• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // This source code is licensed under the BSD-style license found in the
5 // LICENSE file in the root directory of this source tree.
6 
7 #include <algorithm>
8 #include <cmath>
9 #include <functional>
10 #include <random>
11 #include <vector>
12 
13 #include <xnnpack.h>
14 
15 #include <benchmark/benchmark.h>
16 #include "bench/utils.h"
17 #ifdef BENCHMARK_TENSORFLOW_LITE
18 #include "flatbuffers/include/flatbuffers/flatbuffers.h"
19 #include "tensorflow/lite/interpreter.h"
20 #include "tensorflow/lite/kernels/register.h"
21 #include "tensorflow/lite/model.h"
22 #include "tensorflow/lite/schema/schema_generated.h"
23 #include "tensorflow/lite/version.h"
24 #endif  // BENCHMARK_TENSORFLOW_LITE
25 
26 #ifndef XNN_NO_QU8_OPERATORS
xnnpack_softmax_qu8(benchmark::State & state)27 static void xnnpack_softmax_qu8(benchmark::State& state) {
28   const size_t batch_size = static_cast<size_t>(state.range(0));
29   const size_t channels = static_cast<size_t>(state.range(1));
30 
31   std::random_device random_device;
32   auto rng = std::mt19937(random_device());
33   auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
34 
35   std::vector<uint8_t> input(batch_size * channels);
36   std::vector<uint8_t> output(batch_size * channels);
37   std::generate(input.begin(), input.end(), std::ref(u8rng));
38   std::fill(output.begin(), output.end(), 0xA5);
39 
40   xnn_status status = xnn_initialize(nullptr /* allocator */);
41   if (status != xnn_status_success) {
42     state.SkipWithError("failed to initialize XNNPACK");
43     return;
44   }
45 
46   xnn_operator_t softmax_op = nullptr;
47   status = xnn_create_softmax_nc_qu8(
48     channels, channels /* input stride */, channels /* output stride */,
49     1.0f /* input scale */,
50     0 /* output zero point */, 1.0f / 256.0f /* output scale */,
51     0 /* flags */, &softmax_op);
52   if (status != xnn_status_success || softmax_op == nullptr) {
53     state.SkipWithError("failed to create SoftMax operator");
54     return;
55   }
56 
57   status = xnn_setup_softmax_nc_qu8(
58     softmax_op,
59     batch_size,
60     input.data(), output.data(),
61     nullptr /* thread pool */);
62   if (status != xnn_status_success) {
63     state.SkipWithError("failed to setup SoftMax operator");
64     return;
65   }
66 
67   for (auto _ : state) {
68     status = xnn_run_operator(softmax_op, nullptr /* thread pool */);
69     if (status != xnn_status_success) {
70       state.SkipWithError("failed to run SoftMax operator");
71       return;
72     }
73   }
74 
75   status = xnn_delete_operator(softmax_op);
76   if (status != xnn_status_success) {
77     state.SkipWithError("failed to delete SoftMax operator");
78     return;
79   }
80 
81   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
82   if (cpu_frequency != 0) {
83     state.counters["cpufreq"] = cpu_frequency;
84   }
85 
86   const size_t elements_per_iteration = batch_size * channels;
87   state.counters["elements"] =
88     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
89 
90   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
91   state.counters["bytes"] =
92     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
93 }
94 
xnnpack_softmax_f32(benchmark::State & state)95 static void xnnpack_softmax_f32(benchmark::State& state) {
96   const size_t batch_size = static_cast<size_t>(state.range(0));
97   const size_t channels = static_cast<size_t>(state.range(1));
98 
99   std::random_device random_device;
100   auto rng = std::mt19937(random_device());
101   auto f32rng = std::bind(std::uniform_real_distribution<float>(-100.0f, 100.0f), std::ref(rng));
102 
103   std::vector<float> input(batch_size * channels + XNN_EXTRA_BYTES / sizeof(float));
