• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "harness/compat.h"
17 
18 #include <stdio.h>
19 #include <string.h>
20 #include <sys/types.h>
21 #include <sys/stat.h>
22 
23 #include "procs.h"
24 
25 static const char *fmax_kernel_code =
26     "__kernel void test_fmax(__global float *srcA, __global float *srcB, __global float *dst)\n"
27     "{\n"
28     "    int  tid = get_global_id(0);\n"
29     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
30     "}\n";
31 
32 static const char *fmax2_kernel_code =
33     "__kernel void test_fmax2(__global float2 *srcA, __global float *srcB, __global float2 *dst)\n"
34     "{\n"
35     "    int  tid = get_global_id(0);\n"
36     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
37     "}\n";
38 
39 static const char *fmax4_kernel_code =
40     "__kernel void test_fmax4(__global float4 *srcA, __global float *srcB, __global float4 *dst)\n"
41     "{\n"
42     "    int  tid = get_global_id(0);\n"
43     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
44     "}\n";
45 
46 static const char *fmax8_kernel_code =
47     "__kernel void test_fmax8(__global float8 *srcA, __global float *srcB, __global float8 *dst)\n"
48     "{\n"
49     "    int  tid = get_global_id(0);\n"
50     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
51     "}\n";
52 
53 static const char *fmax16_kernel_code =
54     "__kernel void test_fmax16(__global float16 *srcA, __global float *srcB, __global float16 *dst)\n"
55     "{\n"
56     "    int  tid = get_global_id(0);\n"
57     "    dst[tid] = fmax(srcA[tid], srcB[tid]);\n"
58     "}\n";
59 
60 static const char *fmax3_kernel_code =
61     "__kernel void test_fmax3(__global float *srcA, __global float *srcB, __global float *dst)\n"
62     "{\n"
63     "    int  tid = get_global_id(0);\n"
64     "    vstore3(fmax(vload3(tid,srcA), srcB[tid]),tid,dst);\n"
65     "}\n";
66 
67 static int
verify_fmax(float * inptrA,float * inptrB,float * outptr,int n,int veclen)68 verify_fmax(float *inptrA, float *inptrB, float *outptr, int n, int veclen)
69 {
70     float       r;
71     int         i, j;
72 
73     for (i=0; i<n; ) {
74         int ii = i/veclen;
75         for (j=0; j<veclen && i<n; ++j, ++i) {
76             r = (inptrA[i] >= inptrB[ii]) ? inptrA[i] : inptrB[ii];
77             if (r != outptr[i]) {
78                 log_info("Verify noted discrepancy at %d (of %d) (vec %d, pos %d)\n",
79                          i,n,ii,j);
80                 log_info("SHould be %f, is %f\n", r, outptr[i]);
81                 log_info("Taking max of (%f,%f)\n", inptrA[i], inptrB[i]);
82                 return -1;
83             }
84         }
85     }
86 
87     return 0;
88 }
89 
90 int
test_fmaxf(cl_device_id device,cl_context context,cl_command_queue queue,int n_elems)91 test_fmaxf(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems)
92 {
93     cl_mem       streams[3];
94     cl_float    *input_ptr[2], *output_ptr, *p;
95     cl_program   *program;
96     cl_kernel    *kernel;
97     void        *values[3];
98     size_t  threads[1];
99     int num_elements;
100     int err;
101     int i;
102     MTdata d;
103 
104     program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount);
105     kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount);
106 
107     num_elements = n_elems * (1 << (kTotalVecCount-1));
108 
109     input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
110     input_ptr[1] = (cl_float*)malloc(sizeof(cl_float) * num_elements);
111     output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements);
112     streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE,
113                                 sizeof(cl_float) * num_elements, NULL, NULL);
114     if (!streams[0])
115         {
116             log_error("clCreateBuffer failed\n");
117             return -1;
118         }
119         streams[1] =
120             clCreateBuffer(context, CL_MEM_READ_WRITE,
121                            sizeof(cl_float) * num_elements, NULL, NULL);
122         if (!streams[1])
123         {
124             log_error("clCreateBuffer failed\n");
125             return -1;
126         }
127         streams[2] =
128             clCreateBuffer(context, CL_MEM_READ_WRITE,
129                            sizeof(cl_float) * num_elements, NULL, NULL);
130         if (!streams[2])
131         {
132             log_error("clCreateBuffer failed\n");
133             return -1;
134         }
135 
136     d = init_genrand( gRandomSeed );
137     p = input_ptr[0];
138     for (i=0; i<num_elements; i++)
139         {
140             p[i] = get_random_float(-0x20000000, 0x20000000, d);
141         }
142     p = input_ptr[1];
143     for (i=0; i<num_elements; i++)
144         {
145             p[i] = get_random_float(-0x20000000, 0x20000000, d);
146         }
147     free_mtdata(d); d = NULL;
148 
149     err = clEnqueueWriteBuffer( queue, streams[0], true, 0, sizeof(cl_float)*num_elements,
150                                 (void *)input_ptr[0], 0, NULL, NULL );
151     if (err != CL_SUCCESS)
152         {
153             log_error("clWriteArray failed\n");
154             return -1;
155         }
156     err = clEnqueueWriteBuffer( queue, streams[1], true, 0, sizeof(cl_float)*num_elements,
157                                 (void *)input_ptr[1], 0, NULL, NULL );
158     if (err != CL_SUCCESS)
159         {
160             log_error("clWriteArray failed\n");
161             return -1;
162         }
163 
164     err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &fmax_kernel_code, "test_fmax" );
165     if (err)
166         return -1;
167     err = create_single_kernel_helper( context, &program[1], &kernel[1], 1, &fmax2_kernel_code, "test_fmax2" );
168     if (err)
169         return -1;
170     err = create_single_kernel_helper( context, &program[2], &kernel[2], 1, &fmax4_kernel_code, "test_fmax4" );
171     if (err)
172         return -1;
173     err = create_single_kernel_helper( context, &program[3], &kernel[3], 1, &fmax8_kernel_code, "test_fmax8" );
174     if (err)
175         return -1;
176     err = create_single_kernel_helper( context, &program[4], &kernel[4], 1, &fmax16_kernel_code, "test_fmax16" );
177     if (err)
178         return -1;
179     err = create_single_kernel_helper( context, &program[5], &kernel[5], 1, &fmax3_kernel_code, "test_fmax3" );
180     if (err)
181         return -1;
182 
183     values[0] = streams[0];
184     values[1] = streams[1];
185     values[2] = streams[2];
186     for (i=0; i < kTotalVecCount; i++)
187         {
188             err = clSetKernelArg(kernel[i], 0, sizeof streams[0], &streams[0] );
189             err |= clSetKernelArg(kernel[i], 1, sizeof streams[1], &streams[1] );
190             err |= clSetKernelArg(kernel[i], 2, sizeof streams[2], &streams[2] );
191             if (err != CL_SUCCESS)
192                 {
193                     log_error("clSetKernelArgs failed\n");
194                     return -1;
195                 }
196         }
197 
198     threads[0] = (size_t)n_elems;
199     for (i=0; i < kTotalVecCount; i++)
200         {
201             err = clEnqueueNDRangeKernel( queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL );
202             if (err != CL_SUCCESS)
203                 {
204                     log_error("clEnqueueNDRangeKernel failed\n");
205                     return -1;
206                 }
207 
208             err = clEnqueueReadBuffer(queue, streams[2], true, 0, sizeof(cl_float)*num_elements,
209                                       output_ptr, 0, NULL, NULL);
210             if (err != CL_SUCCESS)
211                 {
212                     log_error("clEnqueueReadBuffer failed\n");
213                     return -1;
214                 }
215 
216             if (verify_fmax(input_ptr[0], input_ptr[1], output_ptr, n_elems*((g_arrVecSizes[i])), (g_arrVecSizes[i])))
217                 {
218                     log_error("FMAX float%d,float test failed\n", (g_arrVecSizes[i]));
219                     err = -1;
220                 }
221             else
222                 {
223                     log_info("FMAX float%d,float test passed\n", (g_arrVecSizes[i]));
224                     err = 0;
225                 }
226 
227             if (err)
228                 break;
229         }
230 
231     clReleaseMemObject(streams[0]);
232     clReleaseMemObject(streams[1]);
233     clReleaseMemObject(streams[2]);
234     for (i=0; i < kTotalVecCount; i++)
235         {
236             clReleaseKernel(kernel[i]);
237             clReleaseProgram(program[i]);
238         }
239     free(program);
240     free(kernel);
241     free(input_ptr[0]);
242     free(input_ptr[1]);
243     free(output_ptr);
244 
245     return err;
246 }
247 
248 
249