1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <xnnpack.h>
7
8 #include <array>
9 #include <algorithm>
10 #include <functional>
11 #include <iostream>
12 #include <limits>
13 #include <random>
14
15 #include "models/models.h"
16
17 namespace models {
18
FP32MobileNetV2(pthreadpool_t threadpool)19 ExecutionPlan FP32MobileNetV2(pthreadpool_t threadpool) {
20 alignas(16) static std::array<float, 150528> v0;
21 alignas(16) static std::array<float, 401408> v1;
22 alignas(16) static std::array<float, 401408> v2;
23 alignas(16) static std::array<float, 200704> v3;
24 alignas(16) static std::array<float, 1204224> v4;
25 alignas(16) static std::array<float, 301056> v5;
26 alignas(16) static std::array<float, 75264> v6;
27 alignas(16) static std::array<float, 451584> v7;
28 alignas(16) static std::array<float, 451584> v8;
29 alignas(16) static std::array<float, 75264> v9;
30 alignas(16) static std::array<float, 75264> v10;
31 alignas(16) static std::array<float, 451584> v11;
32 alignas(16) static std::array<float, 112896> v12;
33 alignas(16) static std::array<float, 25088> v13;
34 alignas(16) static std::array<float, 150528> v14;
35 alignas(16) static std::array<float, 150528> v15;
36 alignas(16) static std::array<float, 25088> v16;
37 alignas(16) static std::array<float, 25088> v17;
38 alignas(16) static std::array<float, 150528> v18;
39 alignas(16) static std::array<float, 150528> v19;
40 alignas(16) static std::array<float, 25088> v20;
41 alignas(16) static std::array<float, 25088> v21;
42 alignas(16) static std::array<float, 150528> v22;
43 alignas(16) static std::array<float, 37632> v23;
44 alignas(16) static std::array<float, 12544> v24;
45 alignas(16) static std::array<float, 75264> v25;
46 alignas(16) static std::array<float, 75264> v26;
47 alignas(16) static std::array<float, 12544> v27;
48 alignas(16) static std::array<float, 12544> v28;
49 alignas(16) static std::array<float, 75264> v29;
50 alignas(16) static std::array<float, 75264> v30;
51 alignas(16) static std::array<float, 12544> v31;
52 alignas(16) static std::array<float, 12544> v32;
53 alignas(16) static std::array<float, 75264> v33;
54 alignas(16) static std::array<float, 75264> v34;
55 alignas(16) static std::array<float, 12544> v35;
56 alignas(16) static std::array<float, 12544> v36;
57 alignas(16) static std::array<float, 75264> v37;
58 alignas(16) static std::array<float, 75264> v38;
59 alignas(16) static std::array<float, 18816> v39;
60 alignas(16) static std::array<float, 112896> v40;
61 alignas(16) static std::array<float, 112896> v41;
62 alignas(16) static std::array<float, 18816> v42;
63 alignas(16) static std::array<float, 18816> v43;
64 alignas(16) static std::array<float, 112896> v44;
65 alignas(16) static std::array<float, 112896> v45;
66 alignas(16) static std::array<float, 18816> v46;
67 alignas(16) static std::array<float, 18816> v47;
68 alignas(16) static std::array<float, 112896> v48;
69 alignas(16) static std::array<float, 28224> v49;
70 alignas(16) static std::array<float, 7840> v50;
71 alignas(16) static std::array<float, 47040> v51;
72 alignas(16) static std::array<float, 47040> v52;
73 alignas(16) static std::array<float, 7840> v53;
74 alignas(16) static std::array<float, 7840> v54;
75 alignas(16) static std::array<float, 47040> v55;
76 alignas(16) static std::array<float, 47040> v56;
77 alignas(16) static std::array<float, 7840> v57;
78 alignas(16) static std::array<float, 7840> v58;
79 alignas(16) static std::array<float, 47040> v59;
80 alignas(16) static std::array<float, 47040> v60;
81 alignas(16) static std::array<float, 15680> v61;
82 alignas(16) static std::array<float, 62720> v62;
83 alignas(16) static std::array<float, 1280> v63;
84 alignas(16) static std::array<float, 1001> v64;
85 alignas(16) static std::array<float, 864> w65;
86 alignas(16) static std::array<float, 32> w66;
87 alignas(16) static std::array<float, 288> w67;
88 alignas(16) static std::array<float, 32> w68;
89 alignas(16) static std::array<float, 512> w69;
90 alignas(16) static std::array<float, 16> w70;
91 alignas(16) static std::array<float, 1536> w71;
92 alignas(16) static std::array<float, 96> w72;
93 alignas(16) static std::array<float, 864> w73;
94 alignas(16) static std::array<float, 96> w74;
95 alignas(16) static std::array<float, 2304> w75;
96 alignas(16) static std::array<float, 24> w76;
97 alignas(16) static std::array<float, 3456> w77;
98 alignas(16) static std::array<float, 144> w78;
99 alignas(16) static std::array<float, 1296> w79;
100 alignas(16) static std::array<float, 144> w80;
101 alignas(16) static std::array<float, 3456> w81;
102 alignas(16) static std::array<float, 24> w82;
103 alignas(16) static std::array<float, 3456> w83;
104 alignas(16) static std::array<float, 144> w84;
105 alignas(16) static std::array<float, 1296> w85;
106 alignas(16) static std::array<float, 144> w86;
107 alignas(16) static std::array<float, 4608> w87;
108 alignas(16) static std::array<float, 32> w88;
109 alignas(16) static std::array<float, 6144> w89;
110 alignas(16) static std::array<float, 192> w90;
111 alignas(16) static std::array<float, 1728> w91;
112 alignas(16) static std::array<float, 192> w92;
113 alignas(16) static std::array<float, 6144> w93;
114 alignas(16) static std::array<float, 32> w94;
115 alignas(16) static std::array<float, 6144> w95;
116 alignas(16) static std::array<float, 192> w96;
117 alignas(16) static std::array<float, 1728> w97;
118 alignas(16) static std::array<float, 192> w98;
119 alignas(16) static std::array<float, 6144> w99;
120 alignas(16) static std::array<float, 32> w100;
121 alignas(16) static std::array<float, 6144> w101;
122 alignas(16) static std::array<float, 192> w102;
123 alignas(16) static std::array<float, 1728> w103;
124 alignas(16) static std::array<float, 192> w104;
125 alignas(16) static std::array<float, 12288> w105;
126 alignas(16) static std::array<float, 64> w106;
127 alignas(16) static std::array<float, 24576> w107;
128 alignas(16) static std::array<float, 384> w108;
129 alignas(16) static std::array<float, 3456> w109;
130 alignas(16) static std::array<float, 384> w110;
131 alignas(16) static std::array<float, 24576> w111;
132 alignas(16) static std::array<float, 64> w112;
133 alignas(16) static std::array<float, 24576> w113;
134 alignas(16) static std::array<float, 384> w114;
135 alignas(16) static std::array<float, 3456> w115;
136 alignas(16) static std::array<float, 384> w116;
137 alignas(16) static std::array<float, 24576> w117;
138 alignas(16) static std::array<float, 64> w118;
139 alignas(16) static std::array<float, 24576> w119;
140 alignas(16) static std::array<float, 384> w120;
141 alignas(16) static std::array<float, 3456> w121;
142 alignas(16) static std::array<float, 384> w122;
143 alignas(16) static std::array<float, 24576> w123;
144 alignas(16) static std::array<float, 64> w124;
145 alignas(16) static std::array<float, 24576> w125;
146 alignas(16) static std::array<float, 384> w126;
147 alignas(16) static std::array<float, 3456> w127;
148 alignas(16) static std::array<float, 384> w128;
149 alignas(16) static std::array<float, 36864> w129;
150 alignas(16) static std::array<float, 96> w130;
151 alignas(16) static std::array<float, 55296> w131;
152 alignas(16) static std::array<float, 576> w132;
153 alignas(16) static std::array<float, 5184> w133;
154 alignas(16) static std::array<float, 576> w134;
155 alignas(16) static std::array<float, 55296> w135;
156 alignas(16) static std::array<float, 96> w136;
157 alignas(16) static std::array<float, 55296> w137;
158 alignas(16) static std::array<float, 576> w138;
159 alignas(16) static std::array<float, 5184> w139;
160 alignas(16) static std::array<float, 576> w140;
161 alignas(16) static std::array<float, 55296> w141;
162 alignas(16) static std::array<float, 96> w142;
163 alignas(16) static std::array<float, 55296> w143;
164 alignas(16) static std::array<float, 576> w144;
165 alignas(16) static std::array<float, 5184> w145;
166 alignas(16) static std::array<float, 576> w146;
167 alignas(16) static std::array<float, 92160> w147;
168 alignas(16) static std::array<float, 160> w148;
169 alignas(16) static std::array<float, 153600> w149;
170 alignas(16) static std::array<float, 960> w150;
171 alignas(16) static std::array<float, 8640> w151;
172 alignas(16) static std::array<float, 960> w152;
173 alignas(16) static std::array<float, 153600> w153;
174 alignas(16) static std::array<float, 160> w154;
175 alignas(16) static std::array<float, 153600> w155;
176 alignas(16) static std::array<float, 960> w156;
177 alignas(16) static std::array<float, 8640> w157;
178 alignas(16) static std::array<float, 960> w158;
179 alignas(16) static std::array<float, 153600> w159;
180 alignas(16) static std::array<float, 160> w160;
181 alignas(16) static std::array<float, 153600> w161;
182 alignas(16) static std::array<float, 960> w162;
183 alignas(16) static std::array<float, 8640> w163;
184 alignas(16) static std::array<float, 960> w164;
185 alignas(16) static std::array<float, 307200> w165;
186 alignas(16) static std::array<float, 320> w166;
187 alignas(16) static std::array<float, 409600> w167;
188 alignas(16) static std::array<float, 1280> w168;
189 alignas(16) static std::array<float, 1281280> w169;
190 alignas(16) static std::array<float, 1001> w170;
191
192 std::random_device random_device;
193 auto rng = std::mt19937(random_device());
194 auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng));
195 std::generate(v0.begin(), v0.end(), std::ref(f32rng));
196 std::generate(v1.begin(), v1.end(), std::ref(f32rng));
197 std::generate(v2.begin(), v2.end(), std::ref(f32rng));
198 std::generate(v3.begin(), v3.end(), std::ref(f32rng));
199 std::generate(v4.begin(), v4.end(), std::ref(f32rng));
200 std::generate(v5.begin(), v5.end(), std::ref(f32rng));
201 std::generate(v6.begin(), v6.end(), std::ref(f32rng));
202 std::generate(v7.begin(), v7.end(), std::ref(f32rng));
203 std::generate(v8.begin(), v8.end(), std::ref(f32rng));
204 std::generate(v9.begin(), v9.end(), std::ref(f32rng));
205 std::generate(v10.begin(), v10.end(), std::ref(f32rng));
206 std::generate(v11.begin(), v11.end(), std::ref(f32rng));
207 std::generate(v12.begin(), v12.end(), std::ref(f32rng));
208 std::generate(v13.begin(), v13.end(), std::ref(f32rng));
209 std::generate(v14.begin(), v14.end(), std::ref(f32rng));
210 std::generate(v15.begin(), v15.end(), std::ref(f32rng));
211 std::generate(v16.begin(), v16.end(), std::ref(f32rng));
212 std::generate(v17.begin(), v17.end(), std::ref(f32rng));
213 std::generate(v18.begin(), v18.end(), std::ref(f32rng));
214 std::generate(v19.begin(), v19.end(), std::ref(f32rng));
215 std::generate(v20.begin(), v20.end(), std::ref(f32rng));
216 std::generate(v21.begin(), v21.end(), std::ref(f32rng));
217 std::generate(v22.begin(), v22.end(), std::ref(f32rng));
218 std::generate(v23.begin(), v23.end(), std::ref(f32rng));
219 std::generate(v24.begin(), v24.end(), std::ref(f32rng));
220 std::generate(v25.begin(), v25.end(), std::ref(f32rng));
221 std::generate(v26.begin(), v26.end(), std::ref(f32rng));
222 std::generate(v27.begin(), v27.end(), std::ref(f32rng));
223 std::generate(v28.begin(), v28.end(), std::ref(f32rng));
224 std::generate(v29.begin(), v29.end(), std::ref(f32rng));
225 std::generate(v30.begin(), v30.end(), std::ref(f32rng));
226 std::generate(v31.begin(), v31.end(), std::ref(f32rng));
227 std::generate(v32.begin(), v32.end(), std::ref(f32rng));
228 std::generate(v33.begin(), v33.end(), std::ref(f32rng));