104   std::vector<float> output(batch_size * channels);
105   std::generate(input.begin(), input.end(), std::ref(f32rng));
106   std::fill(output.begin(), output.end(), std::nanf(""));
107 
108   xnn_status status = xnn_initialize(nullptr /* allocator */);
109   if (status != xnn_status_success) {
110     state.SkipWithError("failed to initialize XNNPACK");
111     return;
112   }
113 
114   xnn_operator_t softmax_op = nullptr;
115   status = xnn_create_softmax_nc_f32(
116     channels, channels /* input stride */, channels /* output stride */,
117     0 /* flags */, &softmax_op);
118   if (status != xnn_status_success || softmax_op == nullptr) {
119     state.SkipWithError("failed to create SoftMax operator");
120     return;
121   }
122 
123   status = xnn_setup_softmax_nc_f32(
124     softmax_op,
125     batch_size,
126     input.data(), output.data(),
127     nullptr /* thread pool */);
128   if (status != xnn_status_success) {
129     state.SkipWithError("failed to setup SoftMax operator");
130     return;
131   }
132 
133   for (auto _ : state) {
134     status = xnn_run_operator(softmax_op, nullptr /* thread pool */);
135     if (status != xnn_status_success) {
136       state.SkipWithError("failed to run SoftMax operator");
137       return;
138     }
139   }
140 
141   status = xnn_delete_operator(softmax_op);
142   if (status != xnn_status_success) {
143     state.SkipWithError("failed to delete SoftMax operator");
144     return;
145   }
146 
147   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
148   if (cpu_frequency != 0) {
149     state.counters["cpufreq"] = cpu_frequency;
150   }
151 
152   const size_t elements_per_iteration = batch_size * channels;
153   state.counters["elements"] =
154     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
155 
156   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
157   state.counters["bytes"] =
158     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
159 }
160 #endif  // XNN_NO_QU8_OPERATORS
161 
162 #ifdef BENCHMARK_TENSORFLOW_LITE
tflite_softmax_f32(benchmark::State & state)163 static void tflite_softmax_f32(benchmark::State& state) {
164   const size_t batch_size = state.range(0);
165   const size_t channels = state.range(1);
166 
167   std::random_device random_device;
168   auto rng = std::mt19937(random_device());
169   auto f32rng = std::bind(std::uniform_real_distribution<float>(-100.0f, 100.0f), std::ref(rng));
170 
171   flatbuffers::FlatBufferBuilder builder;
172   flatbuffers::Offset<tflite::OperatorCode> operator_code =
173     tflite::CreateOperatorCode(builder, tflite::BuiltinOperator_SOFTMAX);
174 
175   flatbuffers::Offset<tflite::SoftmaxOptions> softmax_options =
176     tflite::CreateSoftmaxOptions(builder, 1.0f /* beta */);
177 
178   flatbuffers::Offset<tflite::Buffer> buffers[1] = {
179     tflite::CreateBuffer(builder, builder.CreateVector({})),
180   };
181 
182   const int32_t input_shape[4] = {
183     static_cast<int32_t>(batch_size),
184     static_cast<int32_t>(1 /* height */),
185     static_cast<int32_t>(1 /* width */),
186     static_cast<int32_t>(channels)
187   };
188   const int32_t output_shape[4] = {
189     static_cast<int32_t>(batch_size),
190     static_cast<int32_t>(1 /* height */),
191     static_cast<int32_t>(1 /* width */),
192     static_cast<int32_t>(channels)
193   };
194 
195   flatbuffers::Offset<tflite::Tensor> tensors[2] = {
196     tflite::CreateTensor(builder,
197                          builder.CreateVector<int32_t>(input_shape, 4),
198                          tflite::TensorType_FLOAT32),
199     tflite::CreateTensor(builder,
200                          builder.CreateVector<int32_t>(output_shape, 4),
201                          tflite::TensorType_FLOAT32),
