1 // Copyright 2018 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/decoder/intermediate_astc_block.h"
16 #include "src/decoder/integer_sequence_codec.h"
17 #include "src/base/bit_stream.h"
18 #include "src/base/math_utils.h"
19 #include "src/base/optional.h"
20 #include "src/base/uint128.h"
21
22 #include <algorithm>
23 #include <numeric>
24 #include <sstream>
25
26 namespace astc_codec {
27
28 namespace {
29
30 constexpr int kEndpointRange_ReturnInvalidWeightDims = -1;
31 constexpr int kEndpointRange_ReturnNotEnoughColorBits = -2;
32
PackVoidExtentBlock(uint16_t r,uint16_t g,uint16_t b,uint16_t a,std::array<uint16_t,4> coords)33 base::UInt128 PackVoidExtentBlock(uint16_t r, uint16_t g, uint16_t b,
34 uint16_t a, std::array<uint16_t, 4> coords) {
35 base::BitStream<base::UInt128> bit_sink;
36
37 // Put void extent mode...
38 bit_sink.PutBits(0xDFC, 12);
39
40 // Each of the coordinates goes in 13 bits at a time.
41 for (auto coord : coords) {
42 assert(coord < 1 << 13);
43 bit_sink.PutBits(coord, 13);
44 }
45 assert(bit_sink.Bits() == 64);
46
47 // Then we add R, G, B, and A in order
48 bit_sink.PutBits(r, 16);
49 bit_sink.PutBits(g, 16);
50 bit_sink.PutBits(b, 16);
51 bit_sink.PutBits(a, 16);
52
53 assert(bit_sink.Bits() == 128);
54
55 base::UInt128 result;
56 bit_sink.GetBits(128, &result);
57 return result;
58 }
59
GetEncodedWeightRange(int range,std::array<int,3> * const r)60 base::Optional<std::string> GetEncodedWeightRange(int range,
61 std::array<int, 3>* const r) {
62 const std::array<std::array<int, 3>, 12> kValidRangeEncodings =
63 {{ {{ 0, 1, 0 }}, {{ 1, 1, 0 }}, {{ 0, 0, 1 }},
64 {{ 1, 0, 1 }}, {{ 0, 1, 1 }}, {{ 1, 1, 1 }},
65 {{ 0, 1, 0 }}, {{ 1, 1, 0 }}, {{ 0, 0, 1 }},
66 {{ 1, 0, 1 }}, {{ 0, 1, 1 }}, {{ 1, 1, 1 }} }};
67
68 // If our range is larger than all available ranges, this is an error.
69 const int smallest_range = kValidWeightRanges.front();
70 const int largest_range = kValidWeightRanges.back();
71 if (range < smallest_range || largest_range < range) {
72 std::stringstream strm;
73 strm << "Could not find block mode. Invalid weight range: "
74 << range << " not in [" << smallest_range << ", "
75 << largest_range << std::endl;
76 return strm.str();
77 }
78
79 // Find the upper bound on the range, otherwise.
80 const auto range_iter = std::lower_bound(
81 kValidWeightRanges.cbegin(), kValidWeightRanges.cend(), range);
82 auto enc_iter = kValidRangeEncodings.cbegin();
83 enc_iter += std::distance(kValidWeightRanges.cbegin(), range_iter);
84 *r = *enc_iter;
85 return {};
86 }
87
88 struct BlockModeInfo {
89 int min_weight_grid_dim_x;
90 int max_weight_grid_dim_x;
91 int min_weight_grid_dim_y;
92 int max_weight_grid_dim_y;
93 int r0_bit_pos;
94 int r1_bit_pos;
95 int r2_bit_pos;
96 int weight_grid_x_offset_bit_pos;
97 int weight_grid_y_offset_bit_pos;
98 bool require_single_plane_low_prec;
99 };
100
101 constexpr int kNumBlockModes = 10;
102 const std::array<BlockModeInfo, kNumBlockModes> kBlockModeInfo {{
103 { 4, 7, 2, 5, 4, 0, 1, 7, 5, false }, // B+4 A+2
104 { 8, 11, 2, 5, 4, 0, 1, 7, 5, false }, // B+8 A+2
105 { 2, 5, 8, 11, 4, 0, 1, 5, 7, false }, // A+2 B+8
106 { 2, 5, 6, 7, 4, 0, 1, 5, 7, false }, // A+2 B+6
107 { 2, 3, 2, 5, 4, 0, 1, 7, 5, false }, // B+2 A+2
108 { 12, 12, 2, 5, 4, 2, 3, -1, 5, false }, // 12 A+2
109 { 2, 5, 12, 12, 4, 2, 3, 5, -1, false }, // A+2 12
110 { 6, 6, 10, 10, 4, 2, 3, -1, -1, false }, // 6 10
111 { 10, 10, 6, 6, 4, 2, 3, -1, -1, false }, // 10 6
112 { 6, 9, 6, 9, 4, 2, 3, 5, 9, true } // A+6 B+6
113 }};
114
115 // These are the bits that must be set for ASTC to recognize a given
116 // block mode. They are the 1's set in table C.2.8 of the spec.