229 std::generate(v34.begin(), v34.end(), std::ref(f32rng));
230 std::generate(v35.begin(), v35.end(), std::ref(f32rng));
231 std::generate(v36.begin(), v36.end(), std::ref(f32rng));
232 std::generate(v37.begin(), v37.end(), std::ref(f32rng));
233 std::generate(v38.begin(), v38.end(), std::ref(f32rng));
234 std::generate(v39.begin(), v39.end(), std::ref(f32rng));
235 std::generate(v40.begin(), v40.end(), std::ref(f32rng));
236 std::generate(v41.begin(), v41.end(), std::ref(f32rng));
237 std::generate(v42.begin(), v42.end(), std::ref(f32rng));
238 std::generate(v43.begin(), v43.end(), std::ref(f32rng));
239 std::generate(v44.begin(), v44.end(), std::ref(f32rng));
240 std::generate(v45.begin(), v45.end(), std::ref(f32rng));
241 std::generate(v46.begin(), v46.end(), std::ref(f32rng));
242 std::generate(v47.begin(), v47.end(), std::ref(f32rng));
243 std::generate(v48.begin(), v48.end(), std::ref(f32rng));
244 std::generate(v49.begin(), v49.end(), std::ref(f32rng));
245 std::generate(v50.begin(), v50.end(), std::ref(f32rng));
246 std::generate(v51.begin(), v51.end(), std::ref(f32rng));
247 std::generate(v52.begin(), v52.end(), std::ref(f32rng));
248 std::generate(v53.begin(), v53.end(), std::ref(f32rng));
249 std::generate(v54.begin(), v54.end(), std::ref(f32rng));
250 std::generate(v55.begin(), v55.end(), std::ref(f32rng));
251 std::generate(v56.begin(), v56.end(), std::ref(f32rng));
252 std::generate(v57.begin(), v57.end(), std::ref(f32rng));
253 std::generate(v58.begin(), v58.end(), std::ref(f32rng));
254 std::generate(v59.begin(), v59.end(), std::ref(f32rng));
255 std::generate(v60.begin(), v60.end(), std::ref(f32rng));
256 std::generate(v61.begin(), v61.end(), std::ref(f32rng));
257 std::generate(v62.begin(), v62.end(), std::ref(f32rng));
258 std::generate(v63.begin(), v63.end(), std::ref(f32rng));
259 std::generate(v64.begin(), v64.end(), std::ref(f32rng));
260 std::generate(w65.begin(), w65.end(), std::ref(f32rng));
261 std::generate(w66.begin(), w66.end(), std::ref(f32rng));
262 std::generate(w67.begin(), w67.end(), std::ref(f32rng));
263 std::generate(w68.begin(), w68.end(), std::ref(f32rng));
264 std::generate(w69.begin(), w69.end(), std::ref(f32rng));
265 std::generate(w70.begin(), w70.end(), std::ref(f32rng));
266 std::generate(w71.begin(), w71.end(), std::ref(f32rng));
267 std::generate(w72.begin(), w72.end(), std::ref(f32rng));
268 std::generate(w73.begin(), w73.end(), std::ref(f32rng));
269 std::generate(w74.begin(), w74.end(), std::ref(f32rng));
270 std::generate(w75.begin(), w75.end(), std::ref(f32rng));
271 std::generate(w76.begin(), w76.end(), std::ref(f32rng));
272 std::generate(w77.begin(), w77.end(), std::ref(f32rng));
273 std::generate(w78.begin(), w78.end(), std::ref(f32rng));
274 std::generate(w79.begin(), w79.end(), std::ref(f32rng));
275 std::generate(w80.begin(), w80.end(), std::ref(f32rng));
276 std::generate(w81.begin(), w81.end(), std::ref(f32rng));
277 std::generate(w82.begin(), w82.end(), std::ref(f32rng));
278 std::generate(w83.begin(), w83.end(), std::ref(f32rng));
279 std::generate(w84.begin(), w84.end(), std::ref(f32rng));
280 std::generate(w85.begin(), w85.end(), std::ref(f32rng));
281 std::generate(w86.begin(), w86.end(), std::ref(f32rng));
282 std::generate(w87.begin(), w87.end(), std::ref(f32rng));
283 std::generate(w88.begin(), w88.end(), std::ref(f32rng));
284 std::generate(w89.begin(), w89.end(), std::ref(f32rng));
285 std::generate(w90.begin(), w90.end(), std::ref(f32rng));
286 std::generate(w91.begin(), w91.end(), std::ref(f32rng));
287 std::generate(w92.begin(), w92.end(), std::ref(f32rng));
288 std::generate(w93.begin(), w93.end(), std::ref(f32rng));
289 std::generate(w94.begin(), w94.end(), std::ref(f32rng));
290 std::generate(w95.begin(), w95.end(), std::ref(f32rng));
291 std::generate(w96.begin(), w96.end(), std::ref(f32rng));
292 std::generate(w97.begin(), w97.end(), std::ref(f32rng));
293 std::generate(w98.begin(), w98.end(), std::ref(f32rng));
294 std::generate(w99.begin(), w99.end(), std::ref(f32rng));
295 std::generate(w100.begin(), w100.end(), std::ref(f32rng));
296 std::generate(w101.begin(), w101.end(), std::ref(f32rng));
297 std::generate(w102.begin(), w102.end(), std::ref(f32rng));
298 std::generate(w103.begin(), w103.end(), std::ref(f32rng));
299 std::generate(w104.begin(), w104.end(), std::ref(f32rng));
300 std::generate(w105.begin(), w105.end(), std::ref(f32rng));
301 std::generate(w106.begin(), w106.end(), std::ref(f32rng));
302 std::generate(w107.begin(), w107.end(), std::ref(f32rng));
303 std::generate(w108.begin(), w108.end(), std::ref(f32rng));
304 std::generate(w109.begin(), w109.end(), std::ref(f32rng));
305 std::generate(w110.begin(), w110.end(), std::ref(f32rng));
306 std::generate(w111.begin(), w111.end(), std::ref(f32rng));
307 std::generate(w112.begin(), w112.end(), std::ref(f32rng));
308 std::generate(w113.begin(), w113.end(), std::ref(f32rng));
309 std::generate(w114.begin(), w114.end(), std::ref(f32rng));
310 std::generate(w115.begin(), w115.end(), std::ref(f32rng));
311 std::generate(w116.begin(), w116.end(), std::ref(f32rng));
312 std::generate(w117.begin(), w117.end(), std::ref(f32rng));
313 std::generate(w118.begin(), w118.end(), std::ref(f32rng));
314 std::generate(w119.begin(), w119.end(), std::ref(f32rng));
315 std::generate(w120.begin(), w120.end(), std::ref(f32rng));
316 std::generate(w121.begin(), w121.end(), std::ref(f32rng));
317 std::generate(w122.begin(), w122.end(), std::ref(f32rng));
318 std::generate(w123.begin(), w123.end(), std::ref(f32rng));
319 std::generate(w124.begin(), w124.end(), std::ref(f32rng));
320 std::generate(w125.begin(), w125.end(), std::ref(f32rng));
321 std::generate(w126.begin(), w126.end(), std::ref(f32rng));
322 std::generate(w127.begin(), w127.end(), std::ref(f32rng));
323 std::generate(w128.begin(), w128.end(), std::ref(f32rng));
324 std::generate(w129.begin(), w129.end(), std::ref(f32rng));
325 std::generate(w130.begin(), w130.end(), std::ref(f32rng));
326 std::generate(w131.begin(), w131.end(), std::ref(f32rng));
327 std::generate(w132.begin(), w132.end(), std::ref(f32rng));
328 std::generate(w133.begin(), w133.end(), std::ref(f32rng));
329 std::generate(w134.begin(), w134.end(), std::ref(f32rng));
330 std::generate(w135.begin(), w135.end(), std::ref(f32rng));
331 std::generate(w136.begin(), w136.end(), std::ref(f32rng));
332 std::generate(w137.begin(), w137.end(), std::ref(f32rng));
333 std::generate(w138.begin(), w138.end(), std::ref(f32rng));
334 std::generate(w139.begin(), w139.end(), std::ref(f32rng));
335 std::generate(w140.begin(), w140.end(), std::ref(f32rng));
336 std::generate(w141.begin(), w141.end(), std::ref(f32rng));
337 std::generate(w142.begin(), w142.end(), std::ref(f32rng));
338 std::generate(w143.begin(), w143.end(), std::ref(f32rng));
339 std::generate(w144.begin(), w144.end(), std::ref(f32rng));
340 std::generate(w145.begin(), w145.end(), std::ref(f32rng));
341 std::generate(w146.begin(), w146.end(), std::ref(f32rng));
342 std::generate(w147.begin(), w147.end(), std::ref(f32rng));
343 std::generate(w148.begin(), w148.end(), std::ref(f32rng));
344 std::generate(w149.begin(), w149.end(), std::ref(f32rng));
345 std::generate(w150.begin(), w150.end(), std::ref(f32rng));
346 std::generate(w151.begin(), w151.end(), std::ref(f32rng));
347 std::generate(w152.begin(), w152.end(), std::ref(f32rng));
348 std::generate(w153.begin(), w153.end(), std::ref(f32rng));
349 std::generate(w154.begin(), w154.end(), std::ref(f32rng));
350 std::generate(w155.begin(), w155.end(), std::ref(f32rng));
351 std::generate(w156.begin(), w156.end(), std::ref(f32rng));
352 std::generate(w157.begin(), w157.end(), std::ref(f32rng));
353 std::generate(w158.begin(), w158.end(), std::ref(f32rng));
354 std::generate(w159.begin(), w159.end(), std::ref(f32rng));
355 std::generate(w160.begin(), w160.end(), std::ref(f32rng));
356 std::generate(w161.begin(), w161.end(), std::ref(f32rng));
357 std::generate(w162.begin(), w162.end(), std::ref(f32rng));
358 std::generate(w163.begin(), w163.end(), std::ref(f32rng));
359 std::generate(w164.begin(), w164.end(), std::ref(f32rng));
360 std::generate(w165.begin(), w165.end(), std::ref(f32rng));
361 std::generate(w166.begin(), w166.end(), std::ref(f32rng));
362 std::generate(w167.begin(), w167.end(), std::ref(f32rng));
363 std::generate(w168.begin(), w168.end(), std::ref(f32rng));
364 std::generate(w169.begin(), w169.end(), std::ref(f32rng));
365 std::generate(w170.begin(), w170.end(), std::ref(f32rng));
366
367 ExecutionPlan operators;
368 xnn_status status;
369
370 xnn_operator_t op0 = nullptr;
371 status = xnn_create_convolution2d_nhwc_f32(
372 0 /* top padding */, 1 /* right padding */,
373 1 /* bottom padding */, 0 /* left padding */,
374 3 /* kernel height */, 3 /* kernel width */,
375 2 /* subsampling height */, 2 /* subsampling width */,
376 1 /* dilation_height */, 1 /* dilation_width */,
377 1 /* groups */,
378 3 /* input channels per group */,
379 32 /* output_channels_per_group */,
380 3 /* input pixel stride */,
381 32 /* output pixel stride */,
382 w65.data(), w66.data(),
383 0.0f /* output min */, 6.0f /* output max */,
384 0 /* flags */,
385 &op0);
386 if (status != xnn_status_success) {
387 std::cerr << "failed to create operation #0" << std::endl;
388 return ExecutionPlan();
389 }
390 operators.emplace_back(op0, xnn_delete_operator);
391
392 xnn_operator_t op1 = nullptr;
393 status = xnn_create_convolution2d_nhwc_f32(
394 1 /* top padding */, 1 /* right padding */,
395 1 /* bottom padding */, 1 /* left padding */,
396 3 /* kernel height */, 3 /* kernel width */,
397 1 /* subsampling height */, 1 /* subsampling width */,
398 1 /* dilation_height */, 1 /* dilation_width */,
399 32 /* groups */,
400 1 /* input channels per group */,
401 1 /* output_channels_per_group */,
402 32 /* input pixel stride */,
403 32 /* output pixel stride */,
404 w67.data(), w68.data(),
405 0.0f /* output min */, 6.0f /* output max */,
406 0 /* flags */,
407 &op1);
408 if (status != xnn_status_success) {
409 std::cerr << "failed to create operation #1" << std::endl;
410 return ExecutionPlan();
411 }
412 operators.emplace_back(op1, xnn_delete_operator);
413
414 xnn_operator_t op2 = nullptr;
415 status = xnn_create_convolution2d_nhwc_f32(
416 0 /* top padding */, 0 /* right padding */,
417 0 /* bottom padding */, 0 /* left padding */,
418 1 /* kernel height */, 1 /* kernel width */,
419 1 /* subsampling height */, 1 /* subsampling width */,
420 1 /* dilation_height */, 1 /* dilation_width */,
421 1 /* groups */,
422 32 /* input channels per group */,
423 16 /* output_channels_per_group */,
424 32 /* input pixel stride */,
425 16 /* output pixel stride */,
426 w69.data(), w70.data(),
427 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
428 0 /* flags */,
429 &op2);
430 if (status != xnn_status_success) {
431 std::cerr << "failed to create operation #2" << std::endl;
432 return ExecutionPlan();
433 }
434 operators.emplace_back(op2, xnn_delete_operator);
435
436 xnn_operator_t op3 = nullptr;
437 status = xnn_create_convolution2d_nhwc_f32(
438 0 /* top padding */, 0 /* right padding */,
439 0 /* bottom padding */, 0 /* left padding */,
440 1 /* kernel height */, 1 /* kernel width */,
441 1 /* subsampling height */, 1 /* subsampling width */,
442 1 /* dilation_height */, 1 /* dilation_width */,
443 1 /* groups */,
444 16 /* input channels per group */,
445 96 /* output_channels_per_group */,
446 16 /* input pixel stride */,