202   };
203 
204   const int32_t op_inputs[1] = { 0 };
205   const int32_t op_outputs[1] = { 1 };
206   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
207       builder,
208       0 /* opcode_index */,
209       builder.CreateVector<int32_t>(op_inputs, 1),
210       builder.CreateVector<int32_t>(op_outputs, 1),
211       tflite::BuiltinOptions_SoftmaxOptions, softmax_options.Union());
212 
213   const int32_t graph_inputs[1] = { 0 };
214   const int32_t graph_outputs[1] = { 1 };
215   flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
216       builder,
217       builder.CreateVector(tensors, 2),
218       builder.CreateVector<int32_t>(graph_inputs, 1),
219       builder.CreateVector<int32_t>(graph_outputs, 1),
220       builder.CreateVector(&op, 1));
221 
222   flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Softmax model");
223 
224   flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
225       TFLITE_SCHEMA_VERSION,
226       builder.CreateVector(&operator_code, 1),
227       builder.CreateVector(&subgraph, 1),
228       description,
229       builder.CreateVector(buffers, 1));
230 
231   builder.Finish(model_buffer);
232 
233   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
234   tflite::ops::builtin::BuiltinOpResolver resolver;
235   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
236   std::unique_ptr<tflite::Interpreter> interpreter;
237   if (interpreterBuilder(&interpreter) != kTfLiteOk) {
238     state.SkipWithError("failed to create TFLite interpreter");
239     return;
240   }
241   if (interpreter == nullptr) {
242     state.SkipWithError("TFLite interpreter is null");
243     return;
244   }
245   interpreter->SetNumThreads(1);
246 
247   if (interpreter->AllocateTensors() != kTfLiteOk) {
248     state.SkipWithError("failed to allocate tensors");
249     return;
250   }
251 
252   std::generate(
253     interpreter->typed_tensor<float>(0),
254     interpreter->typed_tensor<float>(0) + batch_size * channels,
255     std::ref(f32rng));
256 
257   for (auto _ : state) {
258     if (interpreter->Invoke() != kTfLiteOk) {
259       state.SkipWithError("failed to invoke TFLite interpreter");
260       return;
261     }
262   }
263 
264   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
265   if (cpu_frequency != 0) {
266     state.counters["cpufreq"] = cpu_frequency;
267   }
268 
269   const size_t elements_per_iteration = batch_size * channels;
270   state.counters["elements"] =
271     benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
272 
273   const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
274   state.counters["bytes"] =
275     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
276 
277   interpreter.reset();
278 }
279 #endif  // BENCHMARK_TENSORFLOW_LITE
280 
CharacteristicArguments(benchmark::internal::Benchmark * b)281 static void CharacteristicArguments(benchmark::internal::Benchmark* b)
282 {
283   b->ArgNames({"N", "C"});
284 
285   // CIFAR-10
286   b->Args({1, 10});
287   // CIFAR-100 */
288   b->Args({1, 100});
289   // ImageNet-1K
290   b->Args({1, 1000});
291   // ImageNet-1K+1
292   b->Args({1, 1001});
293   // ImageNet-22K
294   b->Args({1, 21841});
295   // ADE20K
296   b->Args({257 * 257, 151});
297 }
298 
299 #ifndef XNN_NO_QU8_OPERATORS
300 BENCHMARK(xnnpack_softmax_qu8)->Apply(CharacteristicArguments)->UseRealTime();
301 #endif  // XNN_NO_QU8_OPERATORS
302 
303 BENCHMARK(xnnpack_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime();
304 #ifdef BENCHMARK_TENSORFLOW_LITE
305 BENCHMARK(tflite_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime();
306 #endif  // BENCHMARK_TENSORFLOW_LITE
307 
308 #ifndef XNNPACK_BENCHMARK_NO_MAIN
309 BENCHMARK_MAIN();
310 #endif
311