1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <xnnpack.h>
7
8 #include <array>
9 #include <algorithm>
10 #include <functional>
11 #include <iostream>
12 #include <limits>
13 #include <random>
14
15 #include "models/models.h"
16
17 namespace models {
18
FP32MobileNetV3Large(pthreadpool_t threadpool)19 ExecutionPlan FP32MobileNetV3Large(pthreadpool_t threadpool) {
20 alignas(16) static std::array<float, 150528> v0;
21 alignas(16) static std::array<float, 200704> v1;
22 alignas(16) static std::array<float, 200704> v2;
23 alignas(16) static std::array<float, 200704> v3;
24 alignas(16) static std::array<float, 200704> v4;
25 alignas(16) static std::array<float, 200704> v5;
26 alignas(16) static std::array<float, 802816> v6;
27 alignas(16) static std::array<float, 200704> v7;
28 alignas(16) static std::array<float, 75264> v8;
29 alignas(16) static std::array<float, 225792> v9;
30 alignas(16) static std::array<float, 225792> v10;
31 alignas(16) static std::array<float, 75264> v11;
32 alignas(16) static std::array<float, 75264> v12;
33 alignas(16) static std::array<float, 225792> v13;
34 alignas(16) static std::array<float, 56448> v14;
35 alignas(16) static std::array<float, 72> v15;
36 alignas(16) static std::array<float, 24> v16;
37 alignas(16) static std::array<float, 72> v17;
38 alignas(16) static std::array<float, 56448> v18;
39 alignas(16) static std::array<float, 31360> v19;
40 alignas(16) static std::array<float, 94080> v20;
41 alignas(16) static std::array<float, 94080> v21;
42 alignas(16) static std::array<float, 120> v22;
43 alignas(16) static std::array<float, 32> v23;
44 alignas(16) static std::array<float, 120> v24;
45 alignas(16) static std::array<float, 94080> v25;
46 alignas(16) static std::array<float, 31360> v26;
47 alignas(16) static std::array<float, 31360> v27;
48 alignas(16) static std::array<float, 94080> v28;
49 alignas(16) static std::array<float, 94080> v29;
50 alignas(16) static std::array<float, 120> v30;
51 alignas(16) static std::array<float, 32> v31;
52 alignas(16) static std::array<float, 120> v32;
53 alignas(16) static std::array<float, 94080> v33;
54 alignas(16) static std::array<float, 31360> v34;
55 alignas(16) static std::array<float, 31360> v35;
56 alignas(16) static std::array<float, 188160> v36;
57 alignas(16) static std::array<float, 188160> v37;
58 alignas(16) static std::array<float, 47040> v38;
59 alignas(16) static std::array<float, 47040> v39;
60 alignas(16) static std::array<float, 15680> v40;
61 alignas(16) static std::array<float, 39200> v41;
62 alignas(16) static std::array<float, 39200> v42;
63 alignas(16) static std::array<float, 39200> v43;
64 alignas(16) static std::array<float, 39200> v44;
65 alignas(16) static std::array<float, 15680> v45;
66 alignas(16) static std::array<float, 15680> v46;
67 alignas(16) static std::array<float, 36064> v47;
68 alignas(16) static std::array<float, 36064> v48;
69 alignas(16) static std::array<float, 36064> v49;
70 alignas(16) static std::array<float, 36064> v50;
71 alignas(16) static std::array<float, 15680> v51;
72 alignas(16) static std::array<float, 15680> v52;
73 alignas(16) static std::array<float, 36064> v53;
74 alignas(16) static std::array<float, 36064> v54;
75 alignas(16) static std::array<float, 36064> v55;
76 alignas(16) static std::array<float, 36064> v56;
77 alignas(16) static std::array<float, 15680> v57;
78 alignas(16) static std::array<float, 15680> v58;
79 alignas(16) static std::array<float, 94080> v59;
80 alignas(16) static std::array<float, 94080> v60;
81 alignas(16) static std::array<float, 94080> v61;
82 alignas(16) static std::array<float, 94080> v62;
83 alignas(16) static std::array<float, 480> v63;
84 alignas(16) static std::array<float, 120> v64;
85 alignas(16) static std::array<float, 480> v65;
86 alignas(16) static std::array<float, 94080> v66;
87 alignas(16) static std::array<float, 21952> v67;
88 alignas(16) static std::array<float, 131712> v68;
89 alignas(16) static std::array<float, 131712> v69;
90 alignas(16) static std::array<float, 131712> v70;
91 alignas(16) static std::array<float, 131712> v71;
92 alignas(16) static std::array<float, 672> v72;
93 alignas(16) static std::array<float, 168> v73;
94 alignas(16) static std::array<float, 672> v74;
95 alignas(16) static std::array<float, 131712> v75;
96 alignas(16) static std::array<float, 21952> v76;
97 alignas(16) static std::array<float, 21952> v77;
98 alignas(16) static std::array<float, 131712> v78;
99 alignas(16) static std::array<float, 131712> v79;
100 alignas(16) static std::array<float, 32928> v80;
101 alignas(16) static std::array<float, 32928> v81;
102 alignas(16) static std::array<float, 672> v82;
103 alignas(16) static std::array<float, 168> v83;
104 alignas(16) static std::array<float, 672> v84;
105 alignas(16) static std::array<float, 32928> v85;
106 alignas(16) static std::array<float, 7840> v86;
107 alignas(16) static std::array<float, 47040> v87;
108 alignas(16) static std::array<float, 47040> v88;
109 alignas(16) static std::array<float, 47040> v89;
110 alignas(16) static std::array<float, 47040> v90;
111 alignas(16) static std::array<float, 960> v91;
112 alignas(16) static std::array<float, 240> v92;
113 alignas(16) static std::array<float, 960> v93;
114 alignas(16) static std::array<float, 47040> v94;
115 alignas(16) static std::array<float, 7840> v95;
116 alignas(16) static std::array<float, 7840> v96;
117 alignas(16) static std::array<float, 47040> v97;
118 alignas(16) static std::array<float, 47040> v98;
119 alignas(16) static std::array<float, 47040> v99;
120 alignas(16) static std::array<float, 47040> v100;
121 alignas(16) static std::array<float, 960> v101;
122 alignas(16) static std::array<float, 240> v102;
123 alignas(16) static std::array<float, 960> v103;
124 alignas(16) static std::array<float, 47040> v104;
125 alignas(16) static std::array<float, 7840> v105;
126 alignas(16) static std::array<float, 7840> v106;
127 alignas(16) static std::array<float, 47040> v107;
128 alignas(16) static std::array<float, 47040> v108;
129 alignas(16) static std::array<float, 960> v109;
130 alignas(16) static std::array<float, 1280> v110;
131 alignas(16) static std::array<float, 1280> v111;
132 alignas(16) static std::array<float, 1280> v112;
133 alignas(16) static std::array<float, 1001> v113;
134 alignas(16) static std::array<float, 432> w114;
135 alignas(16) static std::array<float, 16> w115;
136 alignas(16) static std::array<float, 144> w116;
137 alignas(16) static std::array<float, 16> w117;
138 alignas(16) static std::array<float, 256> w118;
139 alignas(16) static std::array<float, 16> w119;
140 alignas(16) static std::array<float, 1024> w120;
141 alignas(16) static std::array<float, 64> w121;
142 alignas(16) static std::array<float, 576> w122;
143 alignas(16) static std::array<float, 64> w123;
144 alignas(16) static std::array<float, 1536> w124;
145 alignas(16) static std::array<float, 24> w125;
146 alignas(16) static std::array<float, 1728> w126;
147 alignas(16) static std::array<float, 72> w127;
148 alignas(16) static std::array<float, 648> w128;
149 alignas(16) static std::array<float, 72> w129;
150 alignas(16) static std::array<float, 1728> w130;
151 alignas(16) static std::array<float, 24> w131;
152 alignas(16) static std::array<float, 1728> w132;
153 alignas(16) static std::array<float, 72> w133;
154 alignas(16) static std::array<float, 1800> w134;
155 alignas(16) static std::array<float, 72> w135;
156 alignas(16) static std::array<float, 1728> w136;
157 alignas(16) static std::array<float, 24> w137;
158 alignas(16) static std::array<float, 1728> w138;
159 alignas(16) static std::array<float, 72> w139;
160 alignas(16) static std::array<float, 2880> w140;
161 alignas(16) static std::array<float, 40> w141;
162 alignas(16) static std::array<float, 4800> w142;
163 alignas(16) static std::array<float, 120> w143;
164 alignas(16) static std::array<float, 3000> w144;
165 alignas(16) static std::array<float, 120> w145;
166 alignas(16) static std::array<float, 3840> w146;
167 alignas(16) static std::array<float, 32> w147;
168 alignas(16) static std::array<float, 3840> w148;
169 alignas(16) static std::array<float, 120> w149;
170 alignas(16) static std::array<float, 4800> w150;
171 alignas(16) static std::array<float, 40> w151;
172 alignas(16) static std::array<float, 4800> w152;
173 alignas(16) static std::array<float, 120> w153;
174 alignas(16) static std::array<float, 3000> w154;
175 alignas(16) static std::array<float, 120> w155;
176 alignas(16) static std::array<float, 3840> w156;
177 alignas(16) static std::array<float, 32> w157;
178 alignas(16) static std::array<float, 3840> w158;
179 alignas(16) static std::array<float, 120> w159;
180 alignas(16) static std::array<float, 4800> w160;
181 alignas(16) static std::array<float, 40> w161;
182 alignas(16) static std::array<float, 9600> w162;
183 alignas(16) static std::array<float, 240> w163;
184 alignas(16) static std::array<float, 2160> w164;
185 alignas(16) static std::array<float, 240> w165;
186 alignas(16) static std::array<float, 19200> w166;
187 alignas(16) static std::array<float, 80> w167;
188 alignas(16) static std::array<float, 16000> w168;
189 alignas(16) static std::array<float, 200> w169;
190 alignas(16) static std::array<float, 1800> w170;
191 alignas(16) static std::array<float, 200> w171;
192 alignas(16) static std::array<float, 16000> w172;
193 alignas(16) static std::array<float, 80> w173;
194 alignas(16) static std::array<float, 14720> w174;
195 alignas(16) static std::array<float, 184> w175;
196 alignas(16) static std::array<float, 1656> w176;
197 alignas(16) static std::array<float, 184> w177;
198 alignas(16) static std::array<float, 14720> w178;
199 alignas(16) static std::array<float, 80> w179;
200 alignas(16) static std::array<float, 14720> w180;
201 alignas(16) static std::array<float, 184> w181;
202 alignas(16) static std::array<float, 1656> w182;
203 alignas(16) static std::array<float, 184> w183;
204 alignas(16) static std::array<float, 14720> w184;
205 alignas(16) static std::array<float, 80> w185;
206 alignas(16) static std::array<float, 38400> w186;
207 alignas(16) static std::array<float, 480> w187;
208 alignas(16) static std::array<float, 4320> w188;
209 alignas(16) static std::array<float, 480> w189;
210 alignas(16) static std::array<float, 57600> w190;
211 alignas(16) static std::array<float, 120> w191;
212 alignas(16) static std::array<float, 57600> w192;
213 alignas(16) static std::array<float, 480> w193;
214 alignas(16) static std::array<float, 53760> w194;
215 alignas(16) static std::array<float, 112> w195;
216 alignas(16) static std::array<float, 75264> w196;
217 alignas(16) static std::array<float, 672> w197;
218 alignas(16) static std::array<float, 6048> w198;
219 alignas(16) static std::array<float, 672> w199;
220 alignas(16) static std::array<float, 112896> w200;
221 alignas(16) static std::array<float, 168> w201;
222 alignas(16) static std::array<float, 112896> w202;
223 alignas(16) static std::array<float, 672> w203;
224 alignas(16) static std::array<float, 75264> w204;
225 alignas(16) static std::array<float, 112> w205;
226 alignas(16) static std::array<float, 75264> w206;
227 alignas(16) static std::array<float, 672> w207;
228 alignas(16) static std::array<float, 16800> w208;
229 alignas(16) static std::array<float, 672> w209;
230 alignas(16) static std::array<float, 112896> w210;
231 alignas(16) static std::array<float, 168> w211;
232 alignas(16) static std::array<float, 112896> w212;
233 alignas(16) static std::array<float, 672> w213;
234 alignas(16) static std::array<float, 107520> w214;
235 alignas(16) static std::array<float, 160> w215;
236 alignas(16) static std::array<float, 153600> w216;
237 alignas(16) static std::array<float, 960> w217;
238 alignas(16) static std::array<float, 24000> w218;
239 alignas(16) static std::array<float, 960> w219;
240 alignas(16) static std::array<float, 230400> w220;
241 alignas(16) static std::array<float, 240> w221;
242 alignas(16) static std::array<float, 230400> w222;
243 alignas(16) static std::array<float, 960> w223;
244 alignas(16) static std::array<float, 153600> w224;
245 alignas(16) static std::array<float, 160> w225;
246 alignas(16) static std::array<float, 153600> w226;
247 alignas(16) static std::array<float, 960> w227;
248 alignas(16) static std::array<float, 24000> w228;
249 alignas(16) static std::array<float, 960> w229;
250 alignas(16) static std::array<float, 230400> w230;
251 alignas(16) static std::array<float, 240> w231;
252 alignas(16) static std::array<float, 230400> w232;
253 alignas(16) static std::array<float, 960> w233;
254 alignas(16) static std::array<float, 153600> w234;
255 alignas(16) static std::array<float, 160> w235;
256 alignas(16) static std::array<float, 153600> w236;
257 alignas(16) static std::array<float, 960> w237;
258 alignas(16) static std::array<float, 1228800> w238;
259 alignas(16) static std::array<float, 1280> w239;
260 alignas(16) static std::array<float, 1281280> w240;
261 alignas(16) static std::array<float, 1001> w241;
262
263 std::random_device random_device;
264 auto rng = std::mt19937(random_device());
265 auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng));
266 std::generate(v0.begin(), v0.end(), std::ref(f32rng));
267 std::generate(v1.begin(), v1.end(), std::ref(f32rng));
268 std::generate(v2.begin(), v2.end(), std::ref(f32rng));
269 std::generate(v3.begin(), v3.end(), std::ref(f32rng));
270 std::generate(v4.begin(), v4.end(), std::ref(f32rng));
271 std::generate(v5.begin(), v5.end(), std::ref(f32rng));
272 std::generate(v6.begin(), v6.end(), std::ref(f32rng));
273 std::generate(v7.begin(), v7.end(), std::ref(f32rng));
274 std::generate(v8.begin(), v8.end(), std::ref(f32rng));
275 std::generate(v9.begin(), v9.end(), std::ref(f32rng));
276 std::generate(v10.begin(), v10.end(), std::ref(f32rng));
277 std::generate(v11.begin(), v11.end(), std::ref(f32rng));
278 std::generate(v12.begin(), v12.end(), std::ref(f32rng));
279 std::generate(v13.begin(), v13.end(), std::ref(f32rng));
280 std::generate(v14.begin(), v14.end(), std::ref(f32rng));
281 std::generate(v15.begin(), v15.end(), std::ref(f32rng));
282 std::generate(v16.begin(), v16.end(), std::ref(f32rng));
283 std::generate(v17.begin(), v17.end(), std::ref(f32rng));
284 std::generate(v18.begin(), v18.end(), std::ref(f32rng));
285 std::generate(v19.begin(), v19.end(), std::ref(f32rng));
286 std::generate(v20.begin(), v20.end(), std::ref(f32rng));
287 std::generate(v21.begin(), v21.end(), std::ref(f32rng));
288 std::generate(v22.begin(), v22.end(), std::ref(f32rng));
289 std::generate(v23.begin(), v23.end(), std::ref(f32rng));
290 std::generate(v24.begin(), v24.end(), std::ref(f32rng));
291 std::generate(v25.begin(), v25.end(), std::ref(f32rng));
292 std::generate(v26.begin(), v26.end(), std::ref(f32rng));
293 std::generate(v27.begin(), v27.end(), std::ref(f32rng));
294 std::generate(v28.begin(), v28.end(), std::ref(f32rng));
295 std::generate(v29.begin(), v29.end(), std::ref(f32rng));
296 std::generate(v30.begin(), v30.end(), std::ref(f32rng));
297 std::generate(v31.begin(), v31.end(), std::ref(f32rng));
298 std::generate(v32.begin(), v32.end(), std::ref(f32rng));
299 std::generate(v33.begin(), v33.end(), std::ref(f32rng));
300 std::generate(v34.begin(), v34.end(), std::ref(f32rng));
301 std::generate(v35.begin(), v35.end(), std::ref(f32rng));
302 std::generate(v36.begin(), v36.end(), std::ref(f32rng));
303 std::generate(v37.begin(), v37.end(), std::ref(f32rng));
304 std::generate(v38.begin(), v38.end(), std::ref(f32rng));
305 std::generate(v39.begin(), v39.end(), std::ref(f32rng));
306 std::generate(v40.begin(), v40.end(), std::ref(f32rng));
307 std::generate(v41.begin(), v41.end(), std::ref(f32rng));
308 std::generate(v42.begin(), v42.end(), std::ref(f32rng));
309 std::generate(v43.begin(), v43.end(), std::ref(f32rng));
