• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2020 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8 
9 #include <algorithm>
10 #include <array>
11 #include <cmath>
12 #include <functional>
13 #include <limits>
14 #include <random>
15 #include <vector>
16 
17 #include <xnnpack.h>
18 
19 #include <benchmark/benchmark.h>
20 #include "bench/utils.h"
21 #ifdef BENCHMARK_TENSORFLOW_LITE
22 #include "flatbuffers/include/flatbuffers/flatbuffers.h"
23 #include "tensorflow/lite/interpreter.h"
24 #include "tensorflow/lite/kernels/register.h"
25 #include "tensorflow/lite/model.h"
26 #include "tensorflow/lite/schema/schema_generated.h"
27 #include "tensorflow/lite/version.h"
28 #endif  // BENCHMARK_TENSORFLOW_LITE
29 
30 
31 #ifndef XNN_NO_QU8_OPERATORS
xnnpack_sigmoid_qu8(benchmark::State & state)32 static void xnnpack_sigmoid_qu8(benchmark::State& state) {
33   const size_t batch_size = state.range(0);
34   const size_t channels = state.range(1);
35 
36   std::random_device random_device;
37   auto rng = std::mt19937(random_device());
38   auto u8rng = std::bind(
39     std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
40 
41   std::vector<uint8_t> input(batch_size * channels);
42   std::vector<uint8_t> output(batch_size * channels);
43   std::generate(input.begin(), input.end(), std::ref(u8rng));
44   std::fill(output.begin(), output.end(), 0xA5);
45 
46   xnn_status status = xnn_initialize(nullptr /* allocator */);
47   if (status != xnn_status_success) {
48     state.SkipWithError("failed to initialize XNNPACK");
49     return;
50   }
51 
52   xnn_operator_t sigmoid_op = nullptr;
53   status = xnn_create_sigmoid_nc_qu8(
54     channels, channels /* input stride */, channels /* output stride */,
55     127 /* input zero point */, 1.0f /* input scale */,
56     0 /* output zero point */, 1.0f / 256.0f /* output scale */,
57     0 /* output min */, 255 /* output max */,
58     0 /* flags */, &sigmoid_op);
59   if (status != xnn_status_success || sigmoid_op == nullptr) {
60     state.SkipWithError("failed to create Sigmoid operator");
61     return;
62   }
63 
64   status = xnn_setup_sigmoid_nc_qu8(
65     sigmoid_op,
66     batch_size,
67     input.data(), output.data(),
68     nullptr /* thread pool */);
69   if (status != xnn_status_success) {
70     state.SkipWithError("failed to setup Sigmoid operator");
71     return;
72   }
73 
74   for (auto _ : state) {
75     status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */);
76     if (status != xnn_status_success) {
77       state.SkipWithError("failed to run Sigmoid operator");
78       return;
79     }
80   }
81 
82   status = xnn_delete_operator(sigmoid_op);
83   if (status != xnn_status_success) {
84     state.SkipWithError("failed to delete Sigmoid operator");
85     return;
86   }
87 
88   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
89   if (cpu_frequency != 0) {
90     state.counters["cpufreq"] = cpu_frequency;
91   }
92 
93   const size_t elements_per_iteration = batch_size * channels;
94   state.counters["elements"] =
95     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
96 
97   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
98   state.counters["bytes"] =
99     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
100 }
101 #endif  // XNN_NO_QU8_OPERATORS
102 
xnnpack_sigmoid_f32(benchmark::State & state)103 static void xnnpack_sigmoid_f32(benchmark::State& state) {
104   const size_t batch_size = state.range(0);
105   const size_t channels = state.range(1);
106 
107   std::random_device random_device;
108   auto rng = std::mt19937(random_device());
109   auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
110 
111   std::vector<float> input(batch_size * channels);
112   std::vector<float> output(batch_size * channels);
113   std::generate(input.begin(), input.end(), std::ref(f32rng));
114   std::fill(output.begin(), output.end(), std::nanf(""));
115 
116   xnn_status status = xnn_initialize(nullptr /* allocator */);
117   if (status != xnn_status_success) {
118     state.SkipWithError("failed to initialize XNNPACK");
119     return;
120   }
121 
122   xnn_operator_t sigmoid_op = nullptr;
123   status = xnn_create_sigmoid_nc_f32(
124     channels, channels /* input stride */, channels /* output stride */,
125     0 /* flags */, &sigmoid_op);
126   if (status != xnn_status_success || sigmoid_op == nullptr) {
127     state.SkipWithError("failed to create Sigmoid operator");
128     return;
129   }
130 
131   status = xnn_setup_sigmoid_nc_f32(
132     sigmoid_op,
133     batch_size,
134     input.data(), output.data(),
135     nullptr /* thread pool */);
136   if (status != xnn_status_success) {
137     state.SkipWithError("failed to setup Sigmoid operator");
138     return;
139   }
140 
141   for (auto _ : state) {
142     status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */);
143     if (status != xnn_status_success) {
144       state.SkipWithError("failed to run Sigmoid operator");
145       return;
146     }
147   }
148 
149   status = xnn_delete_operator(sigmoid_op);
150   if (status != xnn_status_success) {
151     state.SkipWithError("failed to delete Sigmoid operator");
152     return;
153   }
154 
155   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
156   if (cpu_frequency != 0) {
157     state.counters["cpufreq"] = cpu_frequency;
158   }
159 
160   const size_t elements_per_iteration = batch_size * channels;
161   state.counters["elements"] =
162     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
163 
164   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
165   state.counters["bytes"] =
166     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
167 }
168 
169 #ifdef BENCHMARK_TENSORFLOW_LITE
tflite_sigmoid_f32(benchmark::State & state)170 static void tflite_sigmoid_f32(benchmark::State& state) {
171   const size_t batch_size = state.range(0);
172   const size_t channels = state.range(1);
173 
174   std::random_device random_device;
175   auto rng = std::mt19937(random_device());
176   auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
177 
178   flatbuffers::FlatBufferBuilder builder;
179   const flatbuffers::Offset<tflite::OperatorCode> operator_code =
180       CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC);
181 
182   const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
183     tflite::CreateBuffer(builder, builder.CreateVector({})),
184   }};
185 
186   const std::array<int32_t, 4> input_shape{{
187     static_cast<int32_t>(batch_size),
188     static_cast<int32_t>(1 /* height */),
189     static_cast<int32_t>(1 /* width */),
190     static_cast<int32_t>(channels)
191   }};
192   const std::array<int32_t, 4> output_shape{{
193     static_cast<int32_t>(batch_size),
194     static_cast<int32_t>(1 /* height */),
195     static_cast<int32_t>(1 /* width */),
196     static_cast<int32_t>(channels)
197   }};
198 
199   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
200     tflite::CreateTensor(builder,
201                          builder.CreateVector<int32_t>(input_shape.data(), input_shape.size()),
202                          tflite::TensorType_FLOAT32),
203     tflite::CreateTensor(builder,
204                          builder.CreateVector<int32_t>(output_shape.data(), output_shape.size()),
205                          tflite::TensorType_FLOAT32),
206   }};
207 
208   const std::array<int32_t, 1> op_inputs{{ 0 }};
209   const std::array<int32_t, 1> op_outputs{{ 1 }};
210   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
211       builder,
212       0 /* opcode_index */,
213       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
214       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
215 
216   const std::array<int32_t, 1> graph_inputs{{ 0 }};
217   const std::array<int32_t, 1> graph_outputs{{ 1 }};
218   const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
219       builder,
220       builder.CreateVector(tensors.data(), tensors.size()),
221       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
222       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
223       builder.CreateVector(&op, 1));
224 
225   const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
226       TFLITE_SCHEMA_VERSION,
227       builder.CreateVector(&operator_code, 1),
228       builder.CreateVector(&subgraph, 1),
229       builder.CreateString("Sigmoid model"),
230       builder.CreateVector(buffers.data(), buffers.size()));
231 
232   builder.Finish(model_buffer);
233 
234   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
235   tflite::ops::builtin::BuiltinOpResolver resolver;
236   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
237   std::unique_ptr<tflite::Interpreter> interpreter;
238   if (interpreterBuilder(&interpreter) != kTfLiteOk) {
239     state.SkipWithError("failed to create TFLite interpreter");
240     return;
241   }
242   if (interpreter == nullptr) {
243     state.SkipWithError("TFLite interpreter is null");
244     return;
245   }
246   interpreter->SetNumThreads(1);
247 
248   if (interpreter->AllocateTensors() != kTfLiteOk) {
249     state.SkipWithError("failed to allocate tensors");
250     return;
251   }
252 
253   std::generate(
254     interpreter->typed_tensor<float>(0),
255     interpreter->typed_tensor<float>(0) + batch_size * channels,
256     std::ref(f32rng));
257 
258   for (auto _ : state) {
259     if (interpreter->Invoke() != kTfLiteOk) {
260       state.SkipWithError("failed to invoke TFLite interpreter");
261       return;
262     }
263   }
264 
265   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
266   if (cpu_frequency != 0) {
267     state.counters["cpufreq"] = cpu_frequency;
268   }
269 
270   const size_t elements_per_iteration = batch_size * channels;
271   state.counters["elements"] =
272     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
273 
274   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
275   state.counters["bytes"] =
276     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
277 
278   interpreter.reset();
279 }
280 #endif  // BENCHMARK_TENSORFLOW_LITE
281 
CharacteristicArguments(benchmark::internal::Benchmark * b)282 static void CharacteristicArguments(benchmark::internal::Benchmark* b)
283 {
284   b->ArgNames({"N", "C"});
285 
286   int32_t c = 16;
287   for (int32_t n = 224; n >= 7; n /= 2) {
288     b->Args({n * n, c});
289     c *= 2;
290   }
291 }
292 
293 #ifndef XNN_NO_QU8_OPERATORS
294 BENCHMARK(xnnpack_sigmoid_qu8)->Apply(CharacteristicArguments)->UseRealTime();
295 #endif  // XNN_NO_QU8_OPERATORS
296 BENCHMARK(xnnpack_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime();
297 
298 #ifdef BENCHMARK_TENSORFLOW_LITE
299   BENCHMARK(tflite_sigmoid_f32)->Apply(CharacteristicArguments)->UseRealTime();
300 #endif  // BENCHMARK_TENSORFLOW_LITE
301 
302 #ifndef XNNPACK_BENCHMARK_NO_MAIN
303 BENCHMARK_MAIN();
304 #endif
305