117 const std::array<int, kNumBlockModes> kBlockModeMask = {{
118 0x0, 0x4, 0x8, 0xC, 0x10C, 0x0, 0x80, 0x180, 0x1A0, 0x100
119 }};
120
PackBlockMode(int dim_x,int dim_y,int range,bool dual_plane,base::BitStream<base::UInt128> * const bit_sink)121 static base::Optional<std::string> PackBlockMode(int dim_x, int dim_y, int range,
122 bool dual_plane,
123 base::BitStream<base::UInt128>* const bit_sink) {
124 // We need to set the high precision bit if our range is too high...
125 bool high_prec = range > 7;
126
127 std::array<int, 3> r;
128 const auto result = GetEncodedWeightRange(range, &r);
129 if (result) {
130 return result;
131 }
132
133 // The high two bits of R must not be zero. If this happens then it's
134 // an illegal encoding according to Table C.2.7 that should have gotten
135 // caught in GetEncodedWeightRange
136 assert((r[1] | r[2]) > 0);
137
138 // Just go through the table and see if any of the modes can handle
139 // the given dimensions.
140 for (int mode = 0; mode < kNumBlockModes; ++mode) {
141 const BlockModeInfo& block_mode = kBlockModeInfo[mode];
142
143 bool is_valid_mode = true;
144 is_valid_mode &= block_mode.min_weight_grid_dim_x <= dim_x;
145 is_valid_mode &= dim_x <= block_mode.max_weight_grid_dim_x;
146 is_valid_mode &= block_mode.min_weight_grid_dim_y <= dim_y;
147 is_valid_mode &= dim_y <= block_mode.max_weight_grid_dim_y;
148 is_valid_mode &= !(block_mode.require_single_plane_low_prec && dual_plane);
149 is_valid_mode &= !(block_mode.require_single_plane_low_prec && high_prec);
150
151 if (!is_valid_mode) {
152 continue;
153 }
154
155 // Initialize to the bits we must set.
156 uint32_t encoded_mode = kBlockModeMask[mode];
157 auto setBit = [&encoded_mode](const uint32_t value, const uint32_t offset) {
158 encoded_mode = (encoded_mode & ~(1 << offset)) | ((value & 1) << offset);
159 };
160
161 // Set all the bits we need to set
162 setBit(r[0], block_mode.r0_bit_pos);
163 setBit(r[1], block_mode.r1_bit_pos);
164 setBit(r[2], block_mode.r2_bit_pos);
165
166 // Find our width and height offset from the base width and height weight
167 // grid dimension for the given block mode. These are the 1-2 bits that
168 // get encoded in the block mode used to calculate the final weight grid
169 // width and height.
170 const int offset_x = dim_x - block_mode.min_weight_grid_dim_x;
171 const int offset_y = dim_y - block_mode.min_weight_grid_dim_y;
172
173 // If we don't have an offset position then our offset better be zero.
174 // If this isn't the case, then this isn't a viable block mode and we
175 // should have caught this sooner.
176 assert(block_mode.weight_grid_x_offset_bit_pos >= 0 || offset_x == 0);
177 assert(block_mode.weight_grid_y_offset_bit_pos >= 0 || offset_y == 0);
178
179 encoded_mode |= offset_x << block_mode.weight_grid_x_offset_bit_pos;
180 encoded_mode |= offset_y << block_mode.weight_grid_y_offset_bit_pos;
181
182 if (!block_mode.require_single_plane_low_prec) {
183 setBit(high_prec, 9);
184 setBit(dual_plane, 10);
185 }
186
187 // Make sure that the mode is the first thing the bit sink is writing to
188 assert(bit_sink->Bits() == 0);
189 bit_sink->PutBits(encoded_mode, 11);
190
191 return {};
192 }
193
194 return std::string("Could not find viable block mode");
195 }
196
197 // Returns true if all endpoint modes are equal.
SharedEndpointModes(const IntermediateBlockData & data)198 bool SharedEndpointModes(const IntermediateBlockData& data) {
199 return std::accumulate(
200 data.endpoints.begin(), data.endpoints.end(), true,
201 [&data](const bool& a, const IntermediateEndpointData& b) {
202 return a && b.mode == data.endpoints[0].mode;
203 });
204 }
205
206 // Returns the starting bit (between 0 and 128) where the extra CEM and
207 // dual plane info is stored in the ASTC block.
ExtraConfigBitPosition(const IntermediateBlockData & data)208 int ExtraConfigBitPosition(const IntermediateBlockData& data) {
209 const bool has_dual_channel = data.dual_plane_channel.hasValue();
210 const int num_weights = data.weight_grid_dim_x * data.weight_grid_dim_y *
211 (has_dual_channel ? 2 : 1);
212 const int num_weight_bits =
213 IntegerSequenceCodec::GetBitCountForRange(num_weights, data.weight_range);
214
215 int extra_config_bits = 0;
216 if (!SharedEndpointModes(data)) {
217 const int num_encoded_cem_bits = 2 + data.endpoints.size() * 3;
218 extra_config_bits = num_encoded_cem_bits - 6;
219 }
220
221 if (has_dual_channel) {
222 extra_config_bits += 2;
223 }
224
225 return 128 - num_weight_bits - extra_config_bits;
226 }
227
228 } // namespace
229
230 ////////////////////////////////////////////////////////////////////////////////
231
UnpackIntermediateBlock(const PhysicalASTCBlock & pb)232 base::Optional<IntermediateBlockData> UnpackIntermediateBlock(
233 const PhysicalASTCBlock& pb) {
234 if (pb.IsIllegalEncoding()) {
235 return {};
236 }
237
238 if (pb.IsVoidExtent()) {
239 return {};
240 }
241
242 // Non void extent? Then let's try to decode everything else.
243 IntermediateBlockData data;
244
245 // All blocks have color values...
246 const base::UInt128 color_bits_mask =
247 (base::UInt128(1) << pb.NumColorBits().value()) - 1;
248 const base::UInt128 color_bits =
249 (pb.GetBlockBits() >> pb.ColorStartBit().value()) & color_bits_mask;
250 base::BitStream<base::UInt128> bit_src(color_bits, 128);
251
252 IntegerSequenceDecoder color_decoder(pb.ColorValuesRange().value());
253 const int num_colors_in_block = pb.NumColorValues().value();
254 std::vector<int> colors = color_decoder.Decode(num_colors_in_block, &bit_src);
255
256 // Decode simple info
257 const auto weight_dims = pb.WeightGridDims();
258 data.weight_grid_dim_x = weight_dims->at(0);
259 data.weight_grid_dim_y = weight_dims->at(1);
260 data.weight_range = pb.WeightRange().value();
261
262 data.partition_id = pb.PartitionID();
263 data.dual_plane_channel = pb.DualPlaneChannel();
264
265 auto colors_iter = colors.begin();
266 for (int i = 0; i < pb.NumPartitions().value(); ++i) {
267 IntermediateEndpointData ep_data;
268 ep_data.mode = pb.GetEndpointMode(i).value();
269
270 const int num_colors = NumColorValuesForEndpointMode(ep_data.mode);
271 ep_data.colors.insert(ep_data.colors.end(), colors_iter,
272 colors_iter + num_colors);
273 colors_iter += num_colors;
274
275 data.endpoints.push_back(ep_data);
276 }
277 assert(colors_iter == colors.end());
278 data.endpoint_range = pb.ColorValuesRange().value();
279
280 // Finally decode the weights
281 const base::UInt128 weight_bits_mask =
282 (base::UInt128(1) << pb.NumWeightBits().value()) - 1;
283 const base::UInt128 weight_bits =
284 base::ReverseBits(pb.GetBlockBits()) & weight_bits_mask;
285 bit_src = base::BitStream<base::UInt128>(weight_bits, 128);
286
287 IntegerSequenceDecoder weight_decoder(data.weight_range);
288 int num_weights = data.weight_grid_dim_x * data.weight_grid_dim_y;
289 num_weights *= pb.IsDualPlane() ? 2 : 1;
290 data.weights = weight_decoder.Decode(num_weights, &bit_src);
291
292 return data;
293 }
294
EndpointRangeForBlock(const IntermediateBlockData & data)295 int EndpointRangeForBlock(const IntermediateBlockData& data) {
296 // First check to see if we exceed the number of bits allotted for weights, as
297 // specified in C.2.24. If so, then the endpoint range is meaningless, but not
298 // because we had an overzealous color endpoint mode, so return a different
299 // error code.
300 if (IntegerSequenceCodec::GetBitCountForRange(
301 data.weight_grid_dim_x * data.weight_grid_dim_y *
302 (data.dual_plane_channel.hasValue() ? 2 : 1),
303 data.weight_range) > 96) {
304 return kEndpointRange_ReturnInvalidWeightDims;
305 }
306
307 const int num_partitions = data.endpoints.size();
308
309 // Calculate the number of bits that we would write prior to getting to the
310 // color endpoint data
311 const int bits_written =
312 11 // Block mode
313 + 2 // Num partitions
314 + ((num_partitions > 1) ? 10 : 0) // Partition ID
315 + ((num_partitions == 1) ? 4 : 6); // Shared CEM bits
316
317 // We can determine the range based on how many bits we have between the start
318 // of the color endpoint data and the next section, which is the extra config
319 // bit position
320 const int color_bits_available = ExtraConfigBitPosition(data) - bits_written;
321
322 int num_color_values = 0;
323 for (const auto& ep_data : data.endpoints) {
324 num_color_values += NumColorValuesForEndpointMode(ep_data.mode);
325 }
326
327 // There's no way any valid ASTC encoding has no room left for any color
328 // values. If we hit this then something is wrong in the caller -- abort.
329 // According to section C.2.24, the smallest number of bits available is
330 // ceil(13*C/5), where C is the number of color endpoint integers needed.
331 const int bits_needed = (13 * num_color_values + 4) / 5;
332 if (color_bits_available < bits_needed) {
333 return kEndpointRange_ReturnNotEnoughColorBits;
334 }
335
336 int color_value_range = 255;
337 for (; color_value_range > 1; --color_value_range) {
338 const int bits_for_range = IntegerSequenceCodec::GetBitCountForRange(
339 num_color_values, color_value_range);
340 if (bits_for_range <= color_bits_available) {
341 break;
342 }
343 }
344
345 return color_value_range;
346 }
347
UnpackVoidExtent(const PhysicalASTCBlock & pb)348 base::Optional<VoidExtentData> UnpackVoidExtent(const PhysicalASTCBlock& pb) {
349 if (pb.IsIllegalEncoding()) {
350 return {};
351 }
352
353 if (!pb.IsVoidExtent()) {
354 return {};
355 }
356
357 // All blocks have color values...
358 const base::UInt128 color_bits_mask =
359 (base::UInt128(1) << pb.NumColorBits().value()) - 1;
360 const uint64_t color_bits = (
361 (pb.GetBlockBits() >> pb.ColorStartBit().value()) & color_bits_mask).LowBits();
362
363 assert(pb.NumColorValues().value() == 4);
364 VoidExtentData data;
365 data.r = static_cast<uint16_t>((color_bits >> 0) & 0xFFFF);
366 data.g = static_cast<uint16_t>((color_bits >> 16) & 0xFFFF);
367 data.b = static_cast<uint16_t>((color_bits >> 32) & 0xFFFF);
368 data.a = static_cast<uint16_t>((color_bits >> 48) & 0xFFFF);
369
370 const auto void_extent_coords = pb.VoidExtentCoords();
371 if (void_extent_coords) {
372 data.coords[0] = void_extent_coords->at(0);
373 data.coords[1] = void_extent_coords->at(1);
374 data.coords[2] = void_extent_coords->at(2);
375 data.coords[3] = void_extent_coords->at(3);
376 } else {
377 uint16_t all_ones = (1 << 13) - 1;
378 for (auto& coord : data.coords) {
379 coord = all_ones;
380 }
381 }
382
383 return data;
384 }
385
386 // Packs the given intermediate block into a physical block. Returns false if
387 // the provided values in the intermediate block emit an illegal ASTC
388 // encoding.
Pack(const IntermediateBlockData & data,base::UInt128 * pb)389 base::Optional<std::string> Pack(const IntermediateBlockData& data,
390 base::UInt128* pb) {
391 if (data.weights.size() !=
392 data.weight_grid_dim_x * data.weight_grid_dim_y *
393 (data.dual_plane_channel.hasValue() ? 2 : 1)) {
394 return std::string("Incorrect number of weights!");
395 }
396
397 // If it's not a void extent block, then it gets a bit more tricky...
398 base::BitStream<base::UInt128> bit_sink;
399
400 // First we need to encode the block mode.
401 const auto error_string = PackBlockMode(
402 data.weight_grid_dim_x, data.weight_grid_dim_y, data.weight_range,
403 data.dual_plane_channel.hasValue(), &bit_sink);
404 if (error_string) {
405 return error_string;
406 }
407
408 // Next, we place the number of partitions minus one.
409 const int num_partitions = data.endpoints.size();
410 bit_sink.PutBits(num_partitions - 1, 2);
411
412 // If we have more than one partition, then we also have a partition ID.
413 if (num_partitions > 1) {
414 const int id = data.partition_id.value();
415 assert(id >= 0);
416 bit_sink.PutBits(id, 10);
417 }
418
419 // Take a detour, let's encode the weights so that we know how many bits they
420 // consume.
421 base::BitStream<base::UInt128> weight_sink;
422
423 IntegerSequenceEncoder weight_enc(data.weight_range);
424 for (auto weight : data.weights) {
425 weight_enc.AddValue(weight);
426 }
427 weight_enc.Encode(&weight_sink);
428
429 const int num_weight_bits = weight_sink.Bits();
430 assert(num_weight_bits ==
431 IntegerSequenceCodec::GetBitCountForRange(
432 data.weights.size(), data.weight_range));
433
434 // Let's continue... how much after the color data do we need to write?
435 int extra_config = 0;
436
437 // Determine if all endpoint pairs share the same endpoint mode
438 assert(data.endpoints.size() > 0);
439 bool shared_endpoint_mode = SharedEndpointModes(data);
440
441 // The first part of the endpoint mode (CEM) comes directly after the
442 // partition info, if it exists. If there is no partition info, the CEM comes
443 // right after the block mode. In the single-partition case, we just write out
444 // the entire singular CEM, but in the multi-partition case, if all CEMs are
445 // the same then their shared CEM is specified directly here, too. In both
446 // cases, shared_endpoint_mode is true (in the singular case,
447 // shared_endpoint_mode is trivially true).
448 if (shared_endpoint_mode) {
449 if (num_partitions > 1) {
450 bit_sink.PutBits(0, 2);
451 }
452 bit_sink.PutBits(static_cast<int>(data.endpoints[0].mode), 4);
453 } else {
454 // Here, the CEM is not shared across all endpoint pairs, and we need to
455 // figure out what to place here, and what to place in the extra config
456 // bits before the weight data...
457
458 // Non-shared config modes must all be within the same class (out of four)
459 // See Section C.2.11
460 int min_class = 2; // We start with 2 here instead of three because it's
461 // the highest that can be encoded -- even if all modes
462 // are class 3.
463 int max_class = 0;
464 for (const auto& ep_data : data.endpoints) {
465 const int ep_mode_class = static_cast<int>(ep_data.mode) >> 2;
466 min_class = std::min(min_class, ep_mode_class);
467 max_class = std::max(max_class, ep_mode_class);
468 }
469
470 assert(max_class >= min_class);
471
472 if (max_class - min_class > 1) {
473 return std::string("Endpoint modes are invalid");
474 }
475
476 // Construct the CEM mode -- six of its bits will fit here, but otherwise
477 // the rest will go in the extra configuration bits.
478 base::BitStream<uint32_t> cem_encoder;
479
480 // First encode the base class
481 assert(min_class >= 0);
482 assert(min_class < 3);
483 cem_encoder.PutBits(min_class + 1, 2);
484
485 // Next, encode the class selector bits -- this is simply the offset
486 // from the base class
487 for (const auto& ep_data : data.endpoints) {
488 const int ep_mode_class = static_cast<int>(ep_data.mode) >> 2;
489 const int class_selector_bit = ep_mode_class - min_class;
490 assert(class_selector_bit == 0 || class_selector_bit == 1);
491 cem_encoder.PutBits(class_selector_bit, 1);
492 }
493
494 // Finally, we need to choose from each class which actual mode
495 // we belong to and encode those.
496 for (const auto& ep_data : data.endpoints) {
497 const int ep_mode = static_cast<int>(ep_data.mode) & 3;
498 assert(ep_mode < 4);
499 cem_encoder.PutBits(ep_mode, 2);
500 }
501 assert(cem_encoder.Bits() == 2 + num_partitions * 3);
502
503 uint32_t encoded_cem;
504 cem_encoder.GetBits(2 + num_partitions * 3, &encoded_cem);
505
506 // Since only six bits fit here before the color endpoint data, the rest
507 // need to go in the extra config data.
508 extra_config = encoded_cem >> 6;
509
510 // Write out the six bits we had
511 bit_sink.PutBits(encoded_cem, 6);
512 }
513
514 // If we have a dual-plane channel, we can tack that onto our extra config
515 // data
516 if (data.dual_plane_channel.hasValue()) {
517 const int channel = data.dual_plane_channel.value();
518 assert(channel < 4);
519 extra_config <<= 2;
520 extra_config |= channel;
521 }
522
523 // Get the range of endpoint values. It can't be -1 because we should have
524 // checked for that much earlier.
525 const int color_value_range = data.endpoint_range
526 ? data.endpoint_range.value()
527 : EndpointRangeForBlock(data);
528
529 assert(color_value_range != kEndpointRange_ReturnInvalidWeightDims);
530 if (color_value_range == kEndpointRange_ReturnNotEnoughColorBits) {
531 return { "Intermediate block emits illegal color range" };
532 }
533
534 IntegerSequenceEncoder color_enc(color_value_range);
535 for (const auto& ep_data : data.endpoints) {
536 for (int color : ep_data.colors) {
537 if (color > color_value_range) {
538 return { "Color outside available color range!" };
539 }
540
541 color_enc.AddValue(color);
542 }
543 }
544 color_enc.Encode(&bit_sink);
545
546 // Now we need to skip some bits to get to the extra configuration bits. The
547 // number of bits we need to skip depends on where we are in the stream and
548 // where we need to get to.
549 const int extra_config_bit_position = ExtraConfigBitPosition(data);
550 const int extra_config_bits =
551 128 - num_weight_bits - extra_config_bit_position;
552 assert(extra_config_bits >= 0);
553 assert(extra_config < 1 << extra_config_bits);
554
555 // Make sure the color encoder didn't write more than we thought it would.
556 int bits_to_skip = extra_config_bit_position - bit_sink.Bits();
557 assert(bits_to_skip >= 0);
558
559 while (bits_to_skip > 0) {
560 const int skipping = std::min(32, bits_to_skip);
561 bit_sink.PutBits(0, skipping);
562 bits_to_skip -= skipping;
563 }
564
565 // Finally, write out the rest of the config bits.
566 bit_sink.PutBits(extra_config, extra_config_bits);
567
568 // We should be right up to the weight bits...
569 assert(bit_sink.Bits() == 128 - num_weight_bits);
570
571 // Flush out our bit writer and write out the weight bits
572 base::UInt128 astc_bits;
573 bit_sink.GetBits(128 - num_weight_bits, &astc_bits);
574
575 base::UInt128 rev_weight_bits;
576 weight_sink.GetBits(weight_sink.Bits(), &rev_weight_bits);
577
578 astc_bits |= base::ReverseBits(rev_weight_bits);
579
580 // And we're done! Whew!
581 *pb = astc_bits;
582 return PhysicalASTCBlock(*pb).IsIllegalEncoding();
583 }
584
Pack(const VoidExtentData & data,base::UInt128 * pb)585 base::Optional<std::string> Pack(const VoidExtentData& data,
586 base::UInt128* pb) {
587 *pb = PackVoidExtentBlock(data.r, data.g, data.b, data.a, data.coords);
588 return PhysicalASTCBlock(*pb).IsIllegalEncoding();
589 }
590
591 } // namespace astc_codec
592