447 96 /* output pixel stride */,
448 w71.data(), w72.data(),
449 0.0f /* output min */, 6.0f /* output max */,
450 0 /* flags */,
451 &op3);
452 if (status != xnn_status_success) {
453 std::cerr << "failed to create operation #3" << std::endl;
454 return ExecutionPlan();
455 }
456 operators.emplace_back(op3, xnn_delete_operator);
457
458 xnn_operator_t op4 = nullptr;
459 status = xnn_create_convolution2d_nhwc_f32(
460 0 /* top padding */, 1 /* right padding */,
461 1 /* bottom padding */, 0 /* left padding */,
462 3 /* kernel height */, 3 /* kernel width */,
463 2 /* subsampling height */, 2 /* subsampling width */,
464 1 /* dilation_height */, 1 /* dilation_width */,
465 96 /* groups */,
466 1 /* input channels per group */,
467 1 /* output_channels_per_group */,
468 96 /* input pixel stride */,
469 96 /* output pixel stride */,
470 w73.data(), w74.data(),
471 0.0f /* output min */, 6.0f /* output max */,
472 0 /* flags */,
473 &op4);
474 if (status != xnn_status_success) {
475 std::cerr << "failed to create operation #4" << std::endl;
476 return ExecutionPlan();
477 }
478 operators.emplace_back(op4, xnn_delete_operator);
479
480 xnn_operator_t op5 = nullptr;
481 status = xnn_create_convolution2d_nhwc_f32(
482 0 /* top padding */, 0 /* right padding */,
483 0 /* bottom padding */, 0 /* left padding */,
484 1 /* kernel height */, 1 /* kernel width */,
485 1 /* subsampling height */, 1 /* subsampling width */,
486 1 /* dilation_height */, 1 /* dilation_width */,
487 1 /* groups */,
488 96 /* input channels per group */,
489 24 /* output_channels_per_group */,
490 96 /* input pixel stride */,
491 24 /* output pixel stride */,
492 w75.data(), w76.data(),
493 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
494 0 /* flags */,
495 &op5);
496 if (status != xnn_status_success) {
497 std::cerr << "failed to create operation #5" << std::endl;
498 return ExecutionPlan();
499 }
500 operators.emplace_back(op5, xnn_delete_operator);
501
502 xnn_operator_t op6 = nullptr;
503 status = xnn_create_convolution2d_nhwc_f32(
504 0 /* top padding */, 0 /* right padding */,
505 0 /* bottom padding */, 0 /* left padding */,
506 1 /* kernel height */, 1 /* kernel width */,
507 1 /* subsampling height */, 1 /* subsampling width */,
508 1 /* dilation_height */, 1 /* dilation_width */,
509 1 /* groups */,
510 24 /* input channels per group */,
511 144 /* output_channels_per_group */,
512 24 /* input pixel stride */,
513 144 /* output pixel stride */,
514 w77.data(), w78.data(),
515 0.0f /* output min */, 6.0f /* output max */,
516 0 /* flags */,
517 &op6);
518 if (status != xnn_status_success) {
519 std::cerr << "failed to create operation #6" << std::endl;
520 return ExecutionPlan();
521 }
522 operators.emplace_back(op6, xnn_delete_operator);
523
524 xnn_operator_t op7 = nullptr;
525 status = xnn_create_convolution2d_nhwc_f32(
526 1 /* top padding */, 1 /* right padding */,
527 1 /* bottom padding */, 1 /* left padding */,
528 3 /* kernel height */, 3 /* kernel width */,
529 1 /* subsampling height */, 1 /* subsampling width */,
530 1 /* dilation_height */, 1 /* dilation_width */,
531 144 /* groups */,
532 1 /* input channels per group */,
533 1 /* output_channels_per_group */,
534 144 /* input pixel stride */,
535 144 /* output pixel stride */,
536 w79.data(), w80.data(),
537 0.0f /* output min */, 6.0f /* output max */,
538 0 /* flags */,
539 &op7);
540 if (status != xnn_status_success) {
541 std::cerr << "failed to create operation #7" << std::endl;
542 return ExecutionPlan();
543 }
544 operators.emplace_back(op7, xnn_delete_operator);
545
546 xnn_operator_t op8 = nullptr;
547 status = xnn_create_convolution2d_nhwc_f32(
548 0 /* top padding */, 0 /* right padding */,
549 0 /* bottom padding */, 0 /* left padding */,
550 1 /* kernel height */, 1 /* kernel width */,
551 1 /* subsampling height */, 1 /* subsampling width */,
552 1 /* dilation_height */, 1 /* dilation_width */,
553 1 /* groups */,
554 144 /* input channels per group */,
555 24 /* output_channels_per_group */,
556 144 /* input pixel stride */,
557 24 /* output pixel stride */,
558 w81.data(), w82.data(),
559 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
560 0 /* flags */,
561 &op8);
562 if (status != xnn_status_success) {
563 std::cerr << "failed to create operation #8" << std::endl;
564 return ExecutionPlan();
565 }
566 operators.emplace_back(op8, xnn_delete_operator);
567
568 xnn_operator_t op9 = nullptr;
569 status = xnn_create_add_nd_f32(
570 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
571 0 /* flags */,
572 &op9);
573 if (status != xnn_status_success) {
574 std::cerr << "failed to create operation #9" << std::endl;
575 return ExecutionPlan();
576 }
577 operators.emplace_back(op9, xnn_delete_operator);
578
579 xnn_operator_t op10 = nullptr;
580 status = xnn_create_convolution2d_nhwc_f32(
581 0 /* top padding */, 0 /* right padding */,
582 0 /* bottom padding */, 0 /* left padding */,
583 1 /* kernel height */, 1 /* kernel width */,
584 1 /* subsampling height */, 1 /* subsampling width */,
585 1 /* dilation_height */, 1 /* dilation_width */,
586 1 /* groups */,
587 24 /* input channels per group */,
588 144 /* output_channels_per_group */,
589 24 /* input pixel stride */,
590 144 /* output pixel stride */,
591 w83.data(), w84.data(),
592 0.0f /* output min */, 6.0f /* output max */,
593 0 /* flags */,
594 &op10);
595 if (status != xnn_status_success) {
596 std::cerr << "failed to create operation #10" << std::endl;
597 return ExecutionPlan();
598 }
599 operators.emplace_back(op10, xnn_delete_operator);
600
601 xnn_operator_t op11 = nullptr;
602 status = xnn_create_convolution2d_nhwc_f32(
603 0 /* top padding */, 1 /* right padding */,
604 1 /* bottom padding */, 0 /* left padding */,
605 3 /* kernel height */, 3 /* kernel width */,
606 2 /* subsampling height */, 2 /* subsampling width */,
607 1 /* dilation_height */, 1 /* dilation_width */,
608 144 /* groups */,
609 1 /* input channels per group */,
610 1 /* output_channels_per_group */,
611 144 /* input pixel stride */,
612 144 /* output pixel stride */,
613 w85.data(), w86.data(),
614 0.0f /* output min */, 6.0f /* output max */,
615 0 /* flags */,
616 &op11);
617 if (status != xnn_status_success) {
618 std::cerr << "failed to create operation #11" << std::endl;
619 return ExecutionPlan();
620 }
621 operators.emplace_back(op11, xnn_delete_operator);
622
623 xnn_operator_t op12 = nullptr;
624 status = xnn_create_convolution2d_nhwc_f32(
625 0 /* top padding */, 0 /* right padding */,
626 0 /* bottom padding */, 0 /* left padding */,
627 1 /* kernel height */, 1 /* kernel width */,
628 1 /* subsampling height */, 1 /* subsampling width */,
629 1 /* dilation_height */, 1 /* dilation_width */,
630 1 /* groups */,
631 144 /* input channels per group */,
632 32 /* output_channels_per_group */,
633 144 /* input pixel stride */,
634 32 /* output pixel stride */,
635 w87.data(), w88.data(),
636 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
637 0 /* flags */,
638 &op12);
639 if (status != xnn_status_success) {
640 std::cerr << "failed to create operation #12" << std::endl;
641 return ExecutionPlan();
642 }
643 operators.emplace_back(op12, xnn_delete_operator);
644
645 xnn_operator_t op13 = nullptr;
646 status = xnn_create_convolution2d_nhwc_f32(
647 0 /* top padding */, 0 /* right padding */,
648 0 /* bottom padding */, 0 /* left padding */,
649 1 /* kernel height */, 1 /* kernel width */,
650 1 /* subsampling height */, 1 /* subsampling width */,
651 1 /* dilation_height */, 1 /* dilation_width */,
652 1 /* groups */,
653 32 /* input channels per group */,
654 192 /* output_channels_per_group */,
655 32 /* input pixel stride */,
656 192 /* output pixel stride */,
657 w89.data(), w90.data(),
658 0.0f /* output min */, 6.0f /* output max */,
659 0 /* flags */,
660 &op13);
661 if (status != xnn_status_success) {
662 std::cerr << "failed to create operation #13" << std::endl;
663 return ExecutionPlan();
664 }
665 operators.emplace_back(op13, xnn_delete_operator);
666
667 xnn_operator_t op14 = nullptr;
668 status = xnn_create_convolution2d_nhwc_f32(
669 1 /* top padding */, 1 /* right padding */,
670 1 /* bottom padding */, 1 /* left padding */,
671 3 /* kernel height */, 3 /* kernel width */,
672 1 /* subsampling height */, 1 /* subsampling width */,
673 1 /* dilation_height */, 1 /* dilation_width */,
674 192 /* groups */,
675 1 /* input channels per group */,
676 1 /* output_channels_per_group */,
677 192 /* input pixel stride */,
678 192 /* output pixel stride */,
679 w91.data(), w92.data(),
680 0.0f /* output min */, 6.0f /* output max */,
681 0 /* flags */,
682 &op14);
683 if (status != xnn_status_success) {
684 std::cerr << "failed to create operation #14" << std::endl;
685 return ExecutionPlan();
686 }
687 operators.emplace_back(op14, xnn_delete_operator);
688
689 xnn_operator_t op15 = nullptr;
690 status = xnn_create_convolution2d_nhwc_f32(
691 0 /* top padding */, 0 /* right padding */,
692 0 /* bottom padding */, 0 /* left padding */,
693 1 /* kernel height */, 1 /* kernel width */,
694 1 /* subsampling height */, 1 /* subsampling width */,
695 1 /* dilation_height */, 1 /* dilation_width */,
696 1 /* groups */,
697 192 /* input channels per group */,
698 32 /* output_channels_per_group */,
699 192 /* input pixel stride */,
700 32 /* output pixel stride */,
701 w93.data(), w94.data(),
702 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
703 0 /* flags */,
704 &op15);
705 if (status != xnn_status_success) {
706 std::cerr << "failed to create operation #15" << std::endl;
707 return ExecutionPlan();
708 }
709 operators.emplace_back(op15, xnn_delete_operator);
710
711 xnn_operator_t op16 = nullptr;
712 status = xnn_create_add_nd_f32(
713 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
714 0 /* flags */,
715 &op16);
716 if (status != xnn_status_success) {
717 std::cerr << "failed to create operation #16" << std::endl;
718 return ExecutionPlan();
719 }
720 operators.emplace_back(op16, xnn_delete_operator);
721
722 xnn_operator_t op17 = nullptr;
723 status = xnn_create_convolution2d_nhwc_f32(
724 0 /* top padding */, 0 /* right padding */,
725 0 /* bottom padding */, 0 /* left padding */,
726 1 /* kernel height */, 1 /* kernel width */,
727 1 /* subsampling height */, 1 /* subsampling width */,
728 1 /* dilation_height */, 1 /* dilation_width */,
729 1 /* groups */,
730 32 /* input channels per group */,
731 192 /* output_channels_per_group */,
732 32 /* input pixel stride */,
733 192 /* output pixel stride */,
734 w95.data(), w96.data(),
735 0.0f /* output min */, 6.0f /* output max */,
736 0 /* flags */,
737 &op17);
738 if (status != xnn_status_success) {
739 std::cerr << "failed to create operation #17" << std::endl;
740 return ExecutionPlan();
741 }
742 operators.emplace_back(op17, xnn_delete_operator);
743
744 xnn_operator_t op18 = nullptr;
745 status = xnn_create_convolution2d_nhwc_f32(
746 1 /* top padding */, 1 /* right padding */,
747 1 /* bottom padding */, 1 /* left padding */,
748 3 /* kernel height */, 3 /* kernel width */,
749 1 /* subsampling height */, 1 /* subsampling width */,
750 1 /* dilation_height */, 1 /* dilation_width */,
751 192 /* groups */,
752 1 /* input channels per group */,
753 1 /* output_channels_per_group */,
754 192 /* input pixel stride */,
755 192 /* output pixel stride */,
756 w97.data(), w98.data(),
757 0.0f /* output min */, 6.0f /* output max */,
758 0 /* flags */,
759 &op18);