310 std::generate(v44.begin(), v44.end(), std::ref(f32rng));
311 std::generate(v45.begin(), v45.end(), std::ref(f32rng));
312 std::generate(v46.begin(), v46.end(), std::ref(f32rng));
313 std::generate(v47.begin(), v47.end(), std::ref(f32rng));
314 std::generate(v48.begin(), v48.end(), std::ref(f32rng));
315 std::generate(v49.begin(), v49.end(), std::ref(f32rng));
316 std::generate(v50.begin(), v50.end(), std::ref(f32rng));
317 std::generate(v51.begin(), v51.end(), std::ref(f32rng));
318 std::generate(v52.begin(), v52.end(), std::ref(f32rng));
319 std::generate(v53.begin(), v53.end(), std::ref(f32rng));
320 std::generate(v54.begin(), v54.end(), std::ref(f32rng));
321 std::generate(v55.begin(), v55.end(), std::ref(f32rng));
322 std::generate(v56.begin(), v56.end(), std::ref(f32rng));
323 std::generate(v57.begin(), v57.end(), std::ref(f32rng));
324 std::generate(v58.begin(), v58.end(), std::ref(f32rng));
325 std::generate(v59.begin(), v59.end(), std::ref(f32rng));
326 std::generate(v60.begin(), v60.end(), std::ref(f32rng));
327 std::generate(v61.begin(), v61.end(), std::ref(f32rng));
328 std::generate(v62.begin(), v62.end(), std::ref(f32rng));
329 std::generate(v63.begin(), v63.end(), std::ref(f32rng));
330 std::generate(v64.begin(), v64.end(), std::ref(f32rng));
331 std::generate(v65.begin(), v65.end(), std::ref(f32rng));
332 std::generate(v66.begin(), v66.end(), std::ref(f32rng));
333 std::generate(v67.begin(), v67.end(), std::ref(f32rng));
334 std::generate(v68.begin(), v68.end(), std::ref(f32rng));
335 std::generate(v69.begin(), v69.end(), std::ref(f32rng));
336 std::generate(v70.begin(), v70.end(), std::ref(f32rng));
337 std::generate(v71.begin(), v71.end(), std::ref(f32rng));
338 std::generate(v72.begin(), v72.end(), std::ref(f32rng));
339 std::generate(v73.begin(), v73.end(), std::ref(f32rng));
340 std::generate(v74.begin(), v74.end(), std::ref(f32rng));
341 std::generate(v75.begin(), v75.end(), std::ref(f32rng));
342 std::generate(v76.begin(), v76.end(), std::ref(f32rng));
343 std::generate(v77.begin(), v77.end(), std::ref(f32rng));
344 std::generate(v78.begin(), v78.end(), std::ref(f32rng));
345 std::generate(v79.begin(), v79.end(), std::ref(f32rng));
346 std::generate(v80.begin(), v80.end(), std::ref(f32rng));
347 std::generate(v81.begin(), v81.end(), std::ref(f32rng));
348 std::generate(v82.begin(), v82.end(), std::ref(f32rng));
349 std::generate(v83.begin(), v83.end(), std::ref(f32rng));
350 std::generate(v84.begin(), v84.end(), std::ref(f32rng));
351 std::generate(v85.begin(), v85.end(), std::ref(f32rng));
352 std::generate(v86.begin(), v86.end(), std::ref(f32rng));
353 std::generate(v87.begin(), v87.end(), std::ref(f32rng));
354 std::generate(v88.begin(), v88.end(), std::ref(f32rng));
355 std::generate(v89.begin(), v89.end(), std::ref(f32rng));
356 std::generate(v90.begin(), v90.end(), std::ref(f32rng));
357 std::generate(v91.begin(), v91.end(), std::ref(f32rng));
358 std::generate(v92.begin(), v92.end(), std::ref(f32rng));
359 std::generate(v93.begin(), v93.end(), std::ref(f32rng));
360 std::generate(v94.begin(), v94.end(), std::ref(f32rng));
361 std::generate(v95.begin(), v95.end(), std::ref(f32rng));
362 std::generate(v96.begin(), v96.end(), std::ref(f32rng));
363 std::generate(v97.begin(), v97.end(), std::ref(f32rng));
364 std::generate(v98.begin(), v98.end(), std::ref(f32rng));
365 std::generate(v99.begin(), v99.end(), std::ref(f32rng));
366 std::generate(v100.begin(), v100.end(), std::ref(f32rng));
367 std::generate(v101.begin(), v101.end(), std::ref(f32rng));
368 std::generate(v102.begin(), v102.end(), std::ref(f32rng));
369 std::generate(v103.begin(), v103.end(), std::ref(f32rng));
370 std::generate(v104.begin(), v104.end(), std::ref(f32rng));
371 std::generate(v105.begin(), v105.end(), std::ref(f32rng));
372 std::generate(v106.begin(), v106.end(), std::ref(f32rng));
373 std::generate(v107.begin(), v107.end(), std::ref(f32rng));
374 std::generate(v108.begin(), v108.end(), std::ref(f32rng));
375 std::generate(v109.begin(), v109.end(), std::ref(f32rng));
376 std::generate(v110.begin(), v110.end(), std::ref(f32rng));
377 std::generate(v111.begin(), v111.end(), std::ref(f32rng));
378 std::generate(v112.begin(), v112.end(), std::ref(f32rng));
379 std::generate(v113.begin(), v113.end(), std::ref(f32rng));
380 std::generate(w114.begin(), w114.end(), std::ref(f32rng));
381 std::generate(w115.begin(), w115.end(), std::ref(f32rng));
382 std::generate(w116.begin(), w116.end(), std::ref(f32rng));
383 std::generate(w117.begin(), w117.end(), std::ref(f32rng));
384 std::generate(w118.begin(), w118.end(), std::ref(f32rng));
385 std::generate(w119.begin(), w119.end(), std::ref(f32rng));
386 std::generate(w120.begin(), w120.end(), std::ref(f32rng));
387 std::generate(w121.begin(), w121.end(), std::ref(f32rng));
388 std::generate(w122.begin(), w122.end(), std::ref(f32rng));
389 std::generate(w123.begin(), w123.end(), std::ref(f32rng));
390 std::generate(w124.begin(), w124.end(), std::ref(f32rng));
391 std::generate(w125.begin(), w125.end(), std::ref(f32rng));
392 std::generate(w126.begin(), w126.end(), std::ref(f32rng));
393 std::generate(w127.begin(), w127.end(), std::ref(f32rng));
394 std::generate(w128.begin(), w128.end(), std::ref(f32rng));
395 std::generate(w129.begin(), w129.end(), std::ref(f32rng));
396 std::generate(w130.begin(), w130.end(), std::ref(f32rng));
397 std::generate(w131.begin(), w131.end(), std::ref(f32rng));
398 std::generate(w132.begin(), w132.end(), std::ref(f32rng));
399 std::generate(w133.begin(), w133.end(), std::ref(f32rng));
400 std::generate(w134.begin(), w134.end(), std::ref(f32rng));
401 std::generate(w135.begin(), w135.end(), std::ref(f32rng));
402 std::generate(w136.begin(), w136.end(), std::ref(f32rng));
403 std::generate(w137.begin(), w137.end(), std::ref(f32rng));
404 std::generate(w138.begin(), w138.end(), std::ref(f32rng));
405 std::generate(w139.begin(), w139.end(), std::ref(f32rng));
406 std::generate(w140.begin(), w140.end(), std::ref(f32rng));
407 std::generate(w141.begin(), w141.end(), std::ref(f32rng));
408 std::generate(w142.begin(), w142.end(), std::ref(f32rng));
409 std::generate(w143.begin(), w143.end(), std::ref(f32rng));
410 std::generate(w144.begin(), w144.end(), std::ref(f32rng));
411 std::generate(w145.begin(), w145.end(), std::ref(f32rng));
412 std::generate(w146.begin(), w146.end(), std::ref(f32rng));
413 std::generate(w147.begin(), w147.end(), std::ref(f32rng));
414 std::generate(w148.begin(), w148.end(), std::ref(f32rng));
415 std::generate(w149.begin(), w149.end(), std::ref(f32rng));
416 std::generate(w150.begin(), w150.end(), std::ref(f32rng));
417 std::generate(w151.begin(), w151.end(), std::ref(f32rng));
418 std::generate(w152.begin(), w152.end(), std::ref(f32rng));
419 std::generate(w153.begin(), w153.end(), std::ref(f32rng));
420 std::generate(w154.begin(), w154.end(), std::ref(f32rng));
421 std::generate(w155.begin(), w155.end(), std::ref(f32rng));
422 std::generate(w156.begin(), w156.end(), std::ref(f32rng));
423 std::generate(w157.begin(), w157.end(), std::ref(f32rng));
424 std::generate(w158.begin(), w158.end(), std::ref(f32rng));
425 std::generate(w159.begin(), w159.end(), std::ref(f32rng));
426 std::generate(w160.begin(), w160.end(), std::ref(f32rng));
427 std::generate(w161.begin(), w161.end(), std::ref(f32rng));
428 std::generate(w162.begin(), w162.end(), std::ref(f32rng));
429 std::generate(w163.begin(), w163.end(), std::ref(f32rng));
430 std::generate(w164.begin(), w164.end(), std::ref(f32rng));
431 std::generate(w165.begin(), w165.end(), std::ref(f32rng));
432 std::generate(w166.begin(), w166.end(), std::ref(f32rng));
433 std::generate(w167.begin(), w167.end(), std::ref(f32rng));
434 std::generate(w168.begin(), w168.end(), std::ref(f32rng));
435 std::generate(w169.begin(), w169.end(), std::ref(f32rng));
436 std::generate(w170.begin(), w170.end(), std::ref(f32rng));
437 std::generate(w171.begin(), w171.end(), std::ref(f32rng));
438 std::generate(w172.begin(), w172.end(), std::ref(f32rng));
439 std::generate(w173.begin(), w173.end(), std::ref(f32rng));
440 std::generate(w174.begin(), w174.end(), std::ref(f32rng));
441 std::generate(w175.begin(), w175.end(), std::ref(f32rng));
442 std::generate(w176.begin(), w176.end(), std::ref(f32rng));
443 std::generate(w177.begin(), w177.end(), std::ref(f32rng));
444 std::generate(w178.begin(), w178.end(), std::ref(f32rng));
445 std::generate(w179.begin(), w179.end(), std::ref(f32rng));
446 std::generate(w180.begin(), w180.end(), std::ref(f32rng));
447 std::generate(w181.begin(), w181.end(), std::ref(f32rng));
448 std::generate(w182.begin(), w182.end(), std::ref(f32rng));
449 std::generate(w183.begin(), w183.end(), std::ref(f32rng));
450 std::generate(w184.begin(), w184.end(), std::ref(f32rng));
451 std::generate(w185.begin(), w185.end(), std::ref(f32rng));
452 std::generate(w186.begin(), w186.end(), std::ref(f32rng));
453 std::generate(w187.begin(), w187.end(), std::ref(f32rng));
454 std::generate(w188.begin(), w188.end(), std::ref(f32rng));
455 std::generate(w189.begin(), w189.end(), std::ref(f32rng));
456 std::generate(w190.begin(), w190.end(), std::ref(f32rng));
457 std::generate(w191.begin(), w191.end(), std::ref(f32rng));
458 std::generate(w192.begin(), w192.end(), std::ref(f32rng));
459 std::generate(w193.begin(), w193.end(), std::ref(f32rng));
460 std::generate(w194.begin(), w194.end(), std::ref(f32rng));
461 std::generate(w195.begin(), w195.end(), std::ref(f32rng));
462 std::generate(w196.begin(), w196.end(), std::ref(f32rng));
463 std::generate(w197.begin(), w197.end(), std::ref(f32rng));
464 std::generate(w198.begin(), w198.end(), std::ref(f32rng));
465 std::generate(w199.begin(), w199.end(), std::ref(f32rng));
466 std::generate(w200.begin(), w200.end(), std::ref(f32rng));
467 std::generate(w201.begin(), w201.end(), std::ref(f32rng));
468 std::generate(w202.begin(), w202.end(), std::ref(f32rng));
469 std::generate(w203.begin(), w203.end(), std::ref(f32rng));
470 std::generate(w204.begin(), w204.end(), std::ref(f32rng));
471 std::generate(w205.begin(), w205.end(), std::ref(f32rng));
472 std::generate(w206.begin(), w206.end(), std::ref(f32rng));
473 std::generate(w207.begin(), w207.end(), std::ref(f32rng));
474 std::generate(w208.begin(), w208.end(), std::ref(f32rng));
475 std::generate(w209.begin(), w209.end(), std::ref(f32rng));
476 std::generate(w210.begin(), w210.end(), std::ref(f32rng));
477 std::generate(w211.begin(), w211.end(), std::ref(f32rng));
478 std::generate(w212.begin(), w212.end(), std::ref(f32rng));
479 std::generate(w213.begin(), w213.end(), std::ref(f32rng));
480 std::generate(w214.begin(), w214.end(), std::ref(f32rng));
481 std::generate(w215.begin(), w215.end(), std::ref(f32rng));
482 std::generate(w216.begin(), w216.end(), std::ref(f32rng));
483 std::generate(w217.begin(), w217.end(), std::ref(f32rng));
484 std::generate(w218.begin(), w218.end(), std::ref(f32rng));
485 std::generate(w219.begin(), w219.end(), std::ref(f32rng));
486 std::generate(w220.begin(), w220.end(), std::ref(f32rng));
487 std::generate(w221.begin(), w221.end(), std::ref(f32rng));
488 std::generate(w222.begin(), w222.end(), std::ref(f32rng));
489 std::generate(w223.begin(), w223.end(), std::ref(f32rng));
490 std::generate(w224.begin(), w224.end(), std::ref(f32rng));
491 std::generate(w225.begin(), w225.end(), std::ref(f32rng));
492 std::generate(w226.begin(), w226.end(), std::ref(f32rng));
493 std::generate(w227.begin(), w227.end(), std::ref(f32rng));
494 std::generate(w228.begin(), w228.end(), std::ref(f32rng));
495 std::generate(w229.begin(), w229.end(), std::ref(f32rng));
496 std::generate(w230.begin(), w230.end(), std::ref(f32rng));
497 std::generate(w231.begin(), w231.end(), std::ref(f32rng));
498 std::generate(w232.begin(), w232.end(), std::ref(f32rng));
499 std::generate(w233.begin(), w233.end(), std::ref(f32rng));
500 std::generate(w234.begin(), w234.end(), std::ref(f32rng));
501 std::generate(w235.begin(), w235.end(), std::ref(f32rng));
502 std::generate(w236.begin(), w236.end(), std::ref(f32rng));
503 std::generate(w237.begin(), w237.end(), std::ref(f32rng));
504 std::generate(w238.begin(), w238.end(), std::ref(f32rng));
505 std::generate(w239.begin(), w239.end(), std::ref(f32rng));
506 std::generate(w240.begin(), w240.end(), std::ref(f32rng));
507 std::generate(w241.begin(), w241.end(), std::ref(f32rng));
508
509 ExecutionPlan operators;
510 xnn_status status;
511
512 xnn_operator_t op0 = nullptr;
513 status = xnn_create_convolution2d_nhwc_f32(
514 0 /* top padding */, 1 /* right padding */,
515 1 /* bottom padding */, 0 /* left padding */,
516 3 /* kernel height */, 3 /* kernel width */,
517 2 /* subsampling height */, 2 /* subsampling width */,
518 1 /* dilation_height */, 1 /* dilation_width */,
519 1 /* groups */,
520 3 /* input channels per group */,
521 16 /* output_channels_per_group */,
522 3 /* input pixel stride */,
523 16 /* output pixel stride */,
524 w114.data(), w115.data(),
525 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
526 0 /* flags */,
527 &op0);
528 if (status != xnn_status_success) {
529 std::cerr << "failed to create operation #0" << std::endl;
530 return ExecutionPlan();
531 }
532 operators.emplace_back(op0, xnn_delete_operator);
533
534 xnn_operator_t op1 = nullptr;
535 status = xnn_create_hardswish_nc_f32(
536 16 /* channels */,
537 16 /* input stride */,
538 16 /* output stride */,
539 0 /* flags */,
540 &op1);
541 if (status != xnn_status_success) {
542 std::cerr << "failed to create operation #1" << std::endl;
543 return ExecutionPlan();
544 }
545 operators.emplace_back(op1, xnn_delete_operator);
546
547 xnn_operator_t op2 = nullptr;
548 status = xnn_create_convolution2d_nhwc_f32(
549 1 /* top padding */, 1 /* right padding */,
550 1 /* bottom padding */, 1 /* left padding */,
551 3 /* kernel height */, 3 /* kernel width */,
552 1 /* subsampling height */, 1 /* subsampling width */,
553 1 /* dilation_height */, 1 /* dilation_width */,
554 16 /* groups */,
555 1 /* input channels per group */,
556 1 /* output_channels_per_group */,
557 16 /* input pixel stride */,
558 16 /* output pixel stride */,
559 w116.data(), w117.data(),
560 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
561 0 /* flags */,
562 &op2);
563 if (status != xnn_status_success) {
564 std::cerr << "failed to create operation #2" << std::endl;
565 return ExecutionPlan();
566 }
567 operators.emplace_back(op2, xnn_delete_operator);
568
569 xnn_operator_t op3 = nullptr;
570 status = xnn_create_convolution2d_nhwc_f32(
571 0 /* top padding */, 0 /* right padding */,
572 0 /* bottom padding */, 0 /* left padding */,
573 1 /* kernel height */, 1 /* kernel width */,
574 1 /* subsampling height */, 1 /* subsampling width */,
575 1 /* dilation_height */, 1 /* dilation_width */,
576 1 /* groups */,
577 16 /* input channels per group */,
578 16 /* output_channels_per_group */,
579 16 /* input pixel stride */,
580 16 /* output pixel stride */,
581 w118.data(), w119.data(),
582 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
583 0 /* flags */,
584 &op3);
585 if (status != xnn_status_success) {
586 std::cerr << "failed to create operation #3" << std::endl;
587 return ExecutionPlan();
588 }
589 operators.emplace_back(op3, xnn_delete_operator);
590
591 xnn_operator_t op4 = nullptr;
592 status = xnn_create_add_nd_f32(
593 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
594 0 /* flags */,
595 &op4);
596 if (status != xnn_status_success) {
597 std::cerr << "failed to create operation #4" << std::endl;
598 return ExecutionPlan();
599 }
600 operators.emplace_back(op4, xnn_delete_operator);
601
602 xnn_operator_t op5 = nullptr;
603 status = xnn_create_convolution2d_nhwc_f32(
604 0 /* top padding */, 0 /* right padding */,
605 0 /* bottom padding */, 0 /* left padding */,
606 1 /* kernel height */, 1 /* kernel width */,
