605     return zeros - x;
606 }
607 
average(unsigned char a,unsigned char b)608 inline unsigned char average(unsigned char a, unsigned char b)
609 {
610     return ((a ^ b) >> 1) + (a & b);
611 }
612 
average(signed char a,signed char b)613 inline signed char average(signed char a, signed char b)
614 {
615     return ((short)a + (short)b) / 2;
616 }
617 
average(unsigned short a,unsigned short b)618 inline unsigned short average(unsigned short a, unsigned short b)
619 {
620     return ((a ^ b) >> 1) + (a & b);
621 }
622 
average(signed short a,signed short b)623 inline signed short average(signed short a, signed short b)
624 {
625     return ((int)a + (int)b) / 2;
626 }
627 
average(unsigned int a,unsigned int b)628 inline unsigned int average(unsigned int a, unsigned int b)
629 {
630     return ((a ^ b) >> 1) + (a & b);
631 }
632 
average(int a,int b)633 inline int average(int a, int b)
634 {
635     long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
636     return static_cast<int>(average);
637 }
638 
average(float a,float b)639 inline float average(float a, float b)
640 {
641     return (a + b) * 0.5f;
642 }
643 
averageHalfFloat(unsigned short a,unsigned short b)644 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
645 {
646     return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
647 }
648 
averageFloat11(unsigned int a,unsigned int b)649 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
650 {
651     return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
652                              float11ToFloat32(static_cast<unsigned short>(b))) *
653                             0.5f);
654 }
655 
averageFloat10(unsigned int a,unsigned int b)656 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
657 {
658     return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
659                              float10ToFloat32(static_cast<unsigned short>(b))) *
660                             0.5f);
661 }
662 
663 template <typename T>
664 class Range
665 {
666   public:
Range()667     Range() {}
Range(T lo,T hi)668     Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
669 
length()670     T length() const { return (empty() ? 0 : (mHigh - mLow)); }
671 
intersects(Range<T> other)672     bool intersects(Range<T> other)
673     {
674         if (mLow <= other.mLow)
675         {
676             return other.mLow < mHigh;
677         }
678         else
679         {
680             return mLow < other.mHigh;
681         }
682     }
683 
684     // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)685     void extend(T value)
686     {
687         mLow  = value < mLow ? value : mLow;
688         mHigh = value >= mHigh ? (value + 1) : mHigh;
689     }
690 
empty()691     bool empty() const { return mHigh <= mLow; }
692 
contains(T value)693     bool contains(T value) const { return value >= mLow && value < mHigh; }
694 
695     class Iterator final
696     {
697       public:
Iterator(T value)698         Iterator(T value) : mCurrent(value) {}
699 
700         Iterator &operator++()
701         {
702             mCurrent++;
703             return *this;
704         }
705         bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
706         bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
707         T operator*() const { return mCurrent; }
708 
709       private:
710         T mCurrent;
711     };
712 
begin()713     Iterator begin() const { return Iterator(mLow); }
714 
end()715     Iterator end() const { return Iterator(mHigh); }
716 
low()717     T low() const { return mLow; }
high()718     T high() const { return mHigh; }
719 
invalidate()720     void invalidate()
721     {
722         mLow  = std::numeric_limits<T>::max();
723         mHigh = std::numeric_limits<T>::min();
724     }
725 
726   private:
727     T mLow;
728     T mHigh;
729 };
730 
731 typedef Range<int> RangeI;
732 typedef Range<unsigned int> RangeUI;
733 
734 struct IndexRange
735 {
736     struct Undefined
737     {};
IndexRangeIndexRange738     IndexRange(Undefined) {}
IndexRangeIndexRange739     IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange740     IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
741         : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
742     {
743         ASSERT(start <= end);
744     }
745 
746     // Number of vertices in the range.
vertexCountIndexRange747     size_t vertexCount() const { return (end - start) + 1; }
748 
749     // Inclusive range of indices that are not primitive restart
750     size_t start;
751     size_t end;
752 
753     // Number of non-primitive restart indices
754     size_t vertexIndexCount;
755 };
756 
757 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
758 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)759 inline float Ldexp(float x, int exp)
760 {
761     if (exp > 128)
762     {
763         return std::numeric_limits<float>::infinity();
764     }
765     if (exp < -126)
766     {
767         return 0.0f;
768     }
769     double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
770     return static_cast<float>(result);
771 }
772 
773 // First, both normalized floating-point values are converted into 16-bit integer values.
774 // Then, the results are packed into the returned 32-bit unsigned integer.
775 // The first float value will be written to the least significant bits of the output;
776 // the last float value will be written to the most significant bits.
777 // The conversion of each value to fixed point is done as follows :
778 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)779 inline uint32_t packSnorm2x16(float f1, float f2)
780 {
781     int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
782     int16_t mostSignificantBits  = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
783     return static_cast<uint32_t>(mostSignificantBits) << 16 |
784            (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
785 }
786 
787 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
788 // each component is converted to a normalized floating-point value to generate the returned two
789 // float values. The first float value will be extracted from the least significant bits of the
790 // input; the last float value will be extracted from the most-significant bits. The conversion for
791 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
792 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)793 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
794 {
795     int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
796     int16_t mostSignificantBits  = static_cast<int16_t>(u >> 16);
797     *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
798     *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
799 }
800 
801 // First, both normalized floating-point values are converted into 16-bit integer values.
802 // Then, the results are packed into the returned 32-bit unsigned integer.
803 // The first float value will be written to the least significant bits of the output;
804 // the last float value will be written to the most significant bits.
805 // The conversion of each value to fixed point is done as follows:
806 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)807 inline uint32_t packUnorm2x16(float f1, float f2)
808 {
809     uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
810     uint16_t mostSignificantBits  = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
811     return static_cast<uint32_t>(mostSignificantBits) << 16 |
812            static_cast<uint32_t>(leastSignificantBits);
813 }
814 
815 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
816 // each component is converted to a normalized floating-point value to generate the returned two
817 // float values. The first float value will be extracted from the least significant bits of the
818 // input; the last float value will be extracted from the most-significant bits. The conversion for
819 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)820 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
821 {
822     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
823     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
824     *f1                           = static_cast<float>(leastSignificantBits) / 65535.0f;
825     *f2                           = static_cast<float>(mostSignificantBits) / 65535.0f;
826 }
827 
828 // Helper functions intended to be used only here.
829 namespace priv
830 {
831 
ToPackedUnorm8(float f)832 inline uint8_t ToPackedUnorm8(float f)
833 {
834     return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
835 }
836 
ToPackedSnorm8(float f)837 inline int8_t ToPackedSnorm8(float f)
838 {
839     return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
840 }
841 
842 }  // namespace priv
843 
844 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
845 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
846 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)847 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
848 {
849     uint8_t bits[4];
850     bits[0]         = priv::ToPackedUnorm8(f1);
851     bits[1]         = priv::ToPackedUnorm8(f2);
852     bits[2]         = priv::ToPackedUnorm8(f3);
853     bits[3]         = priv::ToPackedUnorm8(f4);
854     uint32_t result = 0u;
855     for (int i = 0; i < 4; ++i)
856     {
857         int shift = i * 8;
858         result |= (static_cast<uint32_t>(bits[i]) << shift);
859     }
860     return result;
861 }
862 
863 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
864 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
865 // bits.
UnpackUnorm4x8(uint32_t u,float * f)866 inline void UnpackUnorm4x8(uint32_t u, float *f)
867 {
868     for (int i = 0; i < 4; ++i)
869     {
870         int shift    = i * 8;
871         uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
872         f[i]         = static_cast<float>(bits) / 255.0f;
873     }
874 }
875 
876 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
877 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
878 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)879 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
880 {
881     int8_t bits[4];
882     bits[0]         = priv::ToPackedSnorm8(f1);
883     bits[1]         = priv::ToPackedSnorm8(f2);
884     bits[2]         = priv::ToPackedSnorm8(f3);
885     bits[3]         = priv::ToPackedSnorm8(f4);
886     uint32_t result = 0u;
887     for (int i = 0; i < 4; ++i)
888     {
889         int shift = i * 8;
890         result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
891     }
892     return result;
893 }
894 
895 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
896 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
897 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)898 inline void UnpackSnorm4x8(uint32_t u, float *f)
899 {
900     for (int i = 0; i < 4; ++i)
901     {
902         int shift   = i * 8;
903         int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
904         f[i]        = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
905     }
906 }
907 
908 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
909 // floating-point representation found in the OpenGL ES Specification, and then packing these
910 // two 16-bit integers into a 32-bit unsigned integer.
911 // f1: The 16 least-significant bits of the result;
912 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)913 inline uint32_t packHalf2x16(float f1, float f2)
914 {
915     uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
916     uint16_t mostSignificantBits  = static_cast<uint16_t>(float32ToFloat16(f2));
917     return static_cast<uint32_t>(mostSignificantBits) << 16 |
918            static_cast<uint32_t>(leastSignificantBits);
919 }
920 
921 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
922 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
923 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
924 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
925 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)926 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
927 {
928     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
929     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
930 
931     *f1 = float16ToFloat32(leastSignificantBits);
932     *f2 = float16ToFloat32(mostSignificantBits);
933 }
934 
sRGBToLinear(uint8_t srgbValue)935 inline uint8_t sRGBToLinear(uint8_t srgbValue)
936 {
937     float value = srgbValue / 255.0f;
938     if (value <= 0.04045f)
939     {
940         value = value / 12.92f;
941     }
942     else
943     {
944         value = std::pow((value + 0.055f) / 1.055f, 2.4f);
945     }
946     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
947 }
948 
linearToSRGB(uint8_t linearValue)949 inline uint8_t linearToSRGB(uint8_t linearValue)
950 {
951     float value = linearValue / 255.0f;
952     if (value <= 0.0f)
953     {
954         value = 0.0f;
955     }
956     else if (value < 0.0031308f)
957     {
958         value = value * 12.92f;
959     }
960     else if (value < 1.0f)
961     {
962         value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
963     }
964     else
965     {
966         value = 1.0f;
967     }
968     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
969 }
970 
971 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)972 inline uint32_t BitfieldReverse(uint32_t value)
973 {
974     // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
975     // for this, and right now it's not used in performance-critical paths.
976     uint32_t result = 0u;
977     for (size_t j = 0u; j < 32u; ++j)
978     {
979         result |= (((value >> j) & 1u) << (31u - j));
980     }
981     return result;
982 }
983 
984 // Count the 1 bits.
985 #if defined(_MSC_VER) && !defined(__clang__)
986 #    if defined(_M_IX86) || defined(_M_X64)
987 namespace priv
988 {
989 // Check POPCNT instruction support and cache the result.
990 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
991 static const bool kHasPopcnt = [] {
992     int info[4];
993     __cpuid(&info[0], 1);
994     return static_cast<bool>(info[2] & 0x800000);
995 }();
996 }  // namespace priv
997 
998 // Polyfills for x86/x64 CPUs without POPCNT.
999 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)1000 inline int BitCountPolyfill(uint32_t bits)
1001 {
1002     bits = bits - ((bits >> 1) & 0x55555555);
1003     bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1004     bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1005     return static_cast<int>(bits);
1006 }
1007 
BitCountPolyfill(uint64_t bits)1008 inline int BitCountPolyfill(uint64_t bits)
1009 {
1010     bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1011     bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1012     bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1013     return static_cast<int>(bits);
1014 }
1015 
BitCount(uint32_t bits)1016 inline int BitCount(uint32_t bits)
1017 {
1018     if (priv::kHasPopcnt)
1019     {
1020         return static_cast<int>(__popcnt(bits));
1021     }
1022     return BitCountPolyfill(bits);
1023 }
1024 
BitCount(uint64_t bits)1025 inline int BitCount(uint64_t bits)
1026 {
1027     if (priv::kHasPopcnt)
1028     {
1029 #        if defined(_M_X64)
1030         return static_cast<int>(__popcnt64(bits));
1031 #        else   // x86
1032         return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1033                                 __popcnt(static_cast<uint32_t>(bits)));
1034 #        endif  // defined(_M_X64)
1035     }
1036     return BitCountPolyfill(bits);
1037 }
1038 
1039 #    elif defined(_M_ARM) || defined(_M_ARM64)
1040 
1041 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1042 // NEON instructions.
1043 
BitCount(uint32_t bits)1044 inline int BitCount(uint32_t bits)
1045 {
1046     // cast bits to 8x8 datatype and use VCNT on it
1047     const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1048 
1049     // pairwise sums: 8x8 -> 16x4 -> 32x2
1050     return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1051 }
1052 
BitCount(uint64_t bits)1053 inline int BitCount(uint64_t bits)
1054 {
1055     // cast bits to 8x8 datatype and use VCNT on it
1056     const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1057 
1058     // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1059     return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1060 }
1061 #    endif  // defined(_M_IX86) || defined(_M_X64)
1062 #endif      // defined(_MSC_VER) && !defined(__clang__)
1063 
1064 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
BitCount(uint32_t bits)1065 inline int BitCount(uint32_t bits)
1066 {
1067     return __builtin_popcount(bits);
1068 }
1069 
BitCount(uint64_t bits)1070 inline int BitCount(uint64_t bits)
1071 {
1072     return __builtin_popcountll(bits);
1073 }
1074 #endif  // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
1075 
BitCount(uint8_t bits)1076 inline int BitCount(uint8_t bits)
1077 {
1078     return BitCount(static_cast<uint32_t>(bits));
1079 }
1080 
BitCount(uint16_t bits)1081 inline int BitCount(uint16_t bits)
1082 {
1083     return BitCount(static_cast<uint32_t>(bits));
1084 }
1085 
1086 #if defined(ANGLE_PLATFORM_WINDOWS)
1087 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1088 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1089 inline unsigned long ScanForward(uint32_t bits)
1090 {
1091     ASSERT(bits != 0u);
1092     unsigned long firstBitIndex = 0ul;
1093     unsigned char ret           = _BitScanForward(&firstBitIndex, bits);
1094     ASSERT(ret != 0u);
1095     return firstBitIndex;
1096 }
1097 
ScanForward(uint64_t bits)1098 inline unsigned long ScanForward(uint64_t bits)
1099 {
1100     ASSERT(bits != 0u);
1101     unsigned long firstBitIndex = 0ul;
1102 #    if defined(ANGLE_IS_64_BIT_CPU)
1103     unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1104 #    else
1105     unsigned char ret;
1106     if (static_cast<uint32_t>(bits) == 0)
1107     {
1108         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1109         firstBitIndex += 32ul;
1110     }
1111     else
1112     {
1113         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1114     }
1115 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1116     ASSERT(ret != 0u);
1117     return firstBitIndex;
1118 }
1119 #endif  // defined(ANGLE_PLATFORM_WINDOWS)
1120 
1121 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1122 inline unsigned long ScanForward(uint32_t bits)
1123 {
1124     ASSERT(bits != 0u);
1125     return static_cast<unsigned long>(__builtin_ctz(bits));
1126 }
1127 
ScanForward(uint64_t bits)1128 inline unsigned long ScanForward(uint64_t bits)
1129 {
1130     ASSERT(bits != 0u);
1131 #    if defined(ANGLE_IS_64_BIT_CPU)
1132     return static_cast<unsigned long>(__builtin_ctzll(bits));
1133 #    else
1134     return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1135                                           ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1136                                           : __builtin_ctz(static_cast<uint32_t>(bits)));
1137 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1138 }
1139 #endif  // defined(ANGLE_PLATFORM_POSIX)
1140 
ScanForward(uint8_t bits)1141 inline unsigned long ScanForward(uint8_t bits)
1142 {
1143     return ScanForward(static_cast<uint32_t>(bits));
1144 }
1145 
ScanForward(uint16_t bits)1146 inline unsigned long ScanForward(uint16_t bits)
1147 {
1148     return ScanForward(static_cast<uint32_t>(bits));
1149 }
1150 
1151 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1152 // significant bit.
ScanReverse(unsigned long bits)1153 inline unsigned long ScanReverse(unsigned long bits)
1154 {
1155     ASSERT(bits != 0u);
1156 #if defined(ANGLE_PLATFORM_WINDOWS)
1157     unsigned long lastBitIndex = 0ul;
1158     unsigned char ret          = _BitScanReverse(&lastBitIndex, bits);
1159     ASSERT(ret != 0u);
1160     return lastBitIndex;
1161 #elif defined(ANGLE_PLATFORM_POSIX)
1162     return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits));
1163 #else
1164 #    error Please implement bit-scan-reverse for your platform!
1165 #endif
1166 }
1167 
1168 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1169 template <typename T>
FindLSB(T bits)1170 int FindLSB(T bits)
1171 {
1172     static_assert(std::is_integral<T>::value, "must be integral type.");
1173     if (bits == 0u)
1174     {
1175         return -1;
1176     }
1177     else
1178     {
1179         return static_cast<int>(ScanForward(bits));
1180     }
1181 }
1182 
1183 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1184 template <typename T>
FindMSB(T bits)1185 int FindMSB(T bits)
1186 {
1187     static_assert(std::is_integral<T>::value, "must be integral type.");
1188     if (bits == 0u)
1189     {
1190         return -1;
1191     }
1192     else
1193     {
1194         return static_cast<int>(ScanReverse(bits));
1195     }
1196 }
1197 
1198 // Returns whether the argument is Not a Number.
1199 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1200 // non-zero.
isNaN(float f)1201 inline bool isNaN(float f)
1202 {
1203     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1204     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1205     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1206            (bitCast<uint32_t>(f) & 0x7fffffu);
1207 }
1208 
1209 // Returns whether the argument is infinity.
1210 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1211 // zero.
isInf(float f)1212 inline bool isInf(float f)
1213 {
1214     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1215     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1216     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1217            !(bitCast<uint32_t>(f) & 0x7fffffu);
1218 }
1219 
1220 namespace priv
1221 {
1222 template <unsigned int N, unsigned int R>
1223 struct iSquareRoot
1224 {
solveiSquareRoot1225     static constexpr unsigned int solve()
1226     {
1227         return (R * R > N)
1228                    ? 0
1229                    : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1230     }
1231     enum Result
1232     {
1233         value = iSquareRoot::solve()
1234     };
1235 };
1236 
1237 template <unsigned int N>
1238 struct iSquareRoot<N, N>
1239 {
1240     enum result
1241     {
1242         value = N
1243     };
1244 };
1245 
1246 }  // namespace priv
1247 
1248 template <unsigned int N>
1249 constexpr unsigned int iSquareRoot()
1250 {
1251     return priv::iSquareRoot<N, 1>::value;
1252 }
1253 
1254 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1255 //
1256 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1257 // behavior is undefined.
1258 
1259 template <typename T>
1260 inline T WrappingSum(T lhs, T rhs)
1261 {
1262     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1263     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1264     return static_cast<T>(lhsUnsigned + rhsUnsigned);
1265 }
1266 
1267 template <typename T>
1268 inline T WrappingDiff(T lhs, T rhs)
1269 {
1270     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1271     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1272     return static_cast<T>(lhsUnsigned - rhsUnsigned);
1273 }
1274 
1275 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1276 {
1277     int64_t lhsWide = static_cast<int64_t>(lhs);
1278     int64_t rhsWide = static_cast<int64_t>(rhs);
1279     // The multiplication is guaranteed not to overflow.
1280     int64_t resultWide = lhsWide * rhsWide;
1281     // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1282     resultWide = resultWide & 0xffffffffll;
1283     // Casting to a narrower signed type is fine since the casted value is representable in the
1284     // narrower type.
1285     return static_cast<int32_t>(resultWide);
1286 }
1287 
1288 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1289 {
1290     return 2.0f * dimensionScreen / viewportDimension;
1291 }
1292 
1293 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1294 {
1295     float halfShifted = coordinateScreen / viewportDimension;
1296     return 2.0f * (halfShifted - 0.5f);
1297 }
1298 
1299 }  // namespace gl
1300 
1301 namespace rx
1302 {
1303 
1304 template <typename T>
1305 T roundUp(const T value, const T alignment)
1306 {
1307     auto temp = value + alignment - static_cast<T>(1);
1308     return temp - temp % alignment;
1309 }
1310 
1311 template <typename T>
1312 constexpr T roundUpPow2(const T value, const T alignment)
1313 {
1314     ASSERT(gl::isPow2(alignment));
1315     return (value + alignment - 1) & ~(alignment - 1);
1316 }
1317 
1318 template <typename T>
1319 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1320 {
1321     angle::CheckedNumeric<T> checkedValue(value);
1322     angle::CheckedNumeric<T> checkedAlignment(alignment);
1323     return roundUp(checkedValue, checkedAlignment);
1324 }
1325 
1326 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1327 {
1328     unsigned int divided = value / divisor;
1329     return (divided + ((value % divisor == 0) ? 0 : 1));
1330 }
1331 
1332 #if defined(__has_builtin)
1333 #    define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1334 #else
1335 #    define ANGLE_HAS_BUILTIN(x) 0
1336 #endif
1337 
1338 #if defined(_MSC_VER)
1339 
1340 #    define ANGLE_ROTL(x, y) _rotl(x, y)
1341 #    define ANGLE_ROTL64(x, y) _rotl64(x, y)
1342 #    define ANGLE_ROTR16(x, y) _rotr16(x, y)
1343 
1344 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1345     ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1346 
1347 #    define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1348 #    define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1349 #    define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1350 
1351 #else
1352 
1353 inline uint32_t RotL(uint32_t x, int8_t r)
1354 {
1355     return (x << r) | (x >> (32 - r));
1356 }
1357 
1358 inline uint64_t RotL64(uint64_t x, int8_t r)
1359 {
1360     return (x << r) | (x >> (64 - r));
1361 }
1362 
1363 inline uint16_t RotR16(uint16_t x, int8_t r)
1364 {
1365     return (x >> r) | (x << (16 - r));
1366 }
1367 
1368 #    define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1369 #    define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1370 #    define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1371 
1372 #endif  // namespace rx
1373 
1374 constexpr unsigned int Log2(unsigned int bytes)
1375 {
1376     return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1377 }
1378 }  // namespace rx
1379 
1380 #endif  // COMMON_MATHUTIL_H_
1381