760 if (status != xnn_status_success) {
761 std::cerr << "failed to create operation #18" << std::endl;
762 return ExecutionPlan();
763 }
764 operators.emplace_back(op18, xnn_delete_operator);
765
766 xnn_operator_t op19 = nullptr;
767 status = xnn_create_convolution2d_nhwc_f32(
768 0 /* top padding */, 0 /* right padding */,
769 0 /* bottom padding */, 0 /* left padding */,
770 1 /* kernel height */, 1 /* kernel width */,
771 1 /* subsampling height */, 1 /* subsampling width */,
772 1 /* dilation_height */, 1 /* dilation_width */,
773 1 /* groups */,
774 192 /* input channels per group */,
775 32 /* output_channels_per_group */,
776 192 /* input pixel stride */,
777 32 /* output pixel stride */,
778 w99.data(), w100.data(),
779 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
780 0 /* flags */,
781 &op19);
782 if (status != xnn_status_success) {
783 std::cerr << "failed to create operation #19" << std::endl;
784 return ExecutionPlan();
785 }
786 operators.emplace_back(op19, xnn_delete_operator);
787
788 xnn_operator_t op20 = nullptr;
789 status = xnn_create_add_nd_f32(
790 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
791 0 /* flags */,
792 &op20);
793 if (status != xnn_status_success) {
794 std::cerr << "failed to create operation #20" << std::endl;
795 return ExecutionPlan();
796 }
797 operators.emplace_back(op20, xnn_delete_operator);
798
799 xnn_operator_t op21 = nullptr;
800 status = xnn_create_convolution2d_nhwc_f32(
801 0 /* top padding */, 0 /* right padding */,
802 0 /* bottom padding */, 0 /* left padding */,
803 1 /* kernel height */, 1 /* kernel width */,
804 1 /* subsampling height */, 1 /* subsampling width */,
805 1 /* dilation_height */, 1 /* dilation_width */,
806 1 /* groups */,
807 32 /* input channels per group */,
808 192 /* output_channels_per_group */,
809 32 /* input pixel stride */,
810 192 /* output pixel stride */,
811 w101.data(), w102.data(),
812 0.0f /* output min */, 6.0f /* output max */,
813 0 /* flags */,
814 &op21);
815 if (status != xnn_status_success) {
816 std::cerr << "failed to create operation #21" << std::endl;
817 return ExecutionPlan();
818 }
819 operators.emplace_back(op21, xnn_delete_operator);
820
821 xnn_operator_t op22 = nullptr;
822 status = xnn_create_convolution2d_nhwc_f32(
823 0 /* top padding */, 1 /* right padding */,
824 1 /* bottom padding */, 0 /* left padding */,
825 3 /* kernel height */, 3 /* kernel width */,
826 2 /* subsampling height */, 2 /* subsampling width */,
827 1 /* dilation_height */, 1 /* dilation_width */,
828 192 /* groups */,
829 1 /* input channels per group */,
830 1 /* output_channels_per_group */,
831 192 /* input pixel stride */,
832 192 /* output pixel stride */,
833 w103.data(), w104.data(),
834 0.0f /* output min */, 6.0f /* output max */,
835 0 /* flags */,
836 &op22);
837 if (status != xnn_status_success) {
838 std::cerr << "failed to create operation #22" << std::endl;
839 return ExecutionPlan();
840 }
841 operators.emplace_back(op22, xnn_delete_operator);
842
843 xnn_operator_t op23 = nullptr;
844 status = xnn_create_convolution2d_nhwc_f32(
845 0 /* top padding */, 0 /* right padding */,
846 0 /* bottom padding */, 0 /* left padding */,
847 1 /* kernel height */, 1 /* kernel width */,
848 1 /* subsampling height */, 1 /* subsampling width */,
849 1 /* dilation_height */, 1 /* dilation_width */,
850 1 /* groups */,
851 192 /* input channels per group */,
852 64 /* output_channels_per_group */,
853 192 /* input pixel stride */,
854 64 /* output pixel stride */,
855 w105.data(), w106.data(),
856 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
857 0 /* flags */,
858 &op23);
859 if (status != xnn_status_success) {
860 std::cerr << "failed to create operation #23" << std::endl;
861 return ExecutionPlan();
862 }
863 operators.emplace_back(op23, xnn_delete_operator);
864
865 xnn_operator_t op24 = nullptr;
866 status = xnn_create_convolution2d_nhwc_f32(
867 0 /* top padding */, 0 /* right padding */,
868 0 /* bottom padding */, 0 /* left padding */,
869 1 /* kernel height */, 1 /* kernel width */,
870 1 /* subsampling height */, 1 /* subsampling width */,
871 1 /* dilation_height */, 1 /* dilation_width */,
872 1 /* groups */,
873 64 /* input channels per group */,
874 384 /* output_channels_per_group */,
875 64 /* input pixel stride */,
876 384 /* output pixel stride */,
877 w107.data(), w108.data(),
878 0.0f /* output min */, 6.0f /* output max */,
879 0 /* flags */,
880 &op24);
881 if (status != xnn_status_success) {
882 std::cerr << "failed to create operation #24" << std::endl;
883 return ExecutionPlan();
884 }
885 operators.emplace_back(op24, xnn_delete_operator);
886
887 xnn_operator_t op25 = nullptr;
888 status = xnn_create_convolution2d_nhwc_f32(
889 1 /* top padding */, 1 /* right padding */,
890 1 /* bottom padding */, 1 /* left padding */,
891 3 /* kernel height */, 3 /* kernel width */,
892 1 /* subsampling height */, 1 /* subsampling width */,
893 1 /* dilation_height */, 1 /* dilation_width */,
894 384 /* groups */,
895 1 /* input channels per group */,
896 1 /* output_channels_per_group */,
897 384 /* input pixel stride */,
898 384 /* output pixel stride */,
899 w109.data(), w110.data(),
900 0.0f /* output min */, 6.0f /* output max */,
901 0 /* flags */,
902 &op25);
903 if (status != xnn_status_success) {
904 std::cerr << "failed to create operation #25" << std::endl;
905 return ExecutionPlan();
906 }
907 operators.emplace_back(op25, xnn_delete_operator);
908
909 xnn_operator_t op26 = nullptr;
910 status = xnn_create_convolution2d_nhwc_f32(
911 0 /* top padding */, 0 /* right padding */,
912 0 /* bottom padding */, 0 /* left padding */,
913 1 /* kernel height */, 1 /* kernel width */,
914 1 /* subsampling height */, 1 /* subsampling width */,
915 1 /* dilation_height */, 1 /* dilation_width */,
916 1 /* groups */,
917 384 /* input channels per group */,
918 64 /* output_channels_per_group */,
919 384 /* input pixel stride */,
920 64 /* output pixel stride */,
921 w111.data(), w112.data(),
922 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
923 0 /* flags */,
924 &op26);
925 if (status != xnn_status_success) {
926 std::cerr << "failed to create operation #26" << std::endl;
927 return ExecutionPlan();
928 }
929 operators.emplace_back(op26, xnn_delete_operator);
930
931 xnn_operator_t op27 = nullptr;
932 status = xnn_create_add_nd_f32(
933 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
934 0 /* flags */,
935 &op27);
936 if (status != xnn_status_success) {
937 std::cerr << "failed to create operation #27" << std::endl;
938 return ExecutionPlan();
939 }
940 operators.emplace_back(op27, xnn_delete_operator);
941
942 xnn_operator_t op28 = nullptr;
943 status = xnn_create_convolution2d_nhwc_f32(
944 0 /* top padding */, 0 /* right padding */,
945 0 /* bottom padding */, 0 /* left padding */,
946 1 /* kernel height */, 1 /* kernel width */,
947 1 /* subsampling height */, 1 /* subsampling width */,
948 1 /* dilation_height */, 1 /* dilation_width */,
949 1 /* groups */,
950 64 /* input channels per group */,
951 384 /* output_channels_per_group */,
952 64 /* input pixel stride */,
953 384 /* output pixel stride */,
954 w113.data(), w114.data(),
955 0.0f /* output min */, 6.0f /* output max */,
956 0 /* flags */,
957 &op28);
958 if (status != xnn_status_success) {
959 std::cerr << "failed to create operation #28" << std::endl;
960 return ExecutionPlan();
961 }
962 operators.emplace_back(op28, xnn_delete_operator);
963
964 xnn_operator_t op29 = nullptr;
965 status = xnn_create_convolution2d_nhwc_f32(
966 1 /* top padding */, 1 /* right padding */,
967 1 /* bottom padding */, 1 /* left padding */,
968 3 /* kernel height */, 3 /* kernel width */,
969 1 /* subsampling height */, 1 /* subsampling width */,
970 1 /* dilation_height */, 1 /* dilation_width */,
971 384 /* groups */,
972 1 /* input channels per group */,
973 1 /* output_channels_per_group */,
974 384 /* input pixel stride */,
975 384 /* output pixel stride */,
976 w115.data(), w116.data(),
977 0.0f /* output min */, 6.0f /* output max */,
978 0 /* flags */,
979 &op29);
980 if (status != xnn_status_success) {
981 std::cerr << "failed to create operation #29" << std::endl;
982 return ExecutionPlan();
983 }
984 operators.emplace_back(op29, xnn_delete_operator);
985
986 xnn_operator_t op30 = nullptr;
987 status = xnn_create_convolution2d_nhwc_f32(
988 0 /* top padding */, 0 /* right padding */,
989 0 /* bottom padding */, 0 /* left padding */,
990 1 /* kernel height */, 1 /* kernel width */,
991 1 /* subsampling height */, 1 /* subsampling width */,
992 1 /* dilation_height */, 1 /* dilation_width */,
993 1 /* groups */,
994 384 /* input channels per group */,
995 64 /* output_channels_per_group */,
996 384 /* input pixel stride */,
997 64 /* output pixel stride */,
998 w117.data(), w118.data(),
999 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1000 0 /* flags */,
1001 &op30);
1002 if (status != xnn_status_success) {
1003 std::cerr << "failed to create operation #30" << std::endl;
1004 return ExecutionPlan();
1005 }
1006 operators.emplace_back(op30, xnn_delete_operator);
1007
1008 xnn_operator_t op31 = nullptr;
1009 status = xnn_create_add_nd_f32(
1010 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1011 0 /* flags */,
1012 &op31);
1013 if (status != xnn_status_success) {
1014 std::cerr << "failed to create operation #31" << std::endl;
1015 return ExecutionPlan();
1016 }
1017 operators.emplace_back(op31, xnn_delete_operator);
1018
1019 xnn_operator_t op32 = nullptr;
1020 status = xnn_create_convolution2d_nhwc_f32(
1021 0 /* top padding */, 0 /* right padding */,
1022 0 /* bottom padding */, 0 /* left padding */,
1023 1 /* kernel height */, 1 /* kernel width */,
1024 1 /* subsampling height */, 1 /* subsampling width */,
1025 1 /* dilation_height */, 1 /* dilation_width */,
1026 1 /* groups */,
1027 64 /* input channels per group */,
1028 384 /* output_channels_per_group */,
1029 64 /* input pixel stride */,
1030 384 /* output pixel stride */,
1031 w119.data(), w120.data(),
1032 0.0f /* output min */, 6.0f /* output max */,
1033 0 /* flags */,
1034 &op32);
1035 if (status != xnn_status_success) {
1036 std::cerr << "failed to create operation #32" << std::endl;
1037 return ExecutionPlan();
1038 }
1039 operators.emplace_back(op32, xnn_delete_operator);
1040
1041 xnn_operator_t op33 = nullptr;
1042 status = xnn_create_convolution2d_nhwc_f32(
1043 1 /* top padding */, 1 /* right padding */,
1044 1 /* bottom padding */, 1 /* left padding */,
1045 3 /* kernel height */, 3 /* kernel width */,
1046 1 /* subsampling height */, 1 /* subsampling width */,
1047 1 /* dilation_height */, 1 /* dilation_width */,
1048 384 /* groups */,
1049 1 /* input channels per group */,
1050 1 /* output_channels_per_group */,
1051 384 /* input pixel stride */,
1052 384 /* output pixel stride */,
1053 w121.data(), w122.data(),
1054 0.0f /* output min */, 6.0f /* output max */,
1055 0 /* flags */,
1056 &op33);
1057 if (status != xnn_status_success) {
1058 std::cerr << "failed to create operation #33" << std::endl;
1059 return ExecutionPlan();
1060 }
1061 operators.emplace_back(op33, xnn_delete_operator);
1062
1063 xnn_operator_t op34 = nullptr;
1064 status = xnn_create_convolution2d_nhwc_f32(
1065 0 /* top padding */, 0 /* right padding */,
1066 0 /* bottom padding */, 0 /* left padding */,
1067 1 /* kernel height */, 1 /* kernel width */,
1068 1 /* subsampling height */, 1 /* subsampling width */,
1069 1 /* dilation_height */, 1 /* dilation_width */,
1070 1 /* groups */,
1071 384 /* input channels per group */,
1072 64 /* output_channels_per_group */,
1073 384 /* input pixel stride */,
1074 64 /* output pixel stride */,
1075 w123.data(), w124.data(),
1076 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1077 0 /* flags */,
1078 &op34);
1079 if (status != xnn_status_success) {
1080 std::cerr << "failed to create operation #34" << std::endl;
1081 return ExecutionPlan();
1082 }
1083 operators.emplace_back(op34, xnn_delete_operator);
1084
1085 xnn_operator_t op35 = nullptr;
1086 status = xnn_create_add_nd_f32(
1087 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1088 0 /* flags */,
1089 &op35);
1090 if (status != xnn_status_success) {
1091 std::cerr << "failed to create operation #35" << std::endl;
1092 return ExecutionPlan();
1093 }
1094 operators.emplace_back(op35, xnn_delete_operator);
1095
1096 xnn_operator_t op36 = nullptr;
1097 status = xnn_create_convolution2d_nhwc_f32(
1098 0 /* top padding */, 0 /* right padding */,
1099 0 /* bottom padding */, 0 /* left padding */,
1100 1 /* kernel height */, 1 /* kernel width */,
1101 1 /* subsampling height */, 1 /* subsampling width */,
1102 1 /* dilation_height */, 1 /* dilation_width */,
1103 1 /* groups */,
1104 64 /* input channels per group */,
1105 384 /* output_channels_per_group */,
1106 64 /* input pixel stride */,
1107 384 /* output pixel stride */,
1108 w125.data(), w126.data(),
1109 0.0f /* output min */, 6.0f /* output max */,
1110 0 /* flags */,
1111 &op36);
1112 if (status != xnn_status_success) {
1113 std::cerr << "failed to create operation #36" << std::endl;
1114 return ExecutionPlan();
1115 }
1116 operators.emplace_back(op36, xnn_delete_operator);
1117
1118 xnn_operator_t op37 = nullptr;
1119 status = xnn_create_convolution2d_nhwc_f32(
1120 1 /* top padding */, 1 /* right padding */,
1121 1 /* bottom padding */, 1 /* left padding */,
1122 3 /* kernel height */, 3 /* kernel width */,
1123 1 /* subsampling height */, 1 /* subsampling width */,
1124 1 /* dilation_height */, 1 /* dilation_width */,
1125 384 /* groups */,
1126 1 /* input channels per group */,
1127 1 /* output_channels_per_group */,
1128 384 /* input pixel stride */,
1129 384 /* output pixel stride */,
1130 w127.data(), w128.data(),
1131 0.0f /* output min */, 6.0f /* output max */,
1132 0 /* flags */,
1133 &op37);
1134 if (status != xnn_status_success) {
1135 std::cerr << "failed to create operation #37" << std::endl;
1136 return ExecutionPlan();
1137 }
1138 operators.emplace_back(op37, xnn_delete_operator);
1139
1140 xnn_operator_t op38 = nullptr;
1141 status = xnn_create_convolution2d_nhwc_f32(
1142 0 /* top padding */, 0 /* right padding */,
1143 0 /* bottom padding */, 0 /* left padding */,
1144 1 /* kernel height */, 1 /* kernel width */,
1145 1 /* subsampling height */, 1 /* subsampling width */,
1146 1 /* dilation_height */, 1 /* dilation_width */,
1147 1 /* groups */,
1148 384 /* input channels per group */,
1149 96 /* output_channels_per_group */,
1150 384 /* input pixel stride */,
1151 96 /* output pixel stride */,
1152 w129.data(), w130.data(),
1153 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1154 0 /* flags */,
1155 &op38);
1156 if (status != xnn_status_success) {
1157 std::cerr << "failed to create operation #38" << std::endl;
1158 return ExecutionPlan();
1159 }
1160 operators.emplace_back(op38, xnn_delete_operator);
1161
1162 xnn_operator_t op39 = nullptr;
1163 status = xnn_create_convolution2d_nhwc_f32(
1164 0 /* top padding */, 0 /* right padding */,
1165 0 /* bottom padding */, 0 /* left padding */,
1166 1 /* kernel height */, 1 /* kernel width */,
1167 1 /* subsampling height */, 1 /* subsampling width */,
1168 1 /* dilation_height */, 1 /* dilation_width */,
1169 1 /* groups */,
1170 96 /* input channels per group */,
1171 576 /* output_channels_per_group */,
1172 96 /* input pixel stride */,
1173 576 /* output pixel stride */,
1174 w131.data(), w132.data(),
1175 0.0f /* output min */, 6.0f /* output max */,
1176 0 /* flags */,
1177 &op39);
1178 if (status != xnn_status_success) {
1179 std::cerr << "failed to create operation #39" << std::endl;
1180 return ExecutionPlan();
1181 }
1182 operators.emplace_back(op39, xnn_delete_operator);
1183
1184 xnn_operator_t op40 = nullptr;
1185 status = xnn_create_convolution2d_nhwc_f32(
1186 1 /* top padding */, 1 /* right padding */,
1187 1 /* bottom padding */, 1 /* left padding */,
1188 3 /* kernel height */, 3 /* kernel width */,
1189 1 /* subsampling height */, 1 /* subsampling width */,
1190 1 /* dilation_height */, 1 /* dilation_width */,
1191 576 /* groups */,
1192 1 /* input channels per group */,
1193 1 /* output_channels_per_group */,
1194 576 /* input pixel stride */,
1195 576 /* output pixel stride */,
1196 w133.data(), w134.data(),
1197 0.0f /* output min */, 6.0f /* output max */,
1198 0 /* flags */,
1199 &op40);
1200 if (status != xnn_status_success) {
1201 std::cerr << "failed to create operation #40" << std::endl;
1202 return ExecutionPlan();
1203 }
1204 operators.emplace_back(op40, xnn_delete_operator);
1205
1206 xnn_operator_t op41 = nullptr;
1207 status = xnn_create_convolution2d_nhwc_f32(
1208 0 /* top padding */, 0 /* right padding */,
1209 0 /* bottom padding */, 0 /* left padding */,
1210 1 /* kernel height */, 1 /* kernel width */,
1211 1 /* subsampling height */, 1 /* subsampling width */,
1212 1 /* dilation_height */, 1 /* dilation_width */,
1213 1 /* groups */,
1214 576 /* input channels per group */,
1215 96 /* output_channels_per_group */,
1216 576 /* input pixel stride */,
1217 96 /* output pixel stride */,
1218 w135.data(), w136.data(),
1219 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1220 0 /* flags */,
1221 &op41);
1222 if (status != xnn_status_success) {
1223 std::cerr << "failed to create operation #41" << std::endl;
1224 return ExecutionPlan();
1225 }
1226 operators.emplace_back(op41, xnn_delete_operator);
1227
1228 xnn_operator_t op42 = nullptr;
1229 status = xnn_create_add_nd_f32(
1230 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1231 0 /* flags */,
1232 &op42);
1233 if (status != xnn_status_success) {
1234 std::cerr << "failed to create operation #42" << std::endl;
1235 return ExecutionPlan();
1236 }
1237 operators.emplace_back(op42, xnn_delete_operator);
1238
1239 xnn_operator_t op43 = nullptr;
1240 status = xnn_create_convolution2d_nhwc_f32(
1241 0 /* top padding */, 0 /* right padding */,
1242 0 /* bottom padding */, 0 /* left padding */,
1243 1 /* kernel height */, 1 /* kernel width */,
1244 1 /* subsampling height */, 1 /* subsampling width */,
1245 1 /* dilation_height */, 1 /* dilation_width */,
1246 1 /* groups */,
1247 96 /* input channels per group */,
1248 576 /* output_channels_per_group */,
1249 96 /* input pixel stride */,
1250 576 /* output pixel stride */,
1251 w137.data(), w138.data(),
1252 0.0f /* output min */, 6.0f /* output max */,
1253 0 /* flags */,
1254 &op43);
1255 if (status != xnn_status_success) {
1256 std::cerr << "failed to create operation #43" << std::endl;
1257 return ExecutionPlan();
1258 }
1259 operators.emplace_back(op43, xnn_delete_operator);
1260
1261 xnn_operator_t op44 = nullptr;
1262 status = xnn_create_convolution2d_nhwc_f32(
1263 1 /* top padding */, 1 /* right padding */,
1264 1 /* bottom padding */, 1 /* left padding */,
1265 3 /* kernel height */, 3 /* kernel width */,
1266 1 /* subsampling height */, 1 /* subsampling width */,
1267 1 /* dilation_height */, 1 /* dilation_width */,
1268 576 /* groups */,
1269 1 /* input channels per group */,
1270 1 /* output_channels_per_group */,
1271 576 /* input pixel stride */,
1272 576 /* output pixel stride */,
1273 w139.data(), w140.data(),
1274 0.0f /* output min */, 6.0f /* output max */,
1275 0 /* flags */,
1276 &op44);
1277 if (status != xnn_status_success) {
1278 std::cerr << "failed to create operation #44" << std::endl;
1279 return ExecutionPlan();
1280 }
1281 operators.emplace_back(op44, xnn_delete_operator);
1282
1283 xnn_operator_t op45 = nullptr;
1284 status = xnn_create_convolution2d_nhwc_f32(
1285 0 /* top padding */, 0 /* right padding */,
1286 0 /* bottom padding */, 0 /* left padding */,
1287 1 /* kernel height */, 1 /* kernel width */,
1288 1 /* subsampling height */, 1 /* subsampling width */,
1289 1 /* dilation_height */, 1 /* dilation_width */,
1290 1 /* groups */,
1291 576 /* input channels per group */,
1292 96 /* output_channels_per_group */,
1293 576 /* input pixel stride */,
1294 96 /* output pixel stride */,
1295 w141.data(), w142.data(),
1296 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1297 0 /* flags */,
1298 &op45);
1299 if (status != xnn_status_success) {
1300 std::cerr << "failed to create operation #45" << std::endl;
1301 return ExecutionPlan();
1302 }
1303 operators.emplace_back(op45, xnn_delete_operator);
1304
1305 xnn_operator_t op46 = nullptr;
1306 status = xnn_create_add_nd_f32(
1307 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1308 0 /* flags */,
1309 &op46);
1310 if (status != xnn_status_success) {
1311 std::cerr << "failed to create operation #46" << std::endl;
1312 return ExecutionPlan();
1313 }
1314 operators.emplace_back(op46, xnn_delete_operator);
1315
1316 xnn_operator_t op47 = nullptr;
1317 status = xnn_create_convolution2d_nhwc_f32(
1318 0 /* top padding */, 0 /* right padding */,
1319 0 /* bottom padding */, 0 /* left padding */,
1320 1 /* kernel height */, 1 /* kernel width */,
1321 1 /* subsampling height */, 1 /* subsampling width */,
1322 1 /* dilation_height */, 1 /* dilation_width */,
1323 1 /* groups */,
1324 96 /* input channels per group */,
1325 576 /* output_channels_per_group */,
1326 96 /* input pixel stride */,
1327 576 /* output pixel stride */,
1328 w143.data(), w144.data(),
1329 0.0f /* output min */, 6.0f /* output max */,
1330 0 /* flags */,
1331 &op47);
1332 if (status != xnn_status_success) {
1333 std::cerr << "failed to create operation #47" << std::endl;
1334 return ExecutionPlan();
1335 }
1336 operators.emplace_back(op47, xnn_delete_operator);
1337
1338 xnn_operator_t op48 = nullptr;
1339 status = xnn_create_convolution2d_nhwc_f32(
1340 0 /* top padding */, 1 /* right padding */,
1341 1 /* bottom padding */, 0 /* left padding */,
1342 3 /* kernel height */, 3 /* kernel width */,
1343 2 /* subsampling height */, 2 /* subsampling width */,
1344 1 /* dilation_height */, 1 /* dilation_width */,
1345 576 /* groups */,
1346 1 /* input channels per group */,
1347 1 /* output_channels_per_group */,
1348 576 /* input pixel stride */,
1349 576 /* output pixel stride */,
1350 w145.data(), w146.data(),
1351 0.0f /* output min */, 6.0f /* output max */,
1352 0 /* flags */,
1353 &op48);
1354 if (status != xnn_status_success) {
1355 std::cerr << "failed to create operation #48" << std::endl;
1356 return ExecutionPlan();
1357 }
1358 operators.emplace_back(op48, xnn_delete_operator);
1359
1360 xnn_operator_t op49 = nullptr;
1361 status = xnn_create_convolution2d_nhwc_f32(
1362 0 /* top padding */, 0 /* right padding */,
1363 0 /* bottom padding */, 0 /* left padding */,
1364 1 /* kernel height */, 1 /* kernel width */,
1365 1 /* subsampling height */, 1 /* subsampling width */,
1366 1 /* dilation_height */, 1 /* dilation_width */,
1367 1 /* groups */,
1368 576 /* input channels per group */,
1369 160 /* output_channels_per_group */,
1370 576 /* input pixel stride */,
1371 160 /* output pixel stride */,
1372 w147.data(), w148.data(),
1373 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1374 0 /* flags */,
1375 &op49);
1376 if (status != xnn_status_success) {
1377 std::cerr << "failed to create operation #49" << std::endl;
1378 return ExecutionPlan();
1379 }
1380 operators.emplace_back(op49, xnn_delete_operator);
1381
1382 xnn_operator_t op50 = nullptr;
1383 status = xnn_create_convolution2d_nhwc_f32(
1384 0 /* top padding */, 0 /* right padding */,
1385 0 /* bottom padding */, 0 /* left padding */,
1386 1 /* kernel height */, 1 /* kernel width */,
1387 1 /* subsampling height */, 1 /* subsampling width */,
1388 1 /* dilation_height */, 1 /* dilation_width */,
1389 1 /* groups */,
1390 160 /* input channels per group */,
1391 960 /* output_channels_per_group */,
1392 160 /* input pixel stride */,
1393 960 /* output pixel stride */,
1394 w149.data(), w150.data(),
1395 0.0f /* output min */, 6.0f /* output max */,
1396 0 /* flags */,
1397 &op50);
1398 if (status != xnn_status_success) {
1399 std::cerr << "failed to create operation #50" << std::endl;
1400 return ExecutionPlan();
1401 }
1402 operators.emplace_back(op50, xnn_delete_operator);
1403
1404 xnn_operator_t op51 = nullptr;
1405 status = xnn_create_convolution2d_nhwc_f32(
1406 1 /* top padding */, 1 /* right padding */,
1407 1 /* bottom padding */, 1 /* left padding */,
1408 3 /* kernel height */, 3 /* kernel width */,
1409 1 /* subsampling height */, 1 /* subsampling width */,
1410 1 /* dilation_height */, 1 /* dilation_width */,
1411 960 /* groups */,
1412 1 /* input channels per group */,
1413 1 /* output_channels_per_group */,
1414 960 /* input pixel stride */,
1415 960 /* output pixel stride */,
1416 w151.data(), w152.data(),
1417 0.0f /* output min */, 6.0f /* output max */,
1418 0 /* flags */,
1419 &op51);
1420 if (status != xnn_status_success) {
1421 std::cerr << "failed to create operation #51" << std::endl;
1422 return ExecutionPlan();
1423 }
1424 operators.emplace_back(op51, xnn_delete_operator);
1425
1426 xnn_operator_t op52 = nullptr;
1427 status = xnn_create_convolution2d_nhwc_f32(
1428 0 /* top padding */, 0 /* right padding */,
1429 0 /* bottom padding */, 0 /* left padding */,
1430 1 /* kernel height */, 1 /* kernel width */,
1431 1 /* subsampling height */, 1 /* subsampling width */,
1432 1 /* dilation_height */, 1 /* dilation_width */,
1433 1 /* groups */,
1434 960 /* input channels per group */,
1435 160 /* output_channels_per_group */,
1436 960 /* input pixel stride */,
1437 160 /* output pixel stride */,
1438 w153.data(), w154.data(),
1439 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1440 0 /* flags */,
1441 &op52);
1442 if (status != xnn_status_success) {
1443 std::cerr << "failed to create operation #52" << std::endl;
1444 return ExecutionPlan();
1445 }
1446 operators.emplace_back(op52, xnn_delete_operator);
1447
1448 xnn_operator_t op53 = nullptr;
1449 status = xnn_create_add_nd_f32(
1450 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1451 0 /* flags */,
1452 &op53);
1453 if (status != xnn_status_success) {
1454 std::cerr << "failed to create operation #53" << std::endl;
1455 return ExecutionPlan();
1456 }
1457 operators.emplace_back(op53, xnn_delete_operator);
1458
1459 xnn_operator_t op54 = nullptr;
1460 status = xnn_create_convolution2d_nhwc_f32(
1461 0 /* top padding */, 0 /* right padding */,
1462 0 /* bottom padding */, 0 /* left padding */,
1463 1 /* kernel height */, 1 /* kernel width */,
1464 1 /* subsampling height */, 1 /* subsampling width */,
1465 1 /* dilation_height */, 1 /* dilation_width */,
1466 1 /* groups */,
1467 160 /* input channels per group */,
1468 960 /* output_channels_per_group */,
1469 160 /* input pixel stride */,
1470 960 /* output pixel stride */,
1471 w155.data(), w156.data(),
1472 0.0f /* output min */, 6.0f /* output max */,
1473 0 /* flags */,
1474 &op54);
1475 if (status != xnn_status_success) {
1476 std::cerr << "failed to create operation #54" << std::endl;
1477 return ExecutionPlan();
1478 }
1479 operators.emplace_back(op54, xnn_delete_operator);
1480
1481 xnn_operator_t op55 = nullptr;
1482 status = xnn_create_convolution2d_nhwc_f32(
1483 1 /* top padding */, 1 /* right padding */,
1484 1 /* bottom padding */, 1 /* left padding */,
1485 3 /* kernel height */, 3 /* kernel width */,
1486 1 /* subsampling height */, 1 /* subsampling width */,
1487 1 /* dilation_height */, 1 /* dilation_width */,
1488 960 /* groups */,
1489 1 /* input channels per group */,
1490 1 /* output_channels_per_group */,
1491 960 /* input pixel stride */,
1492 960 /* output pixel stride */,
1493 w157.data(), w158.data(),
1494 0.0f /* output min */, 6.0f /* output max */,
1495 0 /* flags */,
1496 &op55);
1497 if (status != xnn_status_success) {
1498 std::cerr << "failed to create operation #55" << std::endl;
1499 return ExecutionPlan();
1500 }
1501 operators.emplace_back(op55, xnn_delete_operator);
1502
1503 xnn_operator_t op56 = nullptr;
1504 status = xnn_create_convolution2d_nhwc_f32(
1505 0 /* top padding */, 0 /* right padding */,
1506 0 /* bottom padding */, 0 /* left padding */,
1507 1 /* kernel height */, 1 /* kernel width */,
1508 1 /* subsampling height */, 1 /* subsampling width */,
1509 1 /* dilation_height */, 1 /* dilation_width */,
1510 1 /* groups */,
1511 960 /* input channels per group */,
1512 160 /* output_channels_per_group */,
1513 960 /* input pixel stride */,
1514 160 /* output pixel stride */,
1515 w159.data(), w160.data(),
1516 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1517 0 /* flags */,
1518 &op56);
1519 if (status != xnn_status_success) {
1520 std::cerr << "failed to create operation #56" << std::endl;
1521 return ExecutionPlan();
1522 }
1523 operators.emplace_back(op56, xnn_delete_operator);
1524
1525 xnn_operator_t op57 = nullptr;
1526 status = xnn_create_add_nd_f32(
1527 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1528 0 /* flags */,
1529 &op57);
1530 if (status != xnn_status_success) {
1531 std::cerr << "failed to create operation #57" << std::endl;
1532 return ExecutionPlan();
1533 }
1534 operators.emplace_back(op57, xnn_delete_operator);
1535
1536 xnn_operator_t op58 = nullptr;
1537 status = xnn_create_convolution2d_nhwc_f32(
1538 0 /* top padding */, 0 /* right padding */,
1539 0 /* bottom padding */, 0 /* left padding */,
1540 1 /* kernel height */, 1 /* kernel width */,
1541 1 /* subsampling height */, 1 /* subsampling width */,
1542 1 /* dilation_height */, 1 /* dilation_width */,
1543 1 /* groups */,
1544 160 /* input channels per group */,
1545 960 /* output_channels_per_group */,
1546 160 /* input pixel stride */,
1547 960 /* output pixel stride */,
1548 w161.data(), w162.data(),
1549 0.0f /* output min */, 6.0f /* output max */,
1550 0 /* flags */,
1551 &op58);
1552 if (status != xnn_status_success) {
1553 std::cerr << "failed to create operation #58" << std::endl;
1554 return ExecutionPlan();
1555 }
1556 operators.emplace_back(op58, xnn_delete_operator);
1557
1558 xnn_operator_t op59 = nullptr;
1559 status = xnn_create_convolution2d_nhwc_f32(
1560 1 /* top padding */, 1 /* right padding */,
1561 1 /* bottom padding */, 1 /* left padding */,
1562 3 /* kernel height */, 3 /* kernel width */,
1563 1 /* subsampling height */, 1 /* subsampling width */,
1564 1 /* dilation_height */, 1 /* dilation_width */,
1565 960 /* groups */,
1566 1 /* input channels per group */,
1567 1 /* output_channels_per_group */,
1568 960 /* input pixel stride */,
1569 960 /* output pixel stride */,
1570 w163.data(), w164.data(),
1571 0.0f /* output min */, 6.0f /* output max */,
1572 0 /* flags */,
1573 &op59);
1574 if (status != xnn_status_success) {
1575 std::cerr << "failed to create operation #59" << std::endl;
1576 return ExecutionPlan();
1577 }
1578 operators.emplace_back(op59, xnn_delete_operator);
1579
1580 xnn_operator_t op60 = nullptr;
1581 status = xnn_create_convolution2d_nhwc_f32(
1582 0 /* top padding */, 0 /* right padding */,
1583 0 /* bottom padding */, 0 /* left padding */,
1584 1 /* kernel height */, 1 /* kernel width */,
1585 1 /* subsampling height */, 1 /* subsampling width */,
1586 1 /* dilation_height */, 1 /* dilation_width */,
1587 1 /* groups */,
1588 960 /* input channels per group */,
1589 320 /* output_channels_per_group */,
1590 960 /* input pixel stride */,
1591 320 /* output pixel stride */,
1592 w165.data(), w166.data(),
1593 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1594 0 /* flags */,
1595 &op60);
1596 if (status != xnn_status_success) {
1597 std::cerr << "failed to create operation #60" << std::endl;
1598 return ExecutionPlan();
1599 }
1600 operators.emplace_back(op60, xnn_delete_operator);
1601
1602 xnn_operator_t op61 = nullptr;
1603 status = xnn_create_convolution2d_nhwc_f32(
1604 0 /* top padding */, 0 /* right padding */,
1605 0 /* bottom padding */, 0 /* left padding */,
1606 1 /* kernel height */, 1 /* kernel width */,
1607 1 /* subsampling height */, 1 /* subsampling width */,
1608 1 /* dilation_height */, 1 /* dilation_width */,
1609 1 /* groups */,
1610 320 /* input channels per group */,
1611 1280 /* output_channels_per_group */,
1612 320 /* input pixel stride */,
1613 1280 /* output pixel stride */,
1614 w167.data(), w168.data(),
1615 0.0f /* output min */, 6.0f /* output max */,
1616 0 /* flags */,
1617 &op61);
1618 if (status != xnn_status_success) {
1619 std::cerr << "failed to create operation #61" << std::endl;
1620 return ExecutionPlan();
1621 }
1622 operators.emplace_back(op61, xnn_delete_operator);
1623
1624 xnn_operator_t op62 = nullptr;
1625 status = xnn_create_global_average_pooling_nwc_f32(
1626 1280 /* channels */, 1280 /* input stride */, 1280 /* output stride */,
1627 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1628 0 /* flags */,
1629 &op62);
1630 if (status != xnn_status_success) {
1631 std::cerr << "failed to create operation #62" << std::endl;
1632 return ExecutionPlan();
1633 }
1634 operators.emplace_back(op62, xnn_delete_operator);
1635
1636 xnn_operator_t op63 = nullptr;
1637 status = xnn_create_convolution2d_nhwc_f32(
1638 0 /* top padding */, 0 /* right padding */,
1639 0 /* bottom padding */, 0 /* left padding */,
1640 1 /* kernel height */, 1 /* kernel width */,
1641 1 /* subsampling height */, 1 /* subsampling width */,
1642 1 /* dilation_height */, 1 /* dilation_width */,
1643 1 /* groups */,
1644 1280 /* input channels per group */,
1645 1001 /* output_channels_per_group */,
1646 1280 /* input pixel stride */,
1647 1001 /* output pixel stride */,
1648 w169.data(), w170.data(),
1649 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1650 0 /* flags */,
1651 &op63);
1652 if (status != xnn_status_success) {
1653 std::cerr << "failed to create operation #63" << std::endl;
1654 return ExecutionPlan();
1655 }
1656 operators.emplace_back(op63, xnn_delete_operator);
1657
1658
1659
1660 status = xnn_setup_convolution2d_nhwc_f32(
1661 op0,
1662 1 /* batch size */, 224 /* input height */, 224 /* input width */,
1663 v0.data() /* input */, v1.data() /* output */,
1664 threadpool /* threadpool */);
1665 if (status != xnn_status_success) {
1666 std::cerr << "failed to setup operation #0" << std::endl;
1667 return ExecutionPlan();
1668 }
1669
1670 status = xnn_setup_convolution2d_nhwc_f32(
1671 op1,
1672 1 /* batch size */, 112 /* input height */, 112 /* input width */,
1673 v1.data() /* input */, v2.data() /* output */,
1674 threadpool /* threadpool */);
1675 if (status != xnn_status_success) {
1676 std::cerr << "failed to setup operation #1" << std::endl;
1677 return ExecutionPlan();
1678 }
1679
1680 status = xnn_setup_convolution2d_nhwc_f32(
1681 op2,
1682 1 /* batch size */, 112 /* input height */, 112 /* input width */,
1683 v2.data() /* input */, v3.data() /* output */,
1684 threadpool /* threadpool */);
1685 if (status != xnn_status_success) {
1686 std::cerr << "failed to setup operation #2" << std::endl;
1687 return ExecutionPlan();
1688 }
1689
1690 status = xnn_setup_convolution2d_nhwc_f32(
1691 op3,
1692 1 /* batch size */, 112 /* input height */, 112 /* input width */,
1693 v3.data() /* input */, v4.data() /* output */,
1694 threadpool /* threadpool */);
1695 if (status != xnn_status_success) {
1696 std::cerr << "failed to setup operation #3" << std::endl;
1697 return ExecutionPlan();
1698 }
1699
1700 status = xnn_setup_convolution2d_nhwc_f32(
1701 op4,
1702 1 /* batch size */, 112 /* input height */, 112 /* input width */,
1703 v4.data() /* input */, v5.data() /* output */,
1704 threadpool /* threadpool */);
1705 if (status != xnn_status_success) {
1706 std::cerr << "failed to setup operation #4" << std::endl;
1707 return ExecutionPlan();
1708 }
1709
1710 status = xnn_setup_convolution2d_nhwc_f32(
1711 op5,
1712 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1713 v5.data() /* input */, v6.data() /* output */,
1714 threadpool /* threadpool */);
1715 if (status != xnn_status_success) {
1716 std::cerr << "failed to setup operation #5" << std::endl;
1717 return ExecutionPlan();
1718 }
1719
1720 status = xnn_setup_convolution2d_nhwc_f32(
1721 op6,
1722 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1723 v6.data() /* input */, v7.data() /* output */,
1724 threadpool /* threadpool */);
1725 if (status != xnn_status_success) {
1726 std::cerr << "failed to setup operation #6" << std::endl;
1727 return ExecutionPlan();
1728 }
1729
1730 status = xnn_setup_convolution2d_nhwc_f32(
1731 op7,
1732 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1733 v7.data() /* input */, v8.data() /* output */,
1734 threadpool /* threadpool */);
1735 if (status != xnn_status_success) {
1736 std::cerr << "failed to setup operation #7" << std::endl;
1737 return ExecutionPlan();
1738 }
1739
1740 status = xnn_setup_convolution2d_nhwc_f32(
1741 op8,
1742 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1743 v8.data() /* input */, v9.data() /* output */,
1744 threadpool /* threadpool */);
1745 if (status != xnn_status_success) {
1746 std::cerr << "failed to setup operation #8" << std::endl;
1747 return ExecutionPlan();
1748 }
1749
1750 {
1751 const size_t a_shape[] = { 1, 56, 56, 24 };
1752 const size_t b_shape[] = { 1, 56, 56, 24 };
1753 status = xnn_setup_add_nd_f32(
1754 op9,
1755 4, a_shape, 4, b_shape,
1756 v9.data() /* a */, v6.data() /* b */, v10.data() /* output */,
1757 threadpool /* threadpool */);
1758 }
1759 if (status != xnn_status_success) {
1760 std::cerr << "failed to setup operation #9" << std::endl;
1761 return ExecutionPlan();
1762 }
1763
1764 status = xnn_setup_convolution2d_nhwc_f32(
1765 op10,
1766 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1767 v10.data() /* input */, v11.data() /* output */,
1768 threadpool /* threadpool */);
1769 if (status != xnn_status_success) {
1770 std::cerr << "failed to setup operation #10" << std::endl;
1771 return ExecutionPlan();
1772 }
1773
1774 status = xnn_setup_convolution2d_nhwc_f32(
1775 op11,
1776 1 /* batch size */, 56 /* input height */, 56 /* input width */,
1777 v11.data() /* input */, v12.data() /* output */,
1778 threadpool /* threadpool */);
1779 if (status != xnn_status_success) {
1780 std::cerr << "failed to setup operation #11" << std::endl;
1781 return ExecutionPlan();
1782 }
1783
1784 status = xnn_setup_convolution2d_nhwc_f32(
1785 op12,
1786 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1787 v12.data() /* input */, v13.data() /* output */,
1788 threadpool /* threadpool */);
1789 if (status != xnn_status_success) {
1790 std::cerr << "failed to setup operation #12" << std::endl;
1791 return ExecutionPlan();
1792 }
1793
1794 status = xnn_setup_convolution2d_nhwc_f32(
1795 op13,
1796 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1797 v13.data() /* input */, v14.data() /* output */,
1798 threadpool /* threadpool */);
1799 if (status != xnn_status_success) {
1800 std::cerr << "failed to setup operation #13" << std::endl;
1801 return ExecutionPlan();
1802 }
1803
1804 status = xnn_setup_convolution2d_nhwc_f32(
1805 op14,
1806 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1807 v14.data() /* input */, v15.data() /* output */,
1808 threadpool /* threadpool */);
1809 if (status != xnn_status_success) {
1810 std::cerr << "failed to setup operation #14" << std::endl;
1811 return ExecutionPlan();
1812 }
1813
1814 status = xnn_setup_convolution2d_nhwc_f32(
1815 op15,
1816 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1817 v15.data() /* input */, v16.data() /* output */,
1818 threadpool /* threadpool */);
1819 if (status != xnn_status_success) {
1820 std::cerr << "failed to setup operation #15" << std::endl;
1821 return ExecutionPlan();
1822 }
1823
1824 {
1825 const size_t a_shape[] = { 1, 28, 28, 32 };
1826 const size_t b_shape[] = { 1, 28, 28, 32 };
1827 status = xnn_setup_add_nd_f32(
1828 op16,
1829 4, a_shape, 4, b_shape,
1830 v16.data() /* a */, v13.data() /* b */, v17.data() /* output */,
1831 threadpool /* threadpool */);
1832 }
1833 if (status != xnn_status_success) {
1834 std::cerr << "failed to setup operation #16" << std::endl;
1835 return ExecutionPlan();
1836 }
1837
1838 status = xnn_setup_convolution2d_nhwc_f32(
1839 op17,
1840 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1841 v17.data() /* input */, v18.data() /* output */,
1842 threadpool /* threadpool */);
1843 if (status != xnn_status_success) {
1844 std::cerr << "failed to setup operation #17" << std::endl;
1845 return ExecutionPlan();
1846 }
1847
1848 status = xnn_setup_convolution2d_nhwc_f32(
1849 op18,
1850 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1851 v18.data() /* input */, v19.data() /* output */,
1852 threadpool /* threadpool */);
1853 if (status != xnn_status_success) {
1854 std::cerr << "failed to setup operation #18" << std::endl;
1855 return ExecutionPlan();
1856 }
1857
1858 status = xnn_setup_convolution2d_nhwc_f32(
1859 op19,
1860 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1861 v19.data() /* input */, v20.data() /* output */,
1862 threadpool /* threadpool */);
1863 if (status != xnn_status_success) {
1864 std::cerr << "failed to setup operation #19" << std::endl;
1865 return ExecutionPlan();
1866 }
1867
1868 {
1869 const size_t a_shape[] = { 1, 28, 28, 32 };
1870 const size_t b_shape[] = { 1, 28, 28, 32 };
1871 status = xnn_setup_add_nd_f32(
1872 op20,
1873 4, a_shape, 4, b_shape,
1874 v20.data() /* a */, v17.data() /* b */, v21.data() /* output */,
1875 threadpool /* threadpool */);
1876 }
1877 if (status != xnn_status_success) {
1878 std::cerr << "failed to setup operation #20" << std::endl;
1879 return ExecutionPlan();
1880 }
1881
1882 status = xnn_setup_convolution2d_nhwc_f32(
1883 op21,
1884 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1885 v21.data() /* input */, v22.data() /* output */,
1886 threadpool /* threadpool */);
1887 if (status != xnn_status_success) {
1888 std::cerr << "failed to setup operation #21" << std::endl;
1889 return ExecutionPlan();
1890 }
1891
1892 status = xnn_setup_convolution2d_nhwc_f32(
1893 op22,
1894 1 /* batch size */, 28 /* input height */, 28 /* input width */,
1895 v22.data() /* input */, v23.data() /* output */,
1896 threadpool /* threadpool */);
1897 if (status != xnn_status_success) {
1898 std::cerr << "failed to setup operation #22" << std::endl;
1899 return ExecutionPlan();
1900 }
1901
1902 status = xnn_setup_convolution2d_nhwc_f32(
1903 op23,
1904 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1905 v23.data() /* input */, v24.data() /* output */,
1906 threadpool /* threadpool */);
1907 if (status != xnn_status_success) {
1908 std::cerr << "failed to setup operation #23" << std::endl;
1909 return ExecutionPlan();
1910 }
1911
1912 status = xnn_setup_convolution2d_nhwc_f32(
1913 op24,
1914 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1915 v24.data() /* input */, v25.data() /* output */,
1916 threadpool /* threadpool */);
1917 if (status != xnn_status_success) {
1918 std::cerr << "failed to setup operation #24" << std::endl;
1919 return ExecutionPlan();
1920 }
1921
1922 status = xnn_setup_convolution2d_nhwc_f32(
1923 op25,
1924 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1925 v25.data() /* input */, v26.data() /* output */,
1926 threadpool /* threadpool */);
1927 if (status != xnn_status_success) {
1928 std::cerr << "failed to setup operation #25" << std::endl;
1929 return ExecutionPlan();
1930 }
1931
1932 status = xnn_setup_convolution2d_nhwc_f32(
1933 op26,
1934 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1935 v26.data() /* input */, v27.data() /* output */,
1936 threadpool /* threadpool */);
1937 if (status != xnn_status_success) {
1938 std::cerr << "failed to setup operation #26" << std::endl;
1939 return ExecutionPlan();
1940 }
1941
1942 {
1943 const size_t a_shape[] = { 1, 14, 14, 64 };
1944 const size_t b_shape[] = { 1, 14, 14, 64 };
1945 status = xnn_setup_add_nd_f32(
1946 op27,
1947 4, a_shape, 4, b_shape,
1948 v27.data() /* a */, v24.data() /* b */, v28.data() /* output */,
1949 threadpool /* threadpool */);
1950 }
1951 if (status != xnn_status_success) {
1952 std::cerr << "failed to setup operation #27" << std::endl;
1953 return ExecutionPlan();
1954 }
1955
1956 status = xnn_setup_convolution2d_nhwc_f32(
1957 op28,
1958 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1959 v28.data() /* input */, v29.data() /* output */,
1960 threadpool /* threadpool */);
1961 if (status != xnn_status_success) {
1962 std::cerr << "failed to setup operation #28" << std::endl;
1963 return ExecutionPlan();
1964 }
1965
1966 status = xnn_setup_convolution2d_nhwc_f32(
1967 op29,
1968 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1969 v29.data() /* input */, v30.data() /* output */,
1970 threadpool /* threadpool */);
1971 if (status != xnn_status_success) {
1972 std::cerr << "failed to setup operation #29" << std::endl;
1973 return ExecutionPlan();
1974 }
1975
1976 status = xnn_setup_convolution2d_nhwc_f32(
1977 op30,
1978 1 /* batch size */, 14 /* input height */, 14 /* input width */,
1979 v30.data() /* input */, v31.data() /* output */,
1980 threadpool /* threadpool */);
1981 if (status != xnn_status_success) {
1982 std::cerr << "failed to setup operation #30" << std::endl;
1983 return ExecutionPlan();
1984 }
1985
1986 {
1987 const size_t a_shape[] = { 1, 14, 14, 64 };
1988 const size_t b_shape[] = { 1, 14, 14, 64 };
1989 status = xnn_setup_add_nd_f32(
1990 op31,
1991 4, a_shape, 4, b_shape,
1992 v31.data() /* a */, v28.data() /* b */, v32.data() /* output */,
1993 threadpool /* threadpool */);
1994 }
1995 if (status != xnn_status_success) {
1996 std::cerr << "failed to setup operation #31" << std::endl;
1997 return ExecutionPlan();
1998 }
1999
2000 status = xnn_setup_convolution2d_nhwc_f32(
2001 op32,
2002 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2003 v32.data() /* input */, v33.data() /* output */,
2004 threadpool /* threadpool */);
2005 if (status != xnn_status_success) {
2006 std::cerr << "failed to setup operation #32" << std::endl;
2007 return ExecutionPlan();
2008 }
2009
2010 status = xnn_setup_convolution2d_nhwc_f32(
2011 op33,
2012 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2013 v33.data() /* input */, v34.data() /* output */,
2014 threadpool /* threadpool */);
2015 if (status != xnn_status_success) {
2016 std::cerr << "failed to setup operation #33" << std::endl;
2017 return ExecutionPlan();
2018 }
2019
2020 status = xnn_setup_convolution2d_nhwc_f32(
2021 op34,
2022 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2023 v34.data() /* input */, v35.data() /* output */,
2024 threadpool /* threadpool */);
2025 if (status != xnn_status_success) {
2026 std::cerr << "failed to setup operation #34" << std::endl;
2027 return ExecutionPlan();
2028 }
2029
2030 {
2031 const size_t a_shape[] = { 1, 14, 14, 64 };
2032 const size_t b_shape[] = { 1, 14, 14, 64 };
2033 status = xnn_setup_add_nd_f32(
2034 op35,
2035 4, a_shape, 4, b_shape,
2036 v35.data() /* a */, v32.data() /* b */, v36.data() /* output */,
2037 threadpool /* threadpool */);
2038 }
2039 if (status != xnn_status_success) {
2040 std::cerr << "failed to setup operation #35" << std::endl;
2041 return ExecutionPlan();
2042 }
2043
2044 status = xnn_setup_convolution2d_nhwc_f32(
2045 op36,
2046 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2047 v36.data() /* input */, v37.data() /* output */,
2048 threadpool /* threadpool */);
2049 if (status != xnn_status_success) {
2050 std::cerr << "failed to setup operation #36" << std::endl;
2051 return ExecutionPlan();
2052 }
2053
2054 status = xnn_setup_convolution2d_nhwc_f32(
2055 op37,
2056 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2057 v37.data() /* input */, v38.data() /* output */,
2058 threadpool /* threadpool */);
2059 if (status != xnn_status_success) {
2060 std::cerr << "failed to setup operation #37" << std::endl;
2061 return ExecutionPlan();
2062 }
2063
2064 status = xnn_setup_convolution2d_nhwc_f32(
2065 op38,
2066 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2067 v38.data() /* input */, v39.data() /* output */,
2068 threadpool /* threadpool */);
2069 if (status != xnn_status_success) {
2070 std::cerr << "failed to setup operation #38" << std::endl;
2071 return ExecutionPlan();
2072 }
2073
2074 status = xnn_setup_convolution2d_nhwc_f32(
2075 op39,
2076 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2077 v39.data() /* input */, v40.data() /* output */,
2078 threadpool /* threadpool */);
2079 if (status != xnn_status_success) {
2080 std::cerr << "failed to setup operation #39" << std::endl;
2081 return ExecutionPlan();
2082 }
2083
2084 status = xnn_setup_convolution2d_nhwc_f32(
2085 op40,
2086 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2087 v40.data() /* input */, v41.data() /* output */,
2088 threadpool /* threadpool */);
2089 if (status != xnn_status_success) {
2090 std::cerr << "failed to setup operation #40" << std::endl;
2091 return ExecutionPlan();
2092 }
2093
2094 status = xnn_setup_convolution2d_nhwc_f32(
2095 op41,
2096 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2097 v41.data() /* input */, v42.data() /* output */,
2098 threadpool /* threadpool */);
2099 if (status != xnn_status_success) {
2100 std::cerr << "failed to setup operation #41" << std::endl;
2101 return ExecutionPlan();
2102 }
2103
2104 {
2105 const size_t a_shape[] = { 1, 14, 14, 96 };
2106 const size_t b_shape[] = { 1, 14, 14, 96 };
2107 status = xnn_setup_add_nd_f32(
2108 op42,
2109 4, a_shape, 4, b_shape,
2110 v42.data() /* a */, v39.data() /* b */, v43.data() /* output */,
2111 threadpool /* threadpool */);
2112 }
2113 if (status != xnn_status_success) {
2114 std::cerr << "failed to setup operation #42" << std::endl;
2115 return ExecutionPlan();
2116 }
2117
2118 status = xnn_setup_convolution2d_nhwc_f32(
2119 op43,
2120 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2121 v43.data() /* input */, v44.data() /* output */,
2122 threadpool /* threadpool */);
2123 if (status != xnn_status_success) {
2124 std::cerr << "failed to setup operation #43" << std::endl;
2125 return ExecutionPlan();
2126 }
2127
2128 status = xnn_setup_convolution2d_nhwc_f32(
2129 op44,
2130 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2131 v44.data() /* input */, v45.data() /* output */,
2132 threadpool /* threadpool */);
2133 if (status != xnn_status_success) {
2134 std::cerr << "failed to setup operation #44" << std::endl;
2135 return ExecutionPlan();
2136 }
2137
2138 status = xnn_setup_convolution2d_nhwc_f32(
2139 op45,
2140 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2141 v45.data() /* input */, v46.data() /* output */,
2142 threadpool /* threadpool */);
2143 if (status != xnn_status_success) {
2144 std::cerr << "failed to setup operation #45" << std::endl;
2145 return ExecutionPlan();
2146 }
2147
2148 {
2149 const size_t a_shape[] = { 1, 14, 14, 96 };
2150 const size_t b_shape[] = { 1, 14, 14, 96 };
2151 status = xnn_setup_add_nd_f32(
2152 op46,
2153 4, a_shape, 4, b_shape,
2154 v46.data() /* a */, v43.data() /* b */, v47.data() /* output */,
2155 threadpool /* threadpool */);
2156 }
2157 if (status != xnn_status_success) {
2158 std::cerr << "failed to setup operation #46" << std::endl;
2159 return ExecutionPlan();
2160 }
2161
2162 status = xnn_setup_convolution2d_nhwc_f32(
2163 op47,
2164 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2165 v47.data() /* input */, v48.data() /* output */,
2166 threadpool /* threadpool */);
2167 if (status != xnn_status_success) {
2168 std::cerr << "failed to setup operation #47" << std::endl;
2169 return ExecutionPlan();
2170 }
2171
2172 status = xnn_setup_convolution2d_nhwc_f32(
2173 op48,
2174 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2175 v48.data() /* input */, v49.data() /* output */,
2176 threadpool /* threadpool */);
2177 if (status != xnn_status_success) {
2178 std::cerr << "failed to setup operation #48" << std::endl;
2179 return ExecutionPlan();
2180 }
2181
2182 status = xnn_setup_convolution2d_nhwc_f32(
2183 op49,
2184 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2185 v49.data() /* input */, v50.data() /* output */,
2186 threadpool /* threadpool */);
2187 if (status != xnn_status_success) {
2188 std::cerr << "failed to setup operation #49" << std::endl;
2189 return ExecutionPlan();
2190 }
2191
2192 status = xnn_setup_convolution2d_nhwc_f32(
2193 op50,
2194 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2195 v50.data() /* input */, v51.data() /* output */,
2196 threadpool /* threadpool */);
2197 if (status != xnn_status_success) {
2198 std::cerr << "failed to setup operation #50" << std::endl;
2199 return ExecutionPlan();
2200 }
2201
2202 status = xnn_setup_convolution2d_nhwc_f32(
2203 op51,
2204 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2205 v51.data() /* input */, v52.data() /* output */,
2206 threadpool /* threadpool */);
2207 if (status != xnn_status_success) {
2208 std::cerr << "failed to setup operation #51" << std::endl;
2209 return ExecutionPlan();
2210 }
2211
2212 status = xnn_setup_convolution2d_nhwc_f32(
2213 op52,
2214 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2215 v52.data() /* input */, v53.data() /* output */,
2216 threadpool /* threadpool */);
2217 if (status != xnn_status_success) {
2218 std::cerr << "failed to setup operation #52" << std::endl;
2219 return ExecutionPlan();
2220 }
2221
2222 {
2223 const size_t a_shape[] = { 1, 7, 7, 160 };
2224 const size_t b_shape[] = { 1, 7, 7, 160 };
2225 status = xnn_setup_add_nd_f32(
2226 op53,
2227 4, a_shape, 4, b_shape,
2228 v53.data() /* a */, v50.data() /* b */, v54.data() /* output */,
2229 threadpool /* threadpool */);
2230 }
2231 if (status != xnn_status_success) {
2232 std::cerr << "failed to setup operation #53" << std::endl;
2233 return ExecutionPlan();
2234 }
2235
2236 status = xnn_setup_convolution2d_nhwc_f32(
2237 op54,
2238 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2239 v54.data() /* input */, v55.data() /* output */,
2240 threadpool /* threadpool */);
2241 if (status != xnn_status_success) {
2242 std::cerr << "failed to setup operation #54" << std::endl;
2243 return ExecutionPlan();
2244 }
2245
2246 status = xnn_setup_convolution2d_nhwc_f32(
2247 op55,
2248 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2249 v55.data() /* input */, v56.data() /* output */,
2250 threadpool /* threadpool */);
2251 if (status != xnn_status_success) {
2252 std::cerr << "failed to setup operation #55" << std::endl;
2253 return ExecutionPlan();
2254 }
2255
2256 status = xnn_setup_convolution2d_nhwc_f32(
2257 op56,
2258 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2259 v56.data() /* input */, v57.data() /* output */,
2260 threadpool /* threadpool */);
2261 if (status != xnn_status_success) {
2262 std::cerr << "failed to setup operation #56" << std::endl;
2263 return ExecutionPlan();
2264 }
2265
2266 {
2267 const size_t a_shape[] = { 1, 7, 7, 160 };
2268 const size_t b_shape[] = { 1, 7, 7, 160 };
2269 status = xnn_setup_add_nd_f32(
2270 op57,
2271 4, a_shape, 4, b_shape,
2272 v57.data() /* a */, v54.data() /* b */, v58.data() /* output */,
2273 threadpool /* threadpool */);
2274 }
2275 if (status != xnn_status_success) {
2276 std::cerr << "failed to setup operation #57" << std::endl;
2277 return ExecutionPlan();
2278 }
2279
2280 status = xnn_setup_convolution2d_nhwc_f32(
2281 op58,
2282 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2283 v58.data() /* input */, v59.data() /* output */,
2284 threadpool /* threadpool */);
2285 if (status != xnn_status_success) {
2286 std::cerr << "failed to setup operation #58" << std::endl;
2287 return ExecutionPlan();
2288 }
2289
2290 status = xnn_setup_convolution2d_nhwc_f32(
2291 op59,
2292 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2293 v59.data() /* input */, v60.data() /* output */,
2294 threadpool /* threadpool */);
2295 if (status != xnn_status_success) {
2296 std::cerr << "failed to setup operation #59" << std::endl;
2297 return ExecutionPlan();
2298 }
2299
2300 status = xnn_setup_convolution2d_nhwc_f32(
2301 op60,
2302 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2303 v60.data() /* input */, v61.data() /* output */,
2304 threadpool /* threadpool */);
2305 if (status != xnn_status_success) {
2306 std::cerr << "failed to setup operation #60" << std::endl;
2307 return ExecutionPlan();
2308 }
2309
2310 status = xnn_setup_convolution2d_nhwc_f32(
2311 op61,
2312 1 /* batch size */, 7 /* input height */, 7 /* input width */,
2313 v61.data() /* input */, v62.data() /* output */,
2314 threadpool /* threadpool */);
2315 if (status != xnn_status_success) {
2316 std::cerr << "failed to setup operation #61" << std::endl;
2317 return ExecutionPlan();
2318 }
2319
2320 status = xnn_setup_global_average_pooling_nwc_f32(
2321 op62,
2322 1 /* batch size */, 49 /* width */,
2323 v62.data() /* input */, v63.data() /* output */,
2324 threadpool /* threadpool */);
2325 if (status != xnn_status_success) {
2326 std::cerr << "failed to setup operation #62" << std::endl;
2327 return ExecutionPlan();
2328 }
2329
2330 status = xnn_setup_convolution2d_nhwc_f32(
2331 op63,
2332 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2333 v63.data() /* input */, v64.data() /* output */,
2334 threadpool /* threadpool */);
2335 if (status != xnn_status_success) {
2336 std::cerr << "failed to setup operation #63" << std::endl;
2337 return ExecutionPlan();
2338 }
2339
2340 #pragma clang diagnostic push
2341 #pragma clang diagnostic ignored "-Wpessimizing-move"
2342 return operators;
2343 #pragma clang diagnostic pop
2344 }
2345
2346 } // namespace models
2347