607 1 /* subsampling height */, 1 /* subsampling width */,
608 1 /* dilation_height */, 1 /* dilation_width */,
609 1 /* groups */,
610 16 /* input channels per group */,
611 64 /* output_channels_per_group */,
612 16 /* input pixel stride */,
613 64 /* output pixel stride */,
614 w120.data(), w121.data(),
615 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
616 0 /* flags */,
617 &op5);
618 if (status != xnn_status_success) {
619 std::cerr << "failed to create operation #5" << std::endl;
620 return ExecutionPlan();
621 }
622 operators.emplace_back(op5, xnn_delete_operator);
623
624 xnn_operator_t op6 = nullptr;
625 status = xnn_create_convolution2d_nhwc_f32(
626 0 /* top padding */, 1 /* right padding */,
627 1 /* bottom padding */, 0 /* left padding */,
628 3 /* kernel height */, 3 /* kernel width */,
629 2 /* subsampling height */, 2 /* subsampling width */,
630 1 /* dilation_height */, 1 /* dilation_width */,
631 64 /* groups */,
632 1 /* input channels per group */,
633 1 /* output_channels_per_group */,
634 64 /* input pixel stride */,
635 64 /* output pixel stride */,
636 w122.data(), w123.data(),
637 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
638 0 /* flags */,
639 &op6);
640 if (status != xnn_status_success) {
641 std::cerr << "failed to create operation #6" << std::endl;
642 return ExecutionPlan();
643 }
644 operators.emplace_back(op6, xnn_delete_operator);
645
646 xnn_operator_t op7 = nullptr;
647 status = xnn_create_convolution2d_nhwc_f32(
648 0 /* top padding */, 0 /* right padding */,
649 0 /* bottom padding */, 0 /* left padding */,
650 1 /* kernel height */, 1 /* kernel width */,
651 1 /* subsampling height */, 1 /* subsampling width */,
652 1 /* dilation_height */, 1 /* dilation_width */,
653 1 /* groups */,
654 64 /* input channels per group */,
655 24 /* output_channels_per_group */,
656 64 /* input pixel stride */,
657 24 /* output pixel stride */,
658 w124.data(), w125.data(),
659 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
660 0 /* flags */,
661 &op7);
662 if (status != xnn_status_success) {
663 std::cerr << "failed to create operation #7" << std::endl;
664 return ExecutionPlan();
665 }
666 operators.emplace_back(op7, xnn_delete_operator);
667
668 xnn_operator_t op8 = nullptr;
669 status = xnn_create_convolution2d_nhwc_f32(
670 0 /* top padding */, 0 /* right padding */,
671 0 /* bottom padding */, 0 /* left padding */,
672 1 /* kernel height */, 1 /* kernel width */,
673 1 /* subsampling height */, 1 /* subsampling width */,
674 1 /* dilation_height */, 1 /* dilation_width */,
675 1 /* groups */,
676 24 /* input channels per group */,
677 72 /* output_channels_per_group */,
678 24 /* input pixel stride */,
679 72 /* output pixel stride */,
680 w126.data(), w127.data(),
681 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
682 0 /* flags */,
683 &op8);
684 if (status != xnn_status_success) {
685 std::cerr << "failed to create operation #8" << std::endl;
686 return ExecutionPlan();
687 }
688 operators.emplace_back(op8, xnn_delete_operator);
689
690 xnn_operator_t op9 = nullptr;
691 status = xnn_create_convolution2d_nhwc_f32(
692 1 /* top padding */, 1 /* right padding */,
693 1 /* bottom padding */, 1 /* left padding */,
694 3 /* kernel height */, 3 /* kernel width */,
695 1 /* subsampling height */, 1 /* subsampling width */,
696 1 /* dilation_height */, 1 /* dilation_width */,
697 72 /* groups */,
698 1 /* input channels per group */,
699 1 /* output_channels_per_group */,
700 72 /* input pixel stride */,
701 72 /* output pixel stride */,
702 w128.data(), w129.data(),
703 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
704 0 /* flags */,
705 &op9);
706 if (status != xnn_status_success) {
707 std::cerr << "failed to create operation #9" << std::endl;
708 return ExecutionPlan();
709 }
710 operators.emplace_back(op9, xnn_delete_operator);
711
712 xnn_operator_t op10 = nullptr;
713 status = xnn_create_convolution2d_nhwc_f32(
714 0 /* top padding */, 0 /* right padding */,
715 0 /* bottom padding */, 0 /* left padding */,
716 1 /* kernel height */, 1 /* kernel width */,
717 1 /* subsampling height */, 1 /* subsampling width */,
718 1 /* dilation_height */, 1 /* dilation_width */,
719 1 /* groups */,
720 72 /* input channels per group */,
721 24 /* output_channels_per_group */,
722 72 /* input pixel stride */,
723 24 /* output pixel stride */,
724 w130.data(), w131.data(),
725 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
726 0 /* flags */,
727 &op10);
728 if (status != xnn_status_success) {
729 std::cerr << "failed to create operation #10" << std::endl;
730 return ExecutionPlan();
731 }
732 operators.emplace_back(op10, xnn_delete_operator);
733
734 xnn_operator_t op11 = nullptr;
735 status = xnn_create_add_nd_f32(
736 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
737 0 /* flags */,
738 &op11);
739 if (status != xnn_status_success) {
740 std::cerr << "failed to create operation #11" << std::endl;
741 return ExecutionPlan();
742 }
743 operators.emplace_back(op11, xnn_delete_operator);
744
745 xnn_operator_t op12 = nullptr;
746 status = xnn_create_convolution2d_nhwc_f32(
747 0 /* top padding */, 0 /* right padding */,
748 0 /* bottom padding */, 0 /* left padding */,
749 1 /* kernel height */, 1 /* kernel width */,
750 1 /* subsampling height */, 1 /* subsampling width */,
751 1 /* dilation_height */, 1 /* dilation_width */,
752 1 /* groups */,
753 24 /* input channels per group */,
754 72 /* output_channels_per_group */,
755 24 /* input pixel stride */,
756 72 /* output pixel stride */,
757 w132.data(), w133.data(),
758 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
759 0 /* flags */,
760 &op12);
761 if (status != xnn_status_success) {
762 std::cerr << "failed to create operation #12" << std::endl;
763 return ExecutionPlan();
764 }
765 operators.emplace_back(op12, xnn_delete_operator);
766
767 xnn_operator_t op13 = nullptr;
768 status = xnn_create_convolution2d_nhwc_f32(
769 1 /* top padding */, 2 /* right padding */,
770 2 /* bottom padding */, 1 /* left padding */,
771 5 /* kernel height */, 5 /* kernel width */,
772 2 /* subsampling height */, 2 /* subsampling width */,
773 1 /* dilation_height */, 1 /* dilation_width */,
774 72 /* groups */,
775 1 /* input channels per group */,
776 1 /* output_channels_per_group */,
777 72 /* input pixel stride */,
778 72 /* output pixel stride */,
779 w134.data(), w135.data(),
780 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
781 0 /* flags */,
782 &op13);
783 if (status != xnn_status_success) {
784 std::cerr << "failed to create operation #13" << std::endl;
785 return ExecutionPlan();
786 }
787 operators.emplace_back(op13, xnn_delete_operator);
788
789 xnn_operator_t op14 = nullptr;
790 status = xnn_create_global_average_pooling_nwc_f32(
791 72 /* channels */, 72 /* input stride */, 72 /* output stride */,
792 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
793 0 /* flags */,
794 &op14);
795 if (status != xnn_status_success) {
796 std::cerr << "failed to create operation #14" << std::endl;
797 return ExecutionPlan();
798 }
799 operators.emplace_back(op14, xnn_delete_operator);
800
801 xnn_operator_t op15 = nullptr;
802 status = xnn_create_convolution2d_nhwc_f32(
803 0 /* top padding */, 0 /* right padding */,
804 0 /* bottom padding */, 0 /* left padding */,
805 1 /* kernel height */, 1 /* kernel width */,
806 1 /* subsampling height */, 1 /* subsampling width */,
807 1 /* dilation_height */, 1 /* dilation_width */,
808 1 /* groups */,
809 72 /* input channels per group */,
810 24 /* output_channels_per_group */,
811 72 /* input pixel stride */,
812 24 /* output pixel stride */,
813 w136.data(), w137.data(),
814 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
815 0 /* flags */,
816 &op15);
817 if (status != xnn_status_success) {
818 std::cerr << "failed to create operation #15" << std::endl;
819 return ExecutionPlan();
820 }
821 operators.emplace_back(op15, xnn_delete_operator);
822
823 xnn_operator_t op16 = nullptr;
824 status = xnn_create_convolution2d_nhwc_f32(
825 0 /* top padding */, 0 /* right padding */,
826 0 /* bottom padding */, 0 /* left padding */,
827 1 /* kernel height */, 1 /* kernel width */,
828 1 /* subsampling height */, 1 /* subsampling width */,
829 1 /* dilation_height */, 1 /* dilation_width */,
830 1 /* groups */,
831 24 /* input channels per group */,
832 72 /* output_channels_per_group */,
833 24 /* input pixel stride */,
834 72 /* output pixel stride */,
835 w138.data(), w139.data(),
836 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
837 0 /* flags */,
838 &op16);
839 if (status != xnn_status_success) {
840 std::cerr << "failed to create operation #16" << std::endl;
841 return ExecutionPlan();
842 }
843 operators.emplace_back(op16, xnn_delete_operator);
844
845 xnn_operator_t op17 = nullptr;
846 status = xnn_create_multiply_nd_f32(
847 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
848 0 /* flags */,
849 &op17);
850 if (status != xnn_status_success) {
851 std::cerr << "failed to create operation #17" << std::endl;
852 return ExecutionPlan();
853 }
854 operators.emplace_back(op17, xnn_delete_operator);
855
856 xnn_operator_t op18 = nullptr;
857 status = xnn_create_convolution2d_nhwc_f32(
858 0 /* top padding */, 0 /* right padding */,
859 0 /* bottom padding */, 0 /* left padding */,
860 1 /* kernel height */, 1 /* kernel width */,
861 1 /* subsampling height */, 1 /* subsampling width */,
862 1 /* dilation_height */, 1 /* dilation_width */,
863 1 /* groups */,
864 72 /* input channels per group */,
865 40 /* output_channels_per_group */,
866 72 /* input pixel stride */,
867 40 /* output pixel stride */,
868 w140.data(), w141.data(),
869 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
870 0 /* flags */,
871 &op18);
872 if (status != xnn_status_success) {
873 std::cerr << "failed to create operation #18" << std::endl;
874 return ExecutionPlan();
875 }
876 operators.emplace_back(op18, xnn_delete_operator);
877
878 xnn_operator_t op19 = nullptr;
879 status = xnn_create_convolution2d_nhwc_f32(
880 0 /* top padding */, 0 /* right padding */,
881 0 /* bottom padding */, 0 /* left padding */,
882 1 /* kernel height */, 1 /* kernel width */,
883 1 /* subsampling height */, 1 /* subsampling width */,
884 1 /* dilation_height */, 1 /* dilation_width */,
885 1 /* groups */,
886 40 /* input channels per group */,
887 120 /* output_channels_per_group */,
888 40 /* input pixel stride */,
889 120 /* output pixel stride */,
890 w142.data(), w143.data(),
891 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
892 0 /* flags */,
893 &op19);
894 if (status != xnn_status_success) {
895 std::cerr << "failed to create operation #19" << std::endl;
896 return ExecutionPlan();
897 }
898 operators.emplace_back(op19, xnn_delete_operator);
899
900 xnn_operator_t op20 = nullptr;
901 status = xnn_create_convolution2d_nhwc_f32(
902 2 /* top padding */, 2 /* right padding */,
903 2 /* bottom padding */, 2 /* left padding */,
904 5 /* kernel height */, 5 /* kernel width */,
905 1 /* subsampling height */, 1 /* subsampling width */,
906 1 /* dilation_height */, 1 /* dilation_width */,
907 120 /* groups */,
908 1 /* input channels per group */,
909 1 /* output_channels_per_group */,
910 120 /* input pixel stride */,
911 120 /* output pixel stride */,
912 w144.data(), w145.data(),
913 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
914 0 /* flags */,
915 &op20);
916 if (status != xnn_status_success) {
917 std::cerr << "failed to create operation #20" << std::endl;
918 return ExecutionPlan();
919 }
920 operators.emplace_back(op20, xnn_delete_operator);
921
922 xnn_operator_t op21 = nullptr;
923 status = xnn_create_global_average_pooling_nwc_f32(
924 120 /* channels */, 120 /* input stride */, 120 /* output stride */,
925 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
926 0 /* flags */,
927 &op21);
928 if (status != xnn_status_success) {
929 std::cerr << "failed to create operation #21" << std::endl;
930 return ExecutionPlan();
931 }
932 operators.emplace_back(op21, xnn_delete_operator);
933
934 xnn_operator_t op22 = nullptr;
935 status = xnn_create_convolution2d_nhwc_f32(
936 0 /* top padding */, 0 /* right padding */,
937 0 /* bottom padding */, 0 /* left padding */,
938 1 /* kernel height */, 1 /* kernel width */,
939 1 /* subsampling height */, 1 /* subsampling width */,
940 1 /* dilation_height */, 1 /* dilation_width */,
941 1 /* groups */,
942 120 /* input channels per group */,
943 32 /* output_channels_per_group */,
944 120 /* input pixel stride */,
945 32 /* output pixel stride */,
946 w146.data(), w147.data(),
947 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
948 0 /* flags */,
949 &op22);
950 if (status != xnn_status_success) {
951 std::cerr << "failed to create operation #22" << std::endl;
952 return ExecutionPlan();
953 }
954 operators.emplace_back(op22, xnn_delete_operator);
955
956 xnn_operator_t op23 = nullptr;
957 status = xnn_create_convolution2d_nhwc_f32(
958 0 /* top padding */, 0 /* right padding */,
959 0 /* bottom padding */, 0 /* left padding */,
960 1 /* kernel height */, 1 /* kernel width */,
961 1 /* subsampling height */, 1 /* subsampling width */,
962 1 /* dilation_height */, 1 /* dilation_width */,
963 1 /* groups */,
964 32 /* input channels per group */,
965 120 /* output_channels_per_group */,
966 32 /* input pixel stride */,
967 120 /* output pixel stride */,
968 w148.data(), w149.data(),
969 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
970 0 /* flags */,
971 &op23);
972 if (status != xnn_status_success) {
973 std::cerr << "failed to create operation #23" << std::endl;
974 return ExecutionPlan();
975 }
976 operators.emplace_back(op23, xnn_delete_operator);
977
978 xnn_operator_t op24 = nullptr;
979 status = xnn_create_multiply_nd_f32(
980 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
981 0 /* flags */,
982 &op24);
983 if (status != xnn_status_success) {
984 std::cerr << "failed to create operation #24" << std::endl;
985 return ExecutionPlan();
986 }
987 operators.emplace_back(op24, xnn_delete_operator);
988
989 xnn_operator_t op25 = nullptr;
990 status = xnn_create_convolution2d_nhwc_f32(
991 0 /* top padding */, 0 /* right padding */,
992 0 /* bottom padding */, 0 /* left padding */,
993 1 /* kernel height */, 1 /* kernel width */,
994 1 /* subsampling height */, 1 /* subsampling width */,
995 1 /* dilation_height */, 1 /* dilation_width */,
996 1 /* groups */,
997 120 /* input channels per group */,
998 40 /* output_channels_per_group */,
999 120 /* input pixel stride */,
1000 40 /* output pixel stride */,
1001 w150.data(), w151.data(),
1002 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1003 0 /* flags */,
1004 &op25);
1005 if (status != xnn_status_success) {
1006 std::cerr << "failed to create operation #25" << std::endl;
1007 return ExecutionPlan();
1008 }
1009 operators.emplace_back(op25, xnn_delete_operator);
1010
1011 xnn_operator_t op26 = nullptr;
1012 status = xnn_create_add_nd_f32(
1013 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1014 0 /* flags */,
1015 &op26);
1016 if (status != xnn_status_success) {
1017 std::cerr << "failed to create operation #26" << std::endl;
1018 return ExecutionPlan();
1019 }
1020 operators.emplace_back(op26, xnn_delete_operator);
1021
1022 xnn_operator_t op27 = nullptr;
1023 status = xnn_create_convolution2d_nhwc_f32(
1024 0 /* top padding */, 0 /* right padding */,
1025 0 /* bottom padding */, 0 /* left padding */,
1026 1 /* kernel height */, 1 /* kernel width */,
1027 1 /* subsampling height */, 1 /* subsampling width */,
1028 1 /* dilation_height */, 1 /* dilation_width */,
1029 1 /* groups */,
1030 40 /* input channels per group */,
1031 120 /* output_channels_per_group */,
1032 40 /* input pixel stride */,
1033 120 /* output pixel stride */,
1034 w152.data(), w153.data(),
1035 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1036 0 /* flags */,
1037 &op27);
1038 if (status != xnn_status_success) {
1039 std::cerr << "failed to create operation #27" << std::endl;
1040 return ExecutionPlan();
1041 }
1042 operators.emplace_back(op27, xnn_delete_operator);
1043
1044 xnn_operator_t op28 = nullptr;
1045 status = xnn_create_convolution2d_nhwc_f32(
1046 2 /* top padding */, 2 /* right padding */,
1047 2 /* bottom padding */, 2 /* left padding */,
1048 5 /* kernel height */, 5 /* kernel width */,
1049 1 /* subsampling height */, 1 /* subsampling width */,
1050 1 /* dilation_height */, 1 /* dilation_width */,
1051 120 /* groups */,
1052 1 /* input channels per group */,
1053 1 /* output_channels_per_group */,
1054 120 /* input pixel stride */,
1055 120 /* output pixel stride */,
1056 w154.data(), w155.data(),
1057 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1058 0 /* flags */,
1059 &op28);
1060 if (status != xnn_status_success) {
1061 std::cerr << "failed to create operation #28" << std::endl;
1062 return ExecutionPlan();
1063 }
1064 operators.emplace_back(op28, xnn_delete_operator);
1065
1066 xnn_operator_t op29 = nullptr;
1067 status = xnn_create_global_average_pooling_nwc_f32(
1068 120 /* channels */, 120 /* input stride */, 120 /* output stride */,
1069 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1070 0 /* flags */,
1071 &op29);
1072 if (status != xnn_status_success) {
1073 std::cerr << "failed to create operation #29" << std::endl;
1074 return ExecutionPlan();
1075 }
1076 operators.emplace_back(op29, xnn_delete_operator);
1077
1078 xnn_operator_t op30 = nullptr;
1079 status = xnn_create_convolution2d_nhwc_f32(
1080 0 /* top padding */, 0 /* right padding */,
1081 0 /* bottom padding */, 0 /* left padding */,
1082 1 /* kernel height */, 1 /* kernel width */,
1083 1 /* subsampling height */, 1 /* subsampling width */,
1084 1 /* dilation_height */, 1 /* dilation_width */,
1085 1 /* groups */,
1086 120 /* input channels per group */,
1087 32 /* output_channels_per_group */,
1088 120 /* input pixel stride */,
1089 32 /* output pixel stride */,
1090 w156.data(), w157.data(),
1091 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1092 0 /* flags */,
1093 &op30);
1094 if (status != xnn_status_success) {
1095 std::cerr << "failed to create operation #30" << std::endl;
1096 return ExecutionPlan();
1097 }
1098 operators.emplace_back(op30, xnn_delete_operator);
1099
1100 xnn_operator_t op31 = nullptr;
1101 status = xnn_create_convolution2d_nhwc_f32(
1102 0 /* top padding */, 0 /* right padding */,
1103 0 /* bottom padding */, 0 /* left padding */,
1104 1 /* kernel height */, 1 /* kernel width */,
1105 1 /* subsampling height */, 1 /* subsampling width */,
1106 1 /* dilation_height */, 1 /* dilation_width */,
1107 1 /* groups */,
1108 32 /* input channels per group */,
1109 120 /* output_channels_per_group */,
1110 32 /* input pixel stride */,
1111 120 /* output pixel stride */,
1112 w158.data(), w159.data(),
1113 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1114 0 /* flags */,
1115 &op31);
1116 if (status != xnn_status_success) {
1117 std::cerr << "failed to create operation #31" << std::endl;
1118 return ExecutionPlan();
1119 }
1120 operators.emplace_back(op31, xnn_delete_operator);
1121
1122 xnn_operator_t op32 = nullptr;
1123 status = xnn_create_multiply_nd_f32(
1124 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1125 0 /* flags */,
1126 &op32);
1127 if (status != xnn_status_success) {
1128 std::cerr << "failed to create operation #32" << std::endl;
1129 return ExecutionPlan();
1130 }
1131 operators.emplace_back(op32, xnn_delete_operator);
1132
1133 xnn_operator_t op33 = nullptr;
1134 status = xnn_create_convolution2d_nhwc_f32(
1135 0 /* top padding */, 0 /* right padding */,
1136 0 /* bottom padding */, 0 /* left padding */,
1137 1 /* kernel height */, 1 /* kernel width */,
1138 1 /* subsampling height */, 1 /* subsampling width */,
1139 1 /* dilation_height */, 1 /* dilation_width */,
1140 1 /* groups */,
1141 120 /* input channels per group */,
1142 40 /* output_channels_per_group */,
1143 120 /* input pixel stride */,
1144 40 /* output pixel stride */,
1145 w160.data(), w161.data(),
1146 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1147 0 /* flags */,
1148 &op33);
1149 if (status != xnn_status_success) {
1150 std::cerr << "failed to create operation #33" << std::endl;
1151 return ExecutionPlan();
1152 }
1153 operators.emplace_back(op33, xnn_delete_operator);
1154
1155 xnn_operator_t op34 = nullptr;
1156 status = xnn_create_add_nd_f32(
1157 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1158 0 /* flags */,
1159 &op34);
1160 if (status != xnn_status_success) {
1161 std::cerr << "failed to create operation #34" << std::endl;
1162 return ExecutionPlan();
1163 }
1164 operators.emplace_back(op34, xnn_delete_operator);
1165
1166 xnn_operator_t op35 = nullptr;
1167 status = xnn_create_convolution2d_nhwc_f32(
1168 0 /* top padding */, 0 /* right padding */,
1169 0 /* bottom padding */, 0 /* left padding */,
1170 1 /* kernel height */, 1 /* kernel width */,
1171 1 /* subsampling height */, 1 /* subsampling width */,
1172 1 /* dilation_height */, 1 /* dilation_width */,
1173 1 /* groups */,
1174 40 /* input channels per group */,
1175 240 /* output_channels_per_group */,
1176 40 /* input pixel stride */,
1177 240 /* output pixel stride */,
1178 w162.data(), w163.data(),
1179 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1180 0 /* flags */,
1181 &op35);
1182 if (status != xnn_status_success) {
1183 std::cerr << "failed to create operation #35" << std::endl;
1184 return ExecutionPlan();
1185 }
1186 operators.emplace_back(op35, xnn_delete_operator);
1187
1188 xnn_operator_t op36 = nullptr;
1189 status = xnn_create_hardswish_nc_f32(
1190 240 /* channels */,
1191 240 /* input stride */,
1192 240 /* output stride */,
1193 0 /* flags */,
1194 &op36);
1195 if (status != xnn_status_success) {
1196 std::cerr << "failed to create operation #36" << std::endl;
1197 return ExecutionPlan();
1198 }
1199 operators.emplace_back(op36, xnn_delete_operator);
1200
1201 xnn_operator_t op37 = nullptr;
1202 status = xnn_create_convolution2d_nhwc_f32(
1203 0 /* top padding */, 1 /* right padding */,
1204 1 /* bottom padding */, 0 /* left padding */,
1205 3 /* kernel height */, 3 /* kernel width */,
1206 2 /* subsampling height */, 2 /* subsampling width */,
1207 1 /* dilation_height */, 1 /* dilation_width */,
1208 240 /* groups */,
1209 1 /* input channels per group */,
1210 1 /* output_channels_per_group */,
1211 240 /* input pixel stride */,
1212 240 /* output pixel stride */,
1213 w164.data(), w165.data(),
1214 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1215 0 /* flags */,
1216 &op37);
1217 if (status != xnn_status_success) {
1218 std::cerr << "failed to create operation #37" << std::endl;
1219 return ExecutionPlan();
1220 }
1221 operators.emplace_back(op37, xnn_delete_operator);
1222
1223 xnn_operator_t op38 = nullptr;
1224 status = xnn_create_hardswish_nc_f32(
1225 240 /* channels */,
1226 240 /* input stride */,
1227 240 /* output stride */,
1228 0 /* flags */,
1229 &op38);
1230 if (status != xnn_status_success) {
1231 std::cerr << "failed to create operation #38" << std::endl;
1232 return ExecutionPlan();
1233 }
1234 operators.emplace_back(op38, xnn_delete_operator);
1235
1236 xnn_operator_t op39 = nullptr;
1237 status = xnn_create_convolution2d_nhwc_f32(
1238 0 /* top padding */, 0 /* right padding */,
1239 0 /* bottom padding */, 0 /* left padding */,
1240 1 /* kernel height */, 1 /* kernel width */,
1241 1 /* subsampling height */, 1 /* subsampling width */,
1242 1 /* dilation_height */, 1 /* dilation_width */,
1243 1 /* groups */,
1244 240 /* input channels per group */,
1245 80 /* output_channels_per_group */,
1246 240 /* input pixel stride */,
1247 80 /* output pixel stride */,
1248 w166.data(), w167.data(),
1249 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1250 0 /* flags */,
1251 &op39);
1252 if (status != xnn_status_success) {
1253 std::cerr << "failed to create operation #39" << std::endl;
1254 return ExecutionPlan();
1255 }
1256 operators.emplace_back(op39, xnn_delete_operator);
1257
1258 xnn_operator_t op40 = nullptr;
1259 status = xnn_create_convolution2d_nhwc_f32(
1260 0 /* top padding */, 0 /* right padding */,
1261 0 /* bottom padding */, 0 /* left padding */,
1262 1 /* kernel height */, 1 /* kernel width */,
1263 1 /* subsampling height */, 1 /* subsampling width */,
1264 1 /* dilation_height */, 1 /* dilation_width */,
1265 1 /* groups */,
1266 80 /* input channels per group */,
1267 200 /* output_channels_per_group */,
1268 80 /* input pixel stride */,
1269 200 /* output pixel stride */,
1270 w168.data(), w169.data(),
1271 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1272 0 /* flags */,
1273 &op40);
1274 if (status != xnn_status_success) {
1275 std::cerr << "failed to create operation #40" << std::endl;
1276 return ExecutionPlan();
1277 }
1278 operators.emplace_back(op40, xnn_delete_operator);
1279
1280 xnn_operator_t op41 = nullptr;
1281 status = xnn_create_hardswish_nc_f32(
1282 200 /* channels */,
1283 200 /* input stride */,
1284 200 /* output stride */,
1285 0 /* flags */,
1286 &op41);
1287 if (status != xnn_status_success) {
1288 std::cerr << "failed to create operation #41" << std::endl;
1289 return ExecutionPlan();
1290 }
1291 operators.emplace_back(op41, xnn_delete_operator);
1292
1293 xnn_operator_t op42 = nullptr;
1294 status = xnn_create_convolution2d_nhwc_f32(
1295 1 /* top padding */, 1 /* right padding */,
1296 1 /* bottom padding */, 1 /* left padding */,
1297 3 /* kernel height */, 3 /* kernel width */,
1298 1 /* subsampling height */, 1 /* subsampling width */,
1299 1 /* dilation_height */, 1 /* dilation_width */,
1300 200 /* groups */,
1301 1 /* input channels per group */,
1302 1 /* output_channels_per_group */,
1303 200 /* input pixel stride */,
1304 200 /* output pixel stride */,
1305 w170.data(), w171.data(),
1306 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1307 0 /* flags */,
1308 &op42);
1309 if (status != xnn_status_success) {
1310 std::cerr << "failed to create operation #42" << std::endl;
1311 return ExecutionPlan();
1312 }
1313 operators.emplace_back(op42, xnn_delete_operator);
1314
1315 xnn_operator_t op43 = nullptr;
1316 status = xnn_create_hardswish_nc_f32(
1317 200 /* channels */,
1318 200 /* input stride */,
1319 200 /* output stride */,
1320 0 /* flags */,
1321 &op43);
1322 if (status != xnn_status_success) {
1323 std::cerr << "failed to create operation #43" << std::endl;
1324 return ExecutionPlan();
1325 }
1326 operators.emplace_back(op43, xnn_delete_operator);
1327
1328 xnn_operator_t op44 = nullptr;
1329 status = xnn_create_convolution2d_nhwc_f32(
1330 0 /* top padding */, 0 /* right padding */,
1331 0 /* bottom padding */, 0 /* left padding */,
1332 1 /* kernel height */, 1 /* kernel width */,
1333 1 /* subsampling height */, 1 /* subsampling width */,
1334 1 /* dilation_height */, 1 /* dilation_width */,
1335 1 /* groups */,
1336 200 /* input channels per group */,
1337 80 /* output_channels_per_group */,
1338 200 /* input pixel stride */,
1339 80 /* output pixel stride */,
1340 w172.data(), w173.data(),
1341 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1342 0 /* flags */,
1343 &op44);
1344 if (status != xnn_status_success) {
1345 std::cerr << "failed to create operation #44" << std::endl;
1346 return ExecutionPlan();
1347 }
1348 operators.emplace_back(op44, xnn_delete_operator);
1349
1350 xnn_operator_t op45 = nullptr;
1351 status = xnn_create_add_nd_f32(
1352 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1353 0 /* flags */,
1354 &op45);
1355 if (status != xnn_status_success) {
1356 std::cerr << "failed to create operation #45" << std::endl;
1357 return ExecutionPlan();
1358 }
1359 operators.emplace_back(op45, xnn_delete_operator);
1360
1361 xnn_operator_t op46 = nullptr;
1362 status = xnn_create_convolution2d_nhwc_f32(
1363 0 /* top padding */, 0 /* right padding */,
1364 0 /* bottom padding */, 0 /* left padding */,
1365 1 /* kernel height */, 1 /* kernel width */,
1366 1 /* subsampling height */, 1 /* subsampling width */,
1367 1 /* dilation_height */, 1 /* dilation_width */,
1368 1 /* groups */,
1369 80 /* input channels per group */,
1370 184 /* output_channels_per_group */,
1371 80 /* input pixel stride */,
1372 184 /* output pixel stride */,
1373 w174.data(), w175.data(),
1374 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1375 0 /* flags */,
1376 &op46);
1377 if (status != xnn_status_success) {
1378 std::cerr << "failed to create operation #46" << std::endl;
1379 return ExecutionPlan();
1380 }
1381 operators.emplace_back(op46, xnn_delete_operator);
1382
1383 xnn_operator_t op47 = nullptr;
1384 status = xnn_create_hardswish_nc_f32(
1385 184 /* channels */,
1386 184 /* input stride */,
1387 184 /* output stride */,
1388 0 /* flags */,
1389 &op47);
1390 if (status != xnn_status_success) {
1391 std::cerr << "failed to create operation #47" << std::endl;
1392 return ExecutionPlan();
1393 }
1394 operators.emplace_back(op47, xnn_delete_operator);
1395
1396 xnn_operator_t op48 = nullptr;
1397 status = xnn_create_convolution2d_nhwc_f32(
1398 1 /* top padding */, 1 /* right padding */,
1399 1 /* bottom padding */, 1 /* left padding */,
1400 3 /* kernel height */, 3 /* kernel width */,
1401 1 /* subsampling height */, 1 /* subsampling width */,
1402 1 /* dilation_height */, 1 /* dilation_width */,
1403 184 /* groups */,
1404 1 /* input channels per group */,
1405 1 /* output_channels_per_group */,
1406 184 /* input pixel stride */,
1407 184 /* output pixel stride */,
1408 w176.data(), w177.data(),
1409 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1410 0 /* flags */,
1411 &op48);
1412 if (status != xnn_status_success) {
1413 std::cerr << "failed to create operation #48" << std::endl;
1414 return ExecutionPlan();
1415 }
1416 operators.emplace_back(op48, xnn_delete_operator);
1417
1418 xnn_operator_t op49 = nullptr;
1419 status = xnn_create_hardswish_nc_f32(
1420 184 /* channels */,
1421 184 /* input stride */,
1422 184 /* output stride */,
1423 0 /* flags */,
1424 &op49);
1425 if (status != xnn_status_success) {
1426 std::cerr << "failed to create operation #49" << std::endl;
1427 return ExecutionPlan();
1428 }
1429 operators.emplace_back(op49, xnn_delete_operator);
1430
1431 xnn_operator_t op50 = nullptr;
1432 status = xnn_create_convolution2d_nhwc_f32(
1433 0 /* top padding */, 0 /* right padding */,
1434 0 /* bottom padding */, 0 /* left padding */,
1435 1 /* kernel height */, 1 /* kernel width */,
1436 1 /* subsampling height */, 1 /* subsampling width */,
1437 1 /* dilation_height */, 1 /* dilation_width */,
1438 1 /* groups */,
1439 184 /* input channels per group */,
1440 80 /* output_channels_per_group */,
1441 184 /* input pixel stride */,
1442 80 /* output pixel stride */,
1443 w178.data(), w179.data(),
1444 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1445 0 /* flags */,
1446 &op50);
1447 if (status != xnn_status_success) {
1448 std::cerr << "failed to create operation #50" << std::endl;
1449 return ExecutionPlan();
1450 }
1451 operators.emplace_back(op50, xnn_delete_operator);
1452
1453 xnn_operator_t op51 = nullptr;
1454 status = xnn_create_add_nd_f32(
1455 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1456 0 /* flags */,
1457 &op51);
1458 if (status != xnn_status_success) {
1459 std::cerr << "failed to create operation #51" << std::endl;
1460 return ExecutionPlan();
1461 }
1462 operators.emplace_back(op51, xnn_delete_operator);
1463
1464 xnn_operator_t op52 = nullptr;
1465 status = xnn_create_convolution2d_nhwc_f32(
1466 0 /* top padding */, 0 /* right padding */,
1467 0 /* bottom padding */, 0 /* left padding */,
1468 1 /* kernel height */, 1 /* kernel width */,
1469 1 /* subsampling height */, 1 /* subsampling width */,
1470 1 /* dilation_height */, 1 /* dilation_width */,
1471 1 /* groups */,
1472 80 /* input channels per group */,
1473 184 /* output_channels_per_group */,
1474 80 /* input pixel stride */,
1475 184 /* output pixel stride */,
1476 w180.data(), w181.data(),
1477 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1478 0 /* flags */,
1479 &op52);
1480 if (status != xnn_status_success) {
1481 std::cerr << "failed to create operation #52" << std::endl;
1482 return ExecutionPlan();
1483 }
1484 operators.emplace_back(op52, xnn_delete_operator);
1485
1486 xnn_operator_t op53 = nullptr;
1487 status = xnn_create_hardswish_nc_f32(
1488 184 /* channels */,
1489 184 /* input stride */,
1490 184 /* output stride */,
1491 0 /* flags */,
1492 &op53);
1493 if (status != xnn_status_success) {
1494 std::cerr << "failed to create operation #53" << std::endl;
1495 return ExecutionPlan();
1496 }
1497 operators.emplace_back(op53, xnn_delete_operator);
1498
1499 xnn_operator_t op54 = nullptr;
1500 status = xnn_create_convolution2d_nhwc_f32(
1501 1 /* top padding */, 1 /* right padding */,
1502 1 /* bottom padding */, 1 /* left padding */,
1503 3 /* kernel height */, 3 /* kernel width */,
1504 1 /* subsampling height */, 1 /* subsampling width */,
1505 1 /* dilation_height */, 1 /* dilation_width */,
1506 184 /* groups */,
1507 1 /* input channels per group */,
1508 1 /* output_channels_per_group */,
1509 184 /* input pixel stride */,
1510 184 /* output pixel stride */,
1511 w182.data(), w183.data(),
1512 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1513 0 /* flags */,
1514 &op54);
1515 if (status != xnn_status_success) {
1516 std::cerr << "failed to create operation #54" << std::endl;
1517 return ExecutionPlan();
1518 }
1519 operators.emplace_back(op54, xnn_delete_operator);
1520
1521 xnn_operator_t op55 = nullptr;
1522 status = xnn_create_hardswish_nc_f32(
1523 184 /* channels */,
1524 184 /* input stride */,
1525 184 /* output stride */,
1526 0 /* flags */,
1527 &op55);
1528 if (status != xnn_status_success) {
1529 std::cerr << "failed to create operation #55" << std::endl;
1530 return ExecutionPlan();
1531 }
1532 operators.emplace_back(op55, xnn_delete_operator);
1533
1534 xnn_operator_t op56 = nullptr;
1535 status = xnn_create_convolution2d_nhwc_f32(
1536 0 /* top padding */, 0 /* right padding */,
1537 0 /* bottom padding */, 0 /* left padding */,
1538 1 /* kernel height */, 1 /* kernel width */,
1539 1 /* subsampling height */, 1 /* subsampling width */,
1540 1 /* dilation_height */, 1 /* dilation_width */,
1541 1 /* groups */,
1542 184 /* input channels per group */,
1543 80 /* output_channels_per_group */,
1544 184 /* input pixel stride */,
1545 80 /* output pixel stride */,
1546 w184.data(), w185.data(),
1547 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1548 0 /* flags */,
1549 &op56);
1550 if (status != xnn_status_success) {
1551 std::cerr << "failed to create operation #56" << std::endl;
1552 return ExecutionPlan();
1553 }
1554 operators.emplace_back(op56, xnn_delete_operator);
1555
1556 xnn_operator_t op57 = nullptr;
1557 status = xnn_create_add_nd_f32(
1558 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1559 0 /* flags */,
1560 &op57);
1561 if (status != xnn_status_success) {
1562 std::cerr << "failed to create operation #57" << std::endl;
1563 return ExecutionPlan();
1564 }
1565 operators.emplace_back(op57, xnn_delete_operator);
1566
1567 xnn_operator_t op58 = nullptr;
1568 status = xnn_create_convolution2d_nhwc_f32(
1569 0 /* top padding */, 0 /* right padding */,
1570 0 /* bottom padding */, 0 /* left padding */,
1571 1 /* kernel height */, 1 /* kernel width */,
1572 1 /* subsampling height */, 1 /* subsampling width */,
1573 1 /* dilation_height */, 1 /* dilation_width */,
1574 1 /* groups */,
1575 80 /* input channels per group */,
1576 480 /* output_channels_per_group */,
1577 80 /* input pixel stride */,
1578 480 /* output pixel stride */,
1579 w186.data(), w187.data(),
1580 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1581 0 /* flags */,
1582 &op58);
1583 if (status != xnn_status_success) {
1584 std::cerr << "failed to create operation #58" << std::endl;
1585 return ExecutionPlan();
1586 }
1587 operators.emplace_back(op58, xnn_delete_operator);
1588
1589 xnn_operator_t op59 = nullptr;
1590 status = xnn_create_hardswish_nc_f32(
1591 480 /* channels */,
1592 480 /* input stride */,
1593 480 /* output stride */,
1594 0 /* flags */,
1595 &op59);
1596 if (status != xnn_status_success) {
1597 std::cerr << "failed to create operation #59" << std::endl;
1598 return ExecutionPlan();
1599 }
1600 operators.emplace_back(op59, xnn_delete_operator);
1601
1602 xnn_operator_t op60 = nullptr;
1603 status = xnn_create_convolution2d_nhwc_f32(
1604 1 /* top padding */, 1 /* right padding */,
1605 1 /* bottom padding */, 1 /* left padding */,
1606 3 /* kernel height */, 3 /* kernel width */,
1607 1 /* subsampling height */, 1 /* subsampling width */,
1608 1 /* dilation_height */, 1 /* dilation_width */,
1609 480 /* groups */,
1610 1 /* input channels per group */,
1611 1 /* output_channels_per_group */,
1612 480 /* input pixel stride */,
1613 480 /* output pixel stride */,
1614 w188.data(), w189.data(),
1615 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1616 0 /* flags */,
1617 &op60);
1618 if (status != xnn_status_success) {
1619 std::cerr << "failed to create operation #60" << std::endl;
1620 return ExecutionPlan();
1621 }
1622 operators.emplace_back(op60, xnn_delete_operator);
1623
1624 xnn_operator_t op61 = nullptr;
1625 status = xnn_create_hardswish_nc_f32(
1626 480 /* channels */,
1627 480 /* input stride */,
1628 480 /* output stride */,
1629 0 /* flags */,
1630 &op61);
1631 if (status != xnn_status_success) {
1632 std::cerr << "failed to create operation #61" << std::endl;
1633 return ExecutionPlan();
1634 }
1635 operators.emplace_back(op61, xnn_delete_operator);
1636
1637 xnn_operator_t op62 = nullptr;
1638 status = xnn_create_global_average_pooling_nwc_f32(
1639 480 /* channels */, 480 /* input stride */, 480 /* output stride */,
1640 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1641 0 /* flags */,
1642 &op62);
1643 if (status != xnn_status_success) {
1644 std::cerr << "failed to create operation #62" << std::endl;
1645 return ExecutionPlan();
1646 }
1647 operators.emplace_back(op62, xnn_delete_operator);
1648
1649 xnn_operator_t op63 = nullptr;
1650 status = xnn_create_convolution2d_nhwc_f32(
1651 0 /* top padding */, 0 /* right padding */,
1652 0 /* bottom padding */, 0 /* left padding */,
1653 1 /* kernel height */, 1 /* kernel width */,
1654 1 /* subsampling height */, 1 /* subsampling width */,
1655 1 /* dilation_height */, 1 /* dilation_width */,
1656 1 /* groups */,
1657 480 /* input channels per group */,
1658 120 /* output_channels_per_group */,
1659 480 /* input pixel stride */,
1660 120 /* output pixel stride */,
1661 w190.data(), w191.data(),
1662 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1663 0 /* flags */,
1664 &op63);
1665 if (status != xnn_status_success) {
1666 std::cerr << "failed to create operation #63" << std::endl;
1667 return ExecutionPlan();
1668 }
1669 operators.emplace_back(op63, xnn_delete_operator);
1670
1671 xnn_operator_t op64 = nullptr;
1672 status = xnn_create_convolution2d_nhwc_f32(
1673 0 /* top padding */, 0 /* right padding */,
1674 0 /* bottom padding */, 0 /* left padding */,
1675 1 /* kernel height */, 1 /* kernel width */,
1676 1 /* subsampling height */, 1 /* subsampling width */,
1677 1 /* dilation_height */, 1 /* dilation_width */,
1678 1 /* groups */,
1679 120 /* input channels per group */,
1680 480 /* output_channels_per_group */,
1681 120 /* input pixel stride */,
1682 480 /* output pixel stride */,
1683 w192.data(), w193.data(),
1684 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1685 0 /* flags */,
1686 &op64);
1687 if (status != xnn_status_success) {
1688 std::cerr << "failed to create operation #64" << std::endl;
1689 return ExecutionPlan();
1690 }
1691 operators.emplace_back(op64, xnn_delete_operator);
1692
1693 xnn_operator_t op65 = nullptr;
1694 status = xnn_create_multiply_nd_f32(
1695 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1696 0 /* flags */,
1697 &op65);
1698 if (status != xnn_status_success) {
1699 std::cerr << "failed to create operation #65" << std::endl;
1700 return ExecutionPlan();
1701 }
1702 operators.emplace_back(op65, xnn_delete_operator);
1703
1704 xnn_operator_t op66 = nullptr;
1705 status = xnn_create_convolution2d_nhwc_f32(
1706 0 /* top padding */, 0 /* right padding */,
1707 0 /* bottom padding */, 0 /* left padding */,
1708 1 /* kernel height */, 1 /* kernel width */,
1709 1 /* subsampling height */, 1 /* subsampling width */,
1710 1 /* dilation_height */, 1 /* dilation_width */,
1711 1 /* groups */,
1712 480 /* input channels per group */,
1713 112 /* output_channels_per_group */,
1714 480 /* input pixel stride */,
1715 112 /* output pixel stride */,
1716 w194.data(), w195.data(),
1717 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1718 0 /* flags */,
1719 &op66);
1720 if (status != xnn_status_success) {
1721 std::cerr << "failed to create operation #66" << std::endl;
1722 return ExecutionPlan();
1723 }
1724 operators.emplace_back(op66, xnn_delete_operator);
1725
1726 xnn_operator_t op67 = nullptr;
1727 status = xnn_create_convolution2d_nhwc_f32(
1728 0 /* top padding */, 0 /* right padding */,
1729 0 /* bottom padding */, 0 /* left padding */,
1730 1 /* kernel height */, 1 /* kernel width */,
1731 1 /* subsampling height */, 1 /* subsampling width */,
1732 1 /* dilation_height */, 1 /* dilation_width */,
1733 1 /* groups */,
1734 112 /* input channels per group */,
1735 672 /* output_channels_per_group */,
1736 112 /* input pixel stride */,
1737 672 /* output pixel stride */,
1738 w196.data(), w197.data(),
1739 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1740 0 /* flags */,
1741 &op67);
1742 if (status != xnn_status_success) {
1743 std::cerr << "failed to create operation #67" << std::endl;
1744 return ExecutionPlan();
1745 }
1746 operators.emplace_back(op67, xnn_delete_operator);
1747
1748 xnn_operator_t op68 = nullptr;
1749 status = xnn_create_hardswish_nc_f32(
1750 672 /* channels */,
1751 672 /* input stride */,
1752 672 /* output stride */,
1753 0 /* flags */,
1754 &op68);
1755 if (status != xnn_status_success) {
1756 std::cerr << "failed to create operation #68" << std::endl;
1757 return ExecutionPlan();
1758 }
1759 operators.emplace_back(op68, xnn_delete_operator);
1760
1761 xnn_operator_t op69 = nullptr;
1762 status = xnn_create_convolution2d_nhwc_f32(
1763 1 /* top padding */, 1 /* right padding */,
1764 1 /* bottom padding */, 1 /* left padding */,
1765 3 /* kernel height */, 3 /* kernel width */,
1766 1 /* subsampling height */, 1 /* subsampling width */,
1767 1 /* dilation_height */, 1 /* dilation_width */,
1768 672 /* groups */,
1769 1 /* input channels per group */,
1770 1 /* output_channels_per_group */,
1771 672 /* input pixel stride */,
1772 672 /* output pixel stride */,
1773 w198.data(), w199.data(),
1774 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1775 0 /* flags */,
1776 &op69);
1777 if (status != xnn_status_success) {
1778 std::cerr << "failed to create operation #69" << std::endl;
1779 return ExecutionPlan();
1780 }
1781 operators.emplace_back(op69, xnn_delete_operator);
1782
1783 xnn_operator_t op70 = nullptr;
1784 status = xnn_create_hardswish_nc_f32(
1785 672 /* channels */,
1786 672 /* input stride */,
1787 672 /* output stride */,
1788 0 /* flags */,
1789 &op70);
1790 if (status != xnn_status_success) {
1791 std::cerr << "failed to create operation #70" << std::endl;
1792 return ExecutionPlan();
1793 }
1794 operators.emplace_back(op70, xnn_delete_operator);
1795
1796 xnn_operator_t op71 = nullptr;
1797 status = xnn_create_global_average_pooling_nwc_f32(
1798 672 /* channels */, 672 /* input stride */, 672 /* output stride */,
1799 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1800 0 /* flags */,
1801 &op71);
1802 if (status != xnn_status_success) {
1803 std::cerr << "failed to create operation #71" << std::endl;
1804 return ExecutionPlan();
1805 }
1806 operators.emplace_back(op71, xnn_delete_operator);
1807
1808 xnn_operator_t op72 = nullptr;
1809 status = xnn_create_convolution2d_nhwc_f32(
1810 0 /* top padding */, 0 /* right padding */,
1811 0 /* bottom padding */, 0 /* left padding */,
1812 1 /* kernel height */, 1 /* kernel width */,
1813 1 /* subsampling height */, 1 /* subsampling width */,
1814 1 /* dilation_height */, 1 /* dilation_width */,
1815 1 /* groups */,
1816 672 /* input channels per group */,
1817 168 /* output_channels_per_group */,
1818 672 /* input pixel stride */,
1819 168 /* output pixel stride */,
1820 w200.data(), w201.data(),
1821 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1822 0 /* flags */,
1823 &op72);
1824 if (status != xnn_status_success) {
1825 std::cerr << "failed to create operation #72" << std::endl;
1826 return ExecutionPlan();
1827 }
1828 operators.emplace_back(op72, xnn_delete_operator);
1829
1830 xnn_operator_t op73 = nullptr;
1831 status = xnn_create_convolution2d_nhwc_f32(
1832 0 /* top padding */, 0 /* right padding */,
1833 0 /* bottom padding */, 0 /* left padding */,
1834 1 /* kernel height */, 1 /* kernel width */,
1835 1 /* subsampling height */, 1 /* subsampling width */,
1836 1 /* dilation_height */, 1 /* dilation_width */,
1837 1 /* groups */,
1838 168 /* input channels per group */,
1839 672 /* output_channels_per_group */,
1840 168 /* input pixel stride */,
1841 672 /* output pixel stride */,
1842 w202.data(), w203.data(),
1843 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
1844 0 /* flags */,
1845 &op73);
1846 if (status != xnn_status_success) {
1847 std::cerr << "failed to create operation #73" << std::endl;
1848 return ExecutionPlan();
1849 }
1850 operators.emplace_back(op73, xnn_delete_operator);
1851
1852 xnn_operator_t op74 = nullptr;
1853 status = xnn_create_multiply_nd_f32(
1854 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1855 0 /* flags */,
1856 &op74);
1857 if (status != xnn_status_success) {
1858 std::cerr << "failed to create operation #74" << std::endl;
1859 return ExecutionPlan();
1860 }
1861 operators.emplace_back(op74, xnn_delete_operator);
1862
1863 xnn_operator_t op75 = nullptr;
1864 status = xnn_create_convolution2d_nhwc_f32(
1865 0 /* top padding */, 0 /* right padding */,
1866 0 /* bottom padding */, 0 /* left padding */,
1867 1 /* kernel height */, 1 /* kernel width */,
1868 1 /* subsampling height */, 1 /* subsampling width */,
1869 1 /* dilation_height */, 1 /* dilation_width */,
1870 1 /* groups */,
1871 672 /* input channels per group */,
1872 112 /* output_channels_per_group */,
1873 672 /* input pixel stride */,
1874 112 /* output pixel stride */,
1875 w204.data(), w205.data(),
1876 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1877 0 /* flags */,
1878 &op75);
1879 if (status != xnn_status_success) {
1880 std::cerr << "failed to create operation #75" << std::endl;
1881 return ExecutionPlan();
1882 }
1883 operators.emplace_back(op75, xnn_delete_operator);
1884
1885 xnn_operator_t op76 = nullptr;
1886 status = xnn_create_add_nd_f32(
1887 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1888 0 /* flags */,
1889 &op76);
1890 if (status != xnn_status_success) {
1891 std::cerr << "failed to create operation #76" << std::endl;
1892 return ExecutionPlan();
1893 }
1894 operators.emplace_back(op76, xnn_delete_operator);
1895
1896 xnn_operator_t op77 = nullptr;
1897 status = xnn_create_convolution2d_nhwc_f32(
1898 0 /* top padding */, 0 /* right padding */,
1899 0 /* bottom padding */, 0 /* left padding */,
1900 1 /* kernel height */, 1 /* kernel width */,
1901 1 /* subsampling height */, 1 /* subsampling width */,
1902 1 /* dilation_height */, 1 /* dilation_width */,
1903 1 /* groups */,
1904 112 /* input channels per group */,
1905 672 /* output_channels_per_group */,
1906 112 /* input pixel stride */,
1907 672 /* output pixel stride */,
1908 w206.data(), w207.data(),
1909 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1910 0 /* flags */,
1911 &op77);
1912 if (status != xnn_status_success) {
1913 std::cerr << "failed to create operation #77" << std::endl;
1914 return ExecutionPlan();
1915 }
1916 operators.emplace_back(op77, xnn_delete_operator);
1917
1918 xnn_operator_t op78 = nullptr;
1919 status = xnn_create_hardswish_nc_f32(
1920 672 /* channels */,
1921 672 /* input stride */,
1922 672 /* output stride */,
1923 0 /* flags */,
1924 &op78);
1925 if (status != xnn_status_success) {
1926 std::cerr << "failed to create operation #78" << std::endl;
1927 return ExecutionPlan();
1928 }
1929 operators.emplace_back(op78, xnn_delete_operator);
1930
1931 xnn_operator_t op79 = nullptr;
1932 status = xnn_create_convolution2d_nhwc_f32(
1933 1 /* top padding */, 2 /* right padding */,
1934 2 /* bottom padding */, 1 /* left padding */,
1935 5 /* kernel height */, 5 /* kernel width */,
1936 2 /* subsampling height */, 2 /* subsampling width */,
1937 1 /* dilation_height */, 1 /* dilation_width */,
1938 672 /* groups */,
1939 1 /* input channels per group */,
1940 1 /* output_channels_per_group */,
1941 672 /* input pixel stride */,
1942 672 /* output pixel stride */,
1943 w208.data(), w209.data(),
1944 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1945 0 /* flags */,
1946 &op79);
1947 if (status != xnn_status_success) {
1948 std::cerr << "failed to create operation #79" << std::endl;
1949 return ExecutionPlan();
1950 }
1951 operators.emplace_back(op79, xnn_delete_operator);
1952
1953 xnn_operator_t op80 = nullptr;
1954 status = xnn_create_hardswish_nc_f32(
1955 672 /* channels */,
1956 672 /* input stride */,
1957 672 /* output stride */,
1958 0 /* flags */,
1959 &op80);
1960 if (status != xnn_status_success) {
1961 std::cerr << "failed to create operation #80" << std::endl;
1962 return ExecutionPlan();
1963 }
1964 operators.emplace_back(op80, xnn_delete_operator);
1965
1966 xnn_operator_t op81 = nullptr;
1967 status = xnn_create_global_average_pooling_nwc_f32(
1968 672 /* channels */, 672 /* input stride */, 672 /* output stride */,
1969 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
1970 0 /* flags */,
1971 &op81);
1972 if (status != xnn_status_success) {
1973 std::cerr << "failed to create operation #81" << std::endl;
1974 return ExecutionPlan();
1975 }
1976 operators.emplace_back(op81, xnn_delete_operator);
1977
1978 xnn_operator_t op82 = nullptr;
1979 status = xnn_create_convolution2d_nhwc_f32(
1980 0 /* top padding */, 0 /* right padding */,
1981 0 /* bottom padding */, 0 /* left padding */,
1982 1 /* kernel height */, 1 /* kernel width */,
1983 1 /* subsampling height */, 1 /* subsampling width */,
1984 1 /* dilation_height */, 1 /* dilation_width */,
1985 1 /* groups */,
1986 672 /* input channels per group */,
1987 168 /* output_channels_per_group */,
1988 672 /* input pixel stride */,
1989 168 /* output pixel stride */,
1990 w210.data(), w211.data(),
1991 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
1992 0 /* flags */,
1993 &op82);
1994 if (status != xnn_status_success) {
1995 std::cerr << "failed to create operation #82" << std::endl;
1996 return ExecutionPlan();
1997 }
1998 operators.emplace_back(op82, xnn_delete_operator);
1999
2000 xnn_operator_t op83 = nullptr;
2001 status = xnn_create_convolution2d_nhwc_f32(
2002 0 /* top padding */, 0 /* right padding */,
2003 0 /* bottom padding */, 0 /* left padding */,
2004 1 /* kernel height */, 1 /* kernel width */,
2005 1 /* subsampling height */, 1 /* subsampling width */,
2006 1 /* dilation_height */, 1 /* dilation_width */,
2007 1 /* groups */,
2008 168 /* input channels per group */,
2009 672 /* output_channels_per_group */,
2010 168 /* input pixel stride */,
2011 672 /* output pixel stride */,
2012 w212.data(), w213.data(),
2013 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2014 0 /* flags */,
2015 &op83);
2016 if (status != xnn_status_success) {
2017 std::cerr << "failed to create operation #83" << std::endl;
2018 return ExecutionPlan();
2019 }
2020 operators.emplace_back(op83, xnn_delete_operator);
2021
2022 xnn_operator_t op84 = nullptr;
2023 status = xnn_create_multiply_nd_f32(
2024 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2025 0 /* flags */,
2026 &op84);
2027 if (status != xnn_status_success) {
2028 std::cerr << "failed to create operation #84" << std::endl;
2029 return ExecutionPlan();
2030 }
2031 operators.emplace_back(op84, xnn_delete_operator);
2032
2033 xnn_operator_t op85 = nullptr;
2034 status = xnn_create_convolution2d_nhwc_f32(
2035 0 /* top padding */, 0 /* right padding */,
2036 0 /* bottom padding */, 0 /* left padding */,
2037 1 /* kernel height */, 1 /* kernel width */,
2038 1 /* subsampling height */, 1 /* subsampling width */,
2039 1 /* dilation_height */, 1 /* dilation_width */,
2040 1 /* groups */,
2041 672 /* input channels per group */,
2042 160 /* output_channels_per_group */,
2043 672 /* input pixel stride */,
2044 160 /* output pixel stride */,
2045 w214.data(), w215.data(),
2046 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2047 0 /* flags */,
2048 &op85);
2049 if (status != xnn_status_success) {
2050 std::cerr << "failed to create operation #85" << std::endl;
2051 return ExecutionPlan();
2052 }
2053 operators.emplace_back(op85, xnn_delete_operator);
2054
2055 xnn_operator_t op86 = nullptr;
2056 status = xnn_create_convolution2d_nhwc_f32(
2057 0 /* top padding */, 0 /* right padding */,
2058 0 /* bottom padding */, 0 /* left padding */,
2059 1 /* kernel height */, 1 /* kernel width */,
2060 1 /* subsampling height */, 1 /* subsampling width */,
2061 1 /* dilation_height */, 1 /* dilation_width */,
2062 1 /* groups */,
2063 160 /* input channels per group */,
2064 960 /* output_channels_per_group */,
2065 160 /* input pixel stride */,
2066 960 /* output pixel stride */,
2067 w216.data(), w217.data(),
2068 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2069 0 /* flags */,
2070 &op86);
2071 if (status != xnn_status_success) {
2072 std::cerr << "failed to create operation #86" << std::endl;
2073 return ExecutionPlan();
2074 }
2075 operators.emplace_back(op86, xnn_delete_operator);
2076
2077 xnn_operator_t op87 = nullptr;
2078 status = xnn_create_hardswish_nc_f32(
2079 960 /* channels */,
2080 960 /* input stride */,
2081 960 /* output stride */,
2082 0 /* flags */,
2083 &op87);
2084 if (status != xnn_status_success) {
2085 std::cerr << "failed to create operation #87" << std::endl;
2086 return ExecutionPlan();
2087 }
2088 operators.emplace_back(op87, xnn_delete_operator);
2089
2090 xnn_operator_t op88 = nullptr;
2091 status = xnn_create_convolution2d_nhwc_f32(
2092 2 /* top padding */, 2 /* right padding */,
2093 2 /* bottom padding */, 2 /* left padding */,
2094 5 /* kernel height */, 5 /* kernel width */,
2095 1 /* subsampling height */, 1 /* subsampling width */,
2096 1 /* dilation_height */, 1 /* dilation_width */,
2097 960 /* groups */,
2098 1 /* input channels per group */,
2099 1 /* output_channels_per_group */,
2100 960 /* input pixel stride */,
2101 960 /* output pixel stride */,
2102 w218.data(), w219.data(),
2103 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2104 0 /* flags */,
2105 &op88);
2106 if (status != xnn_status_success) {
2107 std::cerr << "failed to create operation #88" << std::endl;
2108 return ExecutionPlan();
2109 }
2110 operators.emplace_back(op88, xnn_delete_operator);
2111
2112 xnn_operator_t op89 = nullptr;
2113 status = xnn_create_hardswish_nc_f32(
2114 960 /* channels */,
2115 960 /* input stride */,
2116 960 /* output stride */,
2117 0 /* flags */,
2118 &op89);
2119 if (status != xnn_status_success) {
2120 std::cerr << "failed to create operation #89" << std::endl;
2121 return ExecutionPlan();
2122 }
2123 operators.emplace_back(op89, xnn_delete_operator);
2124
2125 xnn_operator_t op90 = nullptr;
2126 status = xnn_create_global_average_pooling_nwc_f32(
2127 960 /* channels */, 960 /* input stride */, 960 /* output stride */,
2128 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2129 0 /* flags */,
2130 &op90);
2131 if (status != xnn_status_success) {
2132 std::cerr << "failed to create operation #90" << std::endl;
2133 return ExecutionPlan();
2134 }
2135 operators.emplace_back(op90, xnn_delete_operator);
2136
2137 xnn_operator_t op91 = nullptr;
2138 status = xnn_create_convolution2d_nhwc_f32(
2139 0 /* top padding */, 0 /* right padding */,
2140 0 /* bottom padding */, 0 /* left padding */,
2141 1 /* kernel height */, 1 /* kernel width */,
2142 1 /* subsampling height */, 1 /* subsampling width */,
2143 1 /* dilation_height */, 1 /* dilation_width */,
2144 1 /* groups */,
2145 960 /* input channels per group */,
2146 240 /* output_channels_per_group */,
2147 960 /* input pixel stride */,
2148 240 /* output pixel stride */,
2149 w220.data(), w221.data(),
2150 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2151 0 /* flags */,
2152 &op91);
2153 if (status != xnn_status_success) {
2154 std::cerr << "failed to create operation #91" << std::endl;
2155 return ExecutionPlan();
2156 }
2157 operators.emplace_back(op91, xnn_delete_operator);
2158
2159 xnn_operator_t op92 = nullptr;
2160 status = xnn_create_convolution2d_nhwc_f32(
2161 0 /* top padding */, 0 /* right padding */,
2162 0 /* bottom padding */, 0 /* left padding */,
2163 1 /* kernel height */, 1 /* kernel width */,
2164 1 /* subsampling height */, 1 /* subsampling width */,
2165 1 /* dilation_height */, 1 /* dilation_width */,
2166 1 /* groups */,
2167 240 /* input channels per group */,
2168 960 /* output_channels_per_group */,
2169 240 /* input pixel stride */,
2170 960 /* output pixel stride */,
2171 w222.data(), w223.data(),
2172 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2173 0 /* flags */,
2174 &op92);
2175 if (status != xnn_status_success) {
2176 std::cerr << "failed to create operation #92" << std::endl;
2177 return ExecutionPlan();
2178 }
2179 operators.emplace_back(op92, xnn_delete_operator);
2180
2181 xnn_operator_t op93 = nullptr;
2182 status = xnn_create_multiply_nd_f32(
2183 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2184 0 /* flags */,
2185 &op93);
2186 if (status != xnn_status_success) {
2187 std::cerr << "failed to create operation #93" << std::endl;
2188 return ExecutionPlan();
2189 }
2190 operators.emplace_back(op93, xnn_delete_operator);
2191
2192 xnn_operator_t op94 = nullptr;
2193 status = xnn_create_convolution2d_nhwc_f32(
2194 0 /* top padding */, 0 /* right padding */,
2195 0 /* bottom padding */, 0 /* left padding */,
2196 1 /* kernel height */, 1 /* kernel width */,
2197 1 /* subsampling height */, 1 /* subsampling width */,
2198 1 /* dilation_height */, 1 /* dilation_width */,
2199 1 /* groups */,
2200 960 /* input channels per group */,
2201 160 /* output_channels_per_group */,
2202 960 /* input pixel stride */,
2203 160 /* output pixel stride */,
2204 w224.data(), w225.data(),
2205 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2206 0 /* flags */,
2207 &op94);
2208 if (status != xnn_status_success) {
2209 std::cerr << "failed to create operation #94" << std::endl;
2210 return ExecutionPlan();
2211 }
2212 operators.emplace_back(op94, xnn_delete_operator);
2213
2214 xnn_operator_t op95 = nullptr;
2215 status = xnn_create_add_nd_f32(
2216 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2217 0 /* flags */,
2218 &op95);
2219 if (status != xnn_status_success) {
2220 std::cerr << "failed to create operation #95" << std::endl;
2221 return ExecutionPlan();
2222 }
2223 operators.emplace_back(op95, xnn_delete_operator);
2224
2225 xnn_operator_t op96 = nullptr;
2226 status = xnn_create_convolution2d_nhwc_f32(
2227 0 /* top padding */, 0 /* right padding */,
2228 0 /* bottom padding */, 0 /* left padding */,
2229 1 /* kernel height */, 1 /* kernel width */,
2230 1 /* subsampling height */, 1 /* subsampling width */,
2231 1 /* dilation_height */, 1 /* dilation_width */,
2232 1 /* groups */,
2233 160 /* input channels per group */,
2234 960 /* output_channels_per_group */,
2235 160 /* input pixel stride */,
2236 960 /* output pixel stride */,
2237 w226.data(), w227.data(),
2238 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2239 0 /* flags */,
2240 &op96);
2241 if (status != xnn_status_success) {
2242 std::cerr << "failed to create operation #96" << std::endl;
2243 return ExecutionPlan();
2244 }
2245 operators.emplace_back(op96, xnn_delete_operator);
2246
2247 xnn_operator_t op97 = nullptr;
2248 status = xnn_create_hardswish_nc_f32(
2249 960 /* channels */,
2250 960 /* input stride */,
2251 960 /* output stride */,
2252 0 /* flags */,
2253 &op97);
2254 if (status != xnn_status_success) {
2255 std::cerr << "failed to create operation #97" << std::endl;
2256 return ExecutionPlan();
2257 }
2258 operators.emplace_back(op97, xnn_delete_operator);
2259
2260 xnn_operator_t op98 = nullptr;
2261 status = xnn_create_convolution2d_nhwc_f32(
2262 2 /* top padding */, 2 /* right padding */,
2263 2 /* bottom padding */, 2 /* left padding */,
2264 5 /* kernel height */, 5 /* kernel width */,
2265 1 /* subsampling height */, 1 /* subsampling width */,
2266 1 /* dilation_height */, 1 /* dilation_width */,
2267 960 /* groups */,
2268 1 /* input channels per group */,
2269 1 /* output_channels_per_group */,
2270 960 /* input pixel stride */,
2271 960 /* output pixel stride */,
2272 w228.data(), w229.data(),
2273 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2274 0 /* flags */,
2275 &op98);
2276 if (status != xnn_status_success) {
2277 std::cerr << "failed to create operation #98" << std::endl;
2278 return ExecutionPlan();
2279 }
2280 operators.emplace_back(op98, xnn_delete_operator);
2281
2282 xnn_operator_t op99 = nullptr;
2283 status = xnn_create_hardswish_nc_f32(
2284 960 /* channels */,
2285 960 /* input stride */,
2286 960 /* output stride */,
2287 0 /* flags */,
2288 &op99);
2289 if (status != xnn_status_success) {
2290 std::cerr << "failed to create operation #99" << std::endl;
2291 return ExecutionPlan();
2292 }
2293 operators.emplace_back(op99, xnn_delete_operator);
2294
2295 xnn_operator_t op100 = nullptr;
2296 status = xnn_create_global_average_pooling_nwc_f32(
2297 960 /* channels */, 960 /* input stride */, 960 /* output stride */,
2298 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2299 0 /* flags */,
2300 &op100);
2301 if (status != xnn_status_success) {
2302 std::cerr << "failed to create operation #100" << std::endl;
2303 return ExecutionPlan();
2304 }
2305 operators.emplace_back(op100, xnn_delete_operator);
2306
2307 xnn_operator_t op101 = nullptr;
2308 status = xnn_create_convolution2d_nhwc_f32(
2309 0 /* top padding */, 0 /* right padding */,
2310 0 /* bottom padding */, 0 /* left padding */,
2311 1 /* kernel height */, 1 /* kernel width */,
2312 1 /* subsampling height */, 1 /* subsampling width */,
2313 1 /* dilation_height */, 1 /* dilation_width */,
2314 1 /* groups */,
2315 960 /* input channels per group */,
2316 240 /* output_channels_per_group */,
2317 960 /* input pixel stride */,
2318 240 /* output pixel stride */,
2319 w230.data(), w231.data(),
2320 0.0f /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2321 0 /* flags */,
2322 &op101);
2323 if (status != xnn_status_success) {
2324 std::cerr << "failed to create operation #101" << std::endl;
2325 return ExecutionPlan();
2326 }
2327 operators.emplace_back(op101, xnn_delete_operator);
2328
2329 xnn_operator_t op102 = nullptr;
2330 status = xnn_create_convolution2d_nhwc_f32(
2331 0 /* top padding */, 0 /* right padding */,
2332 0 /* bottom padding */, 0 /* left padding */,
2333 1 /* kernel height */, 1 /* kernel width */,
2334 1 /* subsampling height */, 1 /* subsampling width */,
2335 1 /* dilation_height */, 1 /* dilation_width */,
2336 1 /* groups */,
2337 240 /* input channels per group */,
2338 960 /* output_channels_per_group */,
2339 240 /* input pixel stride */,
2340 960 /* output pixel stride */,
2341 w232.data(), w233.data(),
2342 0.0f /* output min */, +0x1.00014Fp+0 /* output max */,
2343 0 /* flags */,
2344 &op102);
2345 if (status != xnn_status_success) {
2346 std::cerr << "failed to create operation #102" << std::endl;
2347 return ExecutionPlan();
2348 }
2349 operators.emplace_back(op102, xnn_delete_operator);
2350
2351 xnn_operator_t op103 = nullptr;
2352 status = xnn_create_multiply_nd_f32(
2353 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2354 0 /* flags */,
2355 &op103);
2356 if (status != xnn_status_success) {
2357 std::cerr << "failed to create operation #103" << std::endl;
2358 return ExecutionPlan();
2359 }
2360 operators.emplace_back(op103, xnn_delete_operator);
2361
2362 xnn_operator_t op104 = nullptr;
2363 status = xnn_create_convolution2d_nhwc_f32(
2364 0 /* top padding */, 0 /* right padding */,
2365 0 /* bottom padding */, 0 /* left padding */,
2366 1 /* kernel height */, 1 /* kernel width */,
2367 1 /* subsampling height */, 1 /* subsampling width */,
2368 1 /* dilation_height */, 1 /* dilation_width */,
2369 1 /* groups */,
2370 960 /* input channels per group */,
2371 160 /* output_channels_per_group */,
2372 960 /* input pixel stride */,
2373 160 /* output pixel stride */,
2374 w234.data(), w235.data(),
2375 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2376 0 /* flags */,
2377 &op104);
2378 if (status != xnn_status_success) {
2379 std::cerr << "failed to create operation #104" << std::endl;
2380 return ExecutionPlan();
2381 }
2382 operators.emplace_back(op104, xnn_delete_operator);
2383
2384 xnn_operator_t op105 = nullptr;
2385 status = xnn_create_add_nd_f32(
2386 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2387 0 /* flags */,
2388 &op105);
2389 if (status != xnn_status_success) {
2390 std::cerr << "failed to create operation #105" << std::endl;
2391 return ExecutionPlan();
2392 }
2393 operators.emplace_back(op105, xnn_delete_operator);
2394
2395 xnn_operator_t op106 = nullptr;
2396 status = xnn_create_convolution2d_nhwc_f32(
2397 0 /* top padding */, 0 /* right padding */,
2398 0 /* bottom padding */, 0 /* left padding */,
2399 1 /* kernel height */, 1 /* kernel width */,
2400 1 /* subsampling height */, 1 /* subsampling width */,
2401 1 /* dilation_height */, 1 /* dilation_width */,
2402 1 /* groups */,
2403 160 /* input channels per group */,
2404 960 /* output_channels_per_group */,
2405 160 /* input pixel stride */,
2406 960 /* output pixel stride */,
2407 w236.data(), w237.data(),
2408 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2409 0 /* flags */,
2410 &op106);
2411 if (status != xnn_status_success) {
2412 std::cerr << "failed to create operation #106" << std::endl;
2413 return ExecutionPlan();
2414 }
2415 operators.emplace_back(op106, xnn_delete_operator);
2416
2417 xnn_operator_t op107 = nullptr;
2418 status = xnn_create_hardswish_nc_f32(
2419 960 /* channels */,
2420 960 /* input stride */,
2421 960 /* output stride */,
2422 0 /* flags */,
2423 &op107);
2424 if (status != xnn_status_success) {
2425 std::cerr << "failed to create operation #107" << std::endl;
2426 return ExecutionPlan();
2427 }
2428 operators.emplace_back(op107, xnn_delete_operator);
2429
2430 xnn_operator_t op108 = nullptr;
2431 status = xnn_create_global_average_pooling_nwc_f32(
2432 960 /* channels */, 960 /* input stride */, 960 /* output stride */,
2433 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2434 0 /* flags */,
2435 &op108);
2436 if (status != xnn_status_success) {
2437 std::cerr << "failed to create operation #108" << std::endl;
2438 return ExecutionPlan();
2439 }
2440 operators.emplace_back(op108, xnn_delete_operator);
2441
2442 xnn_operator_t op109 = nullptr;
2443 status = xnn_create_convolution2d_nhwc_f32(
2444 0 /* top padding */, 0 /* right padding */,
2445 0 /* bottom padding */, 0 /* left padding */,
2446 1 /* kernel height */, 1 /* kernel width */,
2447 1 /* subsampling height */, 1 /* subsampling width */,
2448 1 /* dilation_height */, 1 /* dilation_width */,
2449 1 /* groups */,
2450 960 /* input channels per group */,
2451 1280 /* output_channels_per_group */,
2452 960 /* input pixel stride */,
2453 1280 /* output pixel stride */,
2454 w238.data(), w239.data(),
2455 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2456 0 /* flags */,
2457 &op109);
2458 if (status != xnn_status_success) {
2459 std::cerr << "failed to create operation #109" << std::endl;
2460 return ExecutionPlan();
2461 }
2462 operators.emplace_back(op109, xnn_delete_operator);
2463
2464 xnn_operator_t op110 = nullptr;
2465 status = xnn_create_hardswish_nc_f32(
2466 1280 /* channels */,
2467 1280 /* input stride */,
2468 1280 /* output stride */,
2469 0 /* flags */,
2470 &op110);
2471 if (status != xnn_status_success) {
2472 std::cerr << "failed to create operation #110" << std::endl;
2473 return ExecutionPlan();
2474 }
2475 operators.emplace_back(op110, xnn_delete_operator);
2476
2477 xnn_operator_t op111 = nullptr;
2478 status = xnn_create_global_average_pooling_nwc_f32(
2479 1280 /* channels */, 1280 /* input stride */, 1280 /* output stride */,
2480 -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
2481 0 /* flags */,
2482 &op111);
2483 if (status != xnn_status_success) {
2484 std::cerr << "failed to create operation #111" << std::endl;
2485 return ExecutionPlan();
2486 }
2487 operators.emplace_back(op111, xnn_delete_operator);
2488
2489 xnn_operator_t op112 = nullptr;
2490 status = xnn_create_convolution2d_nhwc_f32(
2491 0 /* top padding */, 0 /* right padding */,
2492 0 /* bottom padding */, 0 /* left padding */,
2493 1 /* kernel height */, 1 /* kernel width */,
2494 1 /* subsampling height */, 1 /* subsampling width */,
2495 1 /* dilation_height */, 1 /* dilation_width */,
2496 1 /* groups */,
2497 1280 /* input channels per group */,
2498 1001 /* output_channels_per_group */,
2499 1280 /* input pixel stride */,
2500 1001 /* output pixel stride */,
2501 w240.data(), w241.data(),
2502 -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
2503 0 /* flags */,
2504 &op112);
2505 if (status != xnn_status_success) {
2506 std::cerr << "failed to create operation #112" << std::endl;
2507 return ExecutionPlan();
2508 }
2509 operators.emplace_back(op112, xnn_delete_operator);
2510
2511
2512
2513 status = xnn_setup_convolution2d_nhwc_f32(
2514 op0,
2515 1 /* batch size */, 224 /* input height */, 224 /* input width */,
2516 v0.data() /* input */, v1.data() /* output */,
2517 threadpool /* threadpool */);
2518 if (status != xnn_status_success) {
2519 std::cerr << "failed to setup operation #0" << std::endl;
2520 return ExecutionPlan();
2521 }
2522
2523 status = xnn_setup_hardswish_nc_f32(
2524 op1,
2525 12544 /* batch size */,
2526 v1.data() /* input */, v2.data() /* output */,
2527 threadpool /* threadpool */);
2528 if (status != xnn_status_success) {
2529 std::cerr << "failed to setup operation #1" << std::endl;
2530 return ExecutionPlan();
2531 }
2532
2533 status = xnn_setup_convolution2d_nhwc_f32(
2534 op2,
2535 1 /* batch size */, 112 /* input height */, 112 /* input width */,
2536 v2.data() /* input */, v3.data() /* output */,
2537 threadpool /* threadpool */);
2538 if (status != xnn_status_success) {
2539 std::cerr << "failed to setup operation #2" << std::endl;
2540 return ExecutionPlan();
2541 }
2542
2543 status = xnn_setup_convolution2d_nhwc_f32(
2544 op3,
2545 1 /* batch size */, 112 /* input height */, 112 /* input width */,
2546 v3.data() /* input */, v4.data() /* output */,
2547 threadpool /* threadpool */);
2548 if (status != xnn_status_success) {
2549 std::cerr << "failed to setup operation #3" << std::endl;
2550 return ExecutionPlan();
2551 }
2552
2553 {
2554 const size_t a_shape[] = { 1, 112, 112, 16 };
2555 const size_t b_shape[] = { 1, 112, 112, 16 };
2556 status = xnn_setup_add_nd_f32(
2557 op4,
2558 4, a_shape, 4, b_shape,
2559 v4.data() /* a */, v2.data() /* b */, v5.data() /* output */,
2560 threadpool /* threadpool */);
2561 }
2562 if (status != xnn_status_success) {
2563 std::cerr << "failed to setup operation #4" << std::endl;
2564 return ExecutionPlan();
2565 }
2566
2567 status = xnn_setup_convolution2d_nhwc_f32(
2568 op5,
2569 1 /* batch size */, 112 /* input height */, 112 /* input width */,
2570 v5.data() /* input */, v6.data() /* output */,
2571 threadpool /* threadpool */);
2572 if (status != xnn_status_success) {
2573 std::cerr << "failed to setup operation #5" << std::endl;
2574 return ExecutionPlan();
2575 }
2576
2577 status = xnn_setup_convolution2d_nhwc_f32(
2578 op6,
2579 1 /* batch size */, 112 /* input height */, 112 /* input width */,
2580 v6.data() /* input */, v7.data() /* output */,
2581 threadpool /* threadpool */);
2582 if (status != xnn_status_success) {
2583 std::cerr << "failed to setup operation #6" << std::endl;
2584 return ExecutionPlan();
2585 }
2586
2587 status = xnn_setup_convolution2d_nhwc_f32(
2588 op7,
2589 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2590 v7.data() /* input */, v8.data() /* output */,
2591 threadpool /* threadpool */);
2592 if (status != xnn_status_success) {
2593 std::cerr << "failed to setup operation #7" << std::endl;
2594 return ExecutionPlan();
2595 }
2596
2597 status = xnn_setup_convolution2d_nhwc_f32(
2598 op8,
2599 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2600 v8.data() /* input */, v9.data() /* output */,
2601 threadpool /* threadpool */);
2602 if (status != xnn_status_success) {
2603 std::cerr << "failed to setup operation #8" << std::endl;
2604 return ExecutionPlan();
2605 }
2606
2607 status = xnn_setup_convolution2d_nhwc_f32(
2608 op9,
2609 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2610 v9.data() /* input */, v10.data() /* output */,
2611 threadpool /* threadpool */);
2612 if (status != xnn_status_success) {
2613 std::cerr << "failed to setup operation #9" << std::endl;
2614 return ExecutionPlan();
2615 }
2616
2617 status = xnn_setup_convolution2d_nhwc_f32(
2618 op10,
2619 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2620 v10.data() /* input */, v11.data() /* output */,
2621 threadpool /* threadpool */);
2622 if (status != xnn_status_success) {
2623 std::cerr << "failed to setup operation #10" << std::endl;
2624 return ExecutionPlan();
2625 }
2626
2627 {
2628 const size_t a_shape[] = { 1, 56, 56, 24 };
2629 const size_t b_shape[] = { 1, 56, 56, 24 };
2630 status = xnn_setup_add_nd_f32(
2631 op11,
2632 4, a_shape, 4, b_shape,
2633 v11.data() /* a */, v8.data() /* b */, v12.data() /* output */,
2634 threadpool /* threadpool */);
2635 }
2636 if (status != xnn_status_success) {
2637 std::cerr << "failed to setup operation #11" << std::endl;
2638 return ExecutionPlan();
2639 }
2640
2641 status = xnn_setup_convolution2d_nhwc_f32(
2642 op12,
2643 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2644 v12.data() /* input */, v13.data() /* output */,
2645 threadpool /* threadpool */);
2646 if (status != xnn_status_success) {
2647 std::cerr << "failed to setup operation #12" << std::endl;
2648 return ExecutionPlan();
2649 }
2650
2651 status = xnn_setup_convolution2d_nhwc_f32(
2652 op13,
2653 1 /* batch size */, 56 /* input height */, 56 /* input width */,
2654 v13.data() /* input */, v14.data() /* output */,
2655 threadpool /* threadpool */);
2656 if (status != xnn_status_success) {
2657 std::cerr << "failed to setup operation #13" << std::endl;
2658 return ExecutionPlan();
2659 }
2660
2661 status = xnn_setup_global_average_pooling_nwc_f32(
2662 op14,
2663 1 /* batch size */, 784 /* width */,
2664 v14.data() /* input */, v15.data() /* output */,
2665 threadpool /* threadpool */);
2666 if (status != xnn_status_success) {
2667 std::cerr << "failed to setup operation #14" << std::endl;
2668 return ExecutionPlan();
2669 }
2670
2671 status = xnn_setup_convolution2d_nhwc_f32(
2672 op15,
2673 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2674 v15.data() /* input */, v16.data() /* output */,
2675 threadpool /* threadpool */);
2676 if (status != xnn_status_success) {
2677 std::cerr << "failed to setup operation #15" << std::endl;
2678 return ExecutionPlan();
2679 }
2680
2681 status = xnn_setup_convolution2d_nhwc_f32(
2682 op16,
2683 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2684 v16.data() /* input */, v17.data() /* output */,
2685 threadpool /* threadpool */);
2686 if (status != xnn_status_success) {
2687 std::cerr << "failed to setup operation #16" << std::endl;
2688 return ExecutionPlan();
2689 }
2690
2691 {
2692 const size_t a_shape[] = { 1, 28, 28, 72 };
2693 const size_t b_shape[] = { 1, 1, 1, 72 };
2694 status = xnn_setup_multiply_nd_f32(
2695 op17,
2696 4, a_shape, 4, b_shape,
2697 v14.data() /* a */, v17.data() /* b */, v18.data() /* output */,
2698 threadpool /* threadpool */);
2699 }
2700 if (status != xnn_status_success) {
2701 std::cerr << "failed to setup operation #17" << std::endl;
2702 return ExecutionPlan();
2703 }
2704
2705 status = xnn_setup_convolution2d_nhwc_f32(
2706 op18,
2707 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2708 v18.data() /* input */, v19.data() /* output */,
2709 threadpool /* threadpool */);
2710 if (status != xnn_status_success) {
2711 std::cerr << "failed to setup operation #18" << std::endl;
2712 return ExecutionPlan();
2713 }
2714
2715 status = xnn_setup_convolution2d_nhwc_f32(
2716 op19,
2717 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2718 v19.data() /* input */, v20.data() /* output */,
2719 threadpool /* threadpool */);
2720 if (status != xnn_status_success) {
2721 std::cerr << "failed to setup operation #19" << std::endl;
2722 return ExecutionPlan();
2723 }
2724
2725 status = xnn_setup_convolution2d_nhwc_f32(
2726 op20,
2727 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2728 v20.data() /* input */, v21.data() /* output */,
2729 threadpool /* threadpool */);
2730 if (status != xnn_status_success) {
2731 std::cerr << "failed to setup operation #20" << std::endl;
2732 return ExecutionPlan();
2733 }
2734
2735 status = xnn_setup_global_average_pooling_nwc_f32(
2736 op21,
2737 1 /* batch size */, 784 /* width */,
2738 v21.data() /* input */, v22.data() /* output */,
2739 threadpool /* threadpool */);
2740 if (status != xnn_status_success) {
2741 std::cerr << "failed to setup operation #21" << std::endl;
2742 return ExecutionPlan();
2743 }
2744
2745 status = xnn_setup_convolution2d_nhwc_f32(
2746 op22,
2747 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2748 v22.data() /* input */, v23.data() /* output */,
2749 threadpool /* threadpool */);
2750 if (status != xnn_status_success) {
2751 std::cerr << "failed to setup operation #22" << std::endl;
2752 return ExecutionPlan();
2753 }
2754
2755 status = xnn_setup_convolution2d_nhwc_f32(
2756 op23,
2757 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2758 v23.data() /* input */, v24.data() /* output */,
2759 threadpool /* threadpool */);
2760 if (status != xnn_status_success) {
2761 std::cerr << "failed to setup operation #23" << std::endl;
2762 return ExecutionPlan();
2763 }
2764
2765 {
2766 const size_t a_shape[] = { 1, 28, 28, 120 };
2767 const size_t b_shape[] = { 1, 1, 1, 120 };
2768 status = xnn_setup_multiply_nd_f32(
2769 op24,
2770 4, a_shape, 4, b_shape,
2771 v21.data() /* a */, v24.data() /* b */, v25.data() /* output */,
2772 threadpool /* threadpool */);
2773 }
2774 if (status != xnn_status_success) {
2775 std::cerr << "failed to setup operation #24" << std::endl;
2776 return ExecutionPlan();
2777 }
2778
2779 status = xnn_setup_convolution2d_nhwc_f32(
2780 op25,
2781 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2782 v25.data() /* input */, v26.data() /* output */,
2783 threadpool /* threadpool */);
2784 if (status != xnn_status_success) {
2785 std::cerr << "failed to setup operation #25" << std::endl;
2786 return ExecutionPlan();
2787 }
2788
2789 {
2790 const size_t a_shape[] = { 1, 28, 28, 40 };
2791 const size_t b_shape[] = { 1, 28, 28, 40 };
2792 status = xnn_setup_add_nd_f32(
2793 op26,
2794 4, a_shape, 4, b_shape,
2795 v26.data() /* a */, v19.data() /* b */, v27.data() /* output */,
2796 threadpool /* threadpool */);
2797 }
2798 if (status != xnn_status_success) {
2799 std::cerr << "failed to setup operation #26" << std::endl;
2800 return ExecutionPlan();
2801 }
2802
2803 status = xnn_setup_convolution2d_nhwc_f32(
2804 op27,
2805 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2806 v27.data() /* input */, v28.data() /* output */,
2807 threadpool /* threadpool */);
2808 if (status != xnn_status_success) {
2809 std::cerr << "failed to setup operation #27" << std::endl;
2810 return ExecutionPlan();
2811 }
2812
2813 status = xnn_setup_convolution2d_nhwc_f32(
2814 op28,
2815 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2816 v28.data() /* input */, v29.data() /* output */,
2817 threadpool /* threadpool */);
2818 if (status != xnn_status_success) {
2819 std::cerr << "failed to setup operation #28" << std::endl;
2820 return ExecutionPlan();
2821 }
2822
2823 status = xnn_setup_global_average_pooling_nwc_f32(
2824 op29,
2825 1 /* batch size */, 784 /* width */,
2826 v29.data() /* input */, v30.data() /* output */,
2827 threadpool /* threadpool */);
2828 if (status != xnn_status_success) {
2829 std::cerr << "failed to setup operation #29" << std::endl;
2830 return ExecutionPlan();
2831 }
2832
2833 status = xnn_setup_convolution2d_nhwc_f32(
2834 op30,
2835 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2836 v30.data() /* input */, v31.data() /* output */,
2837 threadpool /* threadpool */);
2838 if (status != xnn_status_success) {
2839 std::cerr << "failed to setup operation #30" << std::endl;
2840 return ExecutionPlan();
2841 }
2842
2843 status = xnn_setup_convolution2d_nhwc_f32(
2844 op31,
2845 1 /* batch size */, 1 /* input height */, 1 /* input width */,
2846 v31.data() /* input */, v32.data() /* output */,
2847 threadpool /* threadpool */);
2848 if (status != xnn_status_success) {
2849 std::cerr << "failed to setup operation #31" << std::endl;
2850 return ExecutionPlan();
2851 }
2852
2853 {
2854 const size_t a_shape[] = { 1, 28, 28, 120 };
2855 const size_t b_shape[] = { 1, 1, 1, 120 };
2856 status = xnn_setup_multiply_nd_f32(
2857 op32,
2858 4, a_shape, 4, b_shape,
2859 v29.data() /* a */, v32.data() /* b */, v33.data() /* output */,
2860 threadpool /* threadpool */);
2861 }
2862 if (status != xnn_status_success) {
2863 std::cerr << "failed to setup operation #32" << std::endl;
2864 return ExecutionPlan();
2865 }
2866
2867 status = xnn_setup_convolution2d_nhwc_f32(
2868 op33,
2869 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2870 v33.data() /* input */, v34.data() /* output */,
2871 threadpool /* threadpool */);
2872 if (status != xnn_status_success) {
2873 std::cerr << "failed to setup operation #33" << std::endl;
2874 return ExecutionPlan();
2875 }
2876
2877 {
2878 const size_t a_shape[] = { 1, 28, 28, 40 };
2879 const size_t b_shape[] = { 1, 28, 28, 40 };
2880 status = xnn_setup_add_nd_f32(
2881 op34,
2882 4, a_shape, 4, b_shape,
2883 v34.data() /* a */, v27.data() /* b */, v35.data() /* output */,
2884 threadpool /* threadpool */);
2885 }
2886 if (status != xnn_status_success) {
2887 std::cerr << "failed to setup operation #34" << std::endl;
2888 return ExecutionPlan();
2889 }
2890
2891 status = xnn_setup_convolution2d_nhwc_f32(
2892 op35,
2893 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2894 v35.data() /* input */, v36.data() /* output */,
2895 threadpool /* threadpool */);
2896 if (status != xnn_status_success) {
2897 std::cerr << "failed to setup operation #35" << std::endl;
2898 return ExecutionPlan();
2899 }
2900
2901 status = xnn_setup_hardswish_nc_f32(
2902 op36,
2903 784 /* batch size */,
2904 v36.data() /* input */, v37.data() /* output */,
2905 threadpool /* threadpool */);
2906 if (status != xnn_status_success) {
2907 std::cerr << "failed to setup operation #36" << std::endl;
2908 return ExecutionPlan();
2909 }
2910
2911 status = xnn_setup_convolution2d_nhwc_f32(
2912 op37,
2913 1 /* batch size */, 28 /* input height */, 28 /* input width */,
2914 v37.data() /* input */, v38.data() /* output */,
2915 threadpool /* threadpool */);
2916 if (status != xnn_status_success) {
2917 std::cerr << "failed to setup operation #37" << std::endl;
2918 return ExecutionPlan();
2919 }
2920
2921 status = xnn_setup_hardswish_nc_f32(
2922 op38,
2923 196 /* batch size */,
2924 v38.data() /* input */, v39.data() /* output */,
2925 threadpool /* threadpool */);
2926 if (status != xnn_status_success) {
2927 std::cerr << "failed to setup operation #38" << std::endl;
2928 return ExecutionPlan();
2929 }
2930
2931 status = xnn_setup_convolution2d_nhwc_f32(
2932 op39,
2933 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2934 v39.data() /* input */, v40.data() /* output */,
2935 threadpool /* threadpool */);
2936 if (status != xnn_status_success) {
2937 std::cerr << "failed to setup operation #39" << std::endl;
2938 return ExecutionPlan();
2939 }
2940
2941 status = xnn_setup_convolution2d_nhwc_f32(
2942 op40,
2943 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2944 v40.data() /* input */, v41.data() /* output */,
2945 threadpool /* threadpool */);
2946 if (status != xnn_status_success) {
2947 std::cerr << "failed to setup operation #40" << std::endl;
2948 return ExecutionPlan();
2949 }
2950
2951 status = xnn_setup_hardswish_nc_f32(
2952 op41,
2953 196 /* batch size */,
2954 v41.data() /* input */, v42.data() /* output */,
2955 threadpool /* threadpool */);
2956 if (status != xnn_status_success) {
2957 std::cerr << "failed to setup operation #41" << std::endl;
2958 return ExecutionPlan();
2959 }
2960
2961 status = xnn_setup_convolution2d_nhwc_f32(
2962 op42,
2963 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2964 v42.data() /* input */, v43.data() /* output */,
2965 threadpool /* threadpool */);
2966 if (status != xnn_status_success) {
2967 std::cerr << "failed to setup operation #42" << std::endl;
2968 return ExecutionPlan();
2969 }
2970
2971 status = xnn_setup_hardswish_nc_f32(
2972 op43,
2973 196 /* batch size */,
2974 v43.data() /* input */, v44.data() /* output */,
2975 threadpool /* threadpool */);
2976 if (status != xnn_status_success) {
2977 std::cerr << "failed to setup operation #43" << std::endl;
2978 return ExecutionPlan();
2979 }
2980
2981 status = xnn_setup_convolution2d_nhwc_f32(
2982 op44,
2983 1 /* batch size */, 14 /* input height */, 14 /* input width */,
2984 v44.data() /* input */, v45.data() /* output */,
2985 threadpool /* threadpool */);
2986 if (status != xnn_status_success) {
2987 std::cerr << "failed to setup operation #44" << std::endl;
2988 return ExecutionPlan();
2989 }
2990
2991 {
2992 const size_t a_shape[] = { 1, 14, 14, 80 };
2993 const size_t b_shape[] = { 1, 14, 14, 80 };
2994 status = xnn_setup_add_nd_f32(
2995 op45,
2996 4, a_shape, 4, b_shape,
2997 v45.data() /* a */, v40.data() /* b */, v46.data() /* output */,
2998 threadpool /* threadpool */);
2999 }
3000 if (status != xnn_status_success) {
3001 std::cerr << "failed to setup operation #45" << std::endl;
3002 return ExecutionPlan();
3003 }
3004
3005 status = xnn_setup_convolution2d_nhwc_f32(
3006 op46,
3007 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3008 v46.data() /* input */, v47.data() /* output */,
3009 threadpool /* threadpool */);
3010 if (status != xnn_status_success) {
3011 std::cerr << "failed to setup operation #46" << std::endl;
3012 return ExecutionPlan();
3013 }
3014
3015 status = xnn_setup_hardswish_nc_f32(
3016 op47,
3017 196 /* batch size */,
3018 v47.data() /* input */, v48.data() /* output */,
3019 threadpool /* threadpool */);
3020 if (status != xnn_status_success) {
3021 std::cerr << "failed to setup operation #47" << std::endl;
3022 return ExecutionPlan();
3023 }
3024
3025 status = xnn_setup_convolution2d_nhwc_f32(
3026 op48,
3027 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3028 v48.data() /* input */, v49.data() /* output */,
3029 threadpool /* threadpool */);
3030 if (status != xnn_status_success) {
3031 std::cerr << "failed to setup operation #48" << std::endl;
3032 return ExecutionPlan();
3033 }
3034
3035 status = xnn_setup_hardswish_nc_f32(
3036 op49,
3037 196 /* batch size */,
3038 v49.data() /* input */, v50.data() /* output */,
3039 threadpool /* threadpool */);
3040 if (status != xnn_status_success) {
3041 std::cerr << "failed to setup operation #49" << std::endl;
3042 return ExecutionPlan();
3043 }
3044
3045 status = xnn_setup_convolution2d_nhwc_f32(
3046 op50,
3047 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3048 v50.data() /* input */, v51.data() /* output */,
3049 threadpool /* threadpool */);
3050 if (status != xnn_status_success) {
3051 std::cerr << "failed to setup operation #50" << std::endl;
3052 return ExecutionPlan();
3053 }
3054
3055 {
3056 const size_t a_shape[] = { 1, 14, 14, 80 };
3057 const size_t b_shape[] = { 1, 14, 14, 80 };
3058 status = xnn_setup_add_nd_f32(
3059 op51,
3060 4, a_shape, 4, b_shape,
3061 v51.data() /* a */, v46.data() /* b */, v52.data() /* output */,
3062 threadpool /* threadpool */);
3063 }
3064 if (status != xnn_status_success) {
3065 std::cerr << "failed to setup operation #51" << std::endl;
3066 return ExecutionPlan();
3067 }
3068
3069 status = xnn_setup_convolution2d_nhwc_f32(
3070 op52,
3071 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3072 v52.data() /* input */, v53.data() /* output */,
3073 threadpool /* threadpool */);
3074 if (status != xnn_status_success) {
3075 std::cerr << "failed to setup operation #52" << std::endl;
3076 return ExecutionPlan();
3077 }
3078
3079 status = xnn_setup_hardswish_nc_f32(
3080 op53,
3081 196 /* batch size */,
3082 v53.data() /* input */, v54.data() /* output */,
3083 threadpool /* threadpool */);
3084 if (status != xnn_status_success) {
3085 std::cerr << "failed to setup operation #53" << std::endl;
3086 return ExecutionPlan();
3087 }
3088
3089 status = xnn_setup_convolution2d_nhwc_f32(
3090 op54,
3091 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3092 v54.data() /* input */, v55.data() /* output */,
3093 threadpool /* threadpool */);
3094 if (status != xnn_status_success) {
3095 std::cerr << "failed to setup operation #54" << std::endl;
3096 return ExecutionPlan();
3097 }
3098
3099 status = xnn_setup_hardswish_nc_f32(
3100 op55,
3101 196 /* batch size */,
3102 v55.data() /* input */, v56.data() /* output */,
3103 threadpool /* threadpool */);
3104 if (status != xnn_status_success) {
3105 std::cerr << "failed to setup operation #55" << std::endl;
3106 return ExecutionPlan();
3107 }
3108
3109 status = xnn_setup_convolution2d_nhwc_f32(
3110 op56,
3111 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3112 v56.data() /* input */, v57.data() /* output */,
3113 threadpool /* threadpool */);
3114 if (status != xnn_status_success) {
3115 std::cerr << "failed to setup operation #56" << std::endl;
3116 return ExecutionPlan();
3117 }
3118
3119 {
3120 const size_t a_shape[] = { 1, 14, 14, 80 };
3121 const size_t b_shape[] = { 1, 14, 14, 80 };
3122 status = xnn_setup_add_nd_f32(
3123 op57,
3124 4, a_shape, 4, b_shape,
3125 v57.data() /* a */, v52.data() /* b */, v58.data() /* output */,
3126 threadpool /* threadpool */);
3127 }
3128 if (status != xnn_status_success) {
3129 std::cerr << "failed to setup operation #57" << std::endl;
3130 return ExecutionPlan();
3131 }
3132
3133 status = xnn_setup_convolution2d_nhwc_f32(
3134 op58,
3135 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3136 v58.data() /* input */, v59.data() /* output */,
3137 threadpool /* threadpool */);
3138 if (status != xnn_status_success) {
3139 std::cerr << "failed to setup operation #58" << std::endl;
3140 return ExecutionPlan();
3141 }
3142
3143 status = xnn_setup_hardswish_nc_f32(
3144 op59,
3145 196 /* batch size */,
3146 v59.data() /* input */, v60.data() /* output */,
3147 threadpool /* threadpool */);
3148 if (status != xnn_status_success) {
3149 std::cerr << "failed to setup operation #59" << std::endl;
3150 return ExecutionPlan();
3151 }
3152
3153 status = xnn_setup_convolution2d_nhwc_f32(
3154 op60,
3155 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3156 v60.data() /* input */, v61.data() /* output */,
3157 threadpool /* threadpool */);
3158 if (status != xnn_status_success) {
3159 std::cerr << "failed to setup operation #60" << std::endl;
3160 return ExecutionPlan();
3161 }
3162
3163 status = xnn_setup_hardswish_nc_f32(
3164 op61,
3165 196 /* batch size */,
3166 v61.data() /* input */, v62.data() /* output */,
3167 threadpool /* threadpool */);
3168 if (status != xnn_status_success) {
3169 std::cerr << "failed to setup operation #61" << std::endl;
3170 return ExecutionPlan();
3171 }
3172
3173 status = xnn_setup_global_average_pooling_nwc_f32(
3174 op62,
3175 1 /* batch size */, 196 /* width */,
3176 v62.data() /* input */, v63.data() /* output */,
3177 threadpool /* threadpool */);
3178 if (status != xnn_status_success) {
3179 std::cerr << "failed to setup operation #62" << std::endl;
3180 return ExecutionPlan();
3181 }
3182
3183 status = xnn_setup_convolution2d_nhwc_f32(
3184 op63,
3185 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3186 v63.data() /* input */, v64.data() /* output */,
3187 threadpool /* threadpool */);
3188 if (status != xnn_status_success) {
3189 std::cerr << "failed to setup operation #63" << std::endl;
3190 return ExecutionPlan();
3191 }
3192
3193 status = xnn_setup_convolution2d_nhwc_f32(
3194 op64,
3195 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3196 v64.data() /* input */, v65.data() /* output */,
3197 threadpool /* threadpool */);
3198 if (status != xnn_status_success) {
3199 std::cerr << "failed to setup operation #64" << std::endl;
3200 return ExecutionPlan();
3201 }
3202
3203 {
3204 const size_t a_shape[] = { 1, 14, 14, 480 };
3205 const size_t b_shape[] = { 1, 1, 1, 480 };
3206 status = xnn_setup_multiply_nd_f32(
3207 op65,
3208 4, a_shape, 4, b_shape,
3209 v62.data() /* a */, v65.data() /* b */, v66.data() /* output */,
3210 threadpool /* threadpool */);
3211 }
3212 if (status != xnn_status_success) {
3213 std::cerr << "failed to setup operation #65" << std::endl;
3214 return ExecutionPlan();
3215 }
3216
3217 status = xnn_setup_convolution2d_nhwc_f32(
3218 op66,
3219 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3220 v66.data() /* input */, v67.data() /* output */,
3221 threadpool /* threadpool */);
3222 if (status != xnn_status_success) {
3223 std::cerr << "failed to setup operation #66" << std::endl;
3224 return ExecutionPlan();
3225 }
3226
3227 status = xnn_setup_convolution2d_nhwc_f32(
3228 op67,
3229 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3230 v67.data() /* input */, v68.data() /* output */,
3231 threadpool /* threadpool */);
3232 if (status != xnn_status_success) {
3233 std::cerr << "failed to setup operation #67" << std::endl;
3234 return ExecutionPlan();
3235 }
3236
3237 status = xnn_setup_hardswish_nc_f32(
3238 op68,
3239 196 /* batch size */,
3240 v68.data() /* input */, v69.data() /* output */,
3241 threadpool /* threadpool */);
3242 if (status != xnn_status_success) {
3243 std::cerr << "failed to setup operation #68" << std::endl;
3244 return ExecutionPlan();
3245 }
3246
3247 status = xnn_setup_convolution2d_nhwc_f32(
3248 op69,
3249 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3250 v69.data() /* input */, v70.data() /* output */,
3251 threadpool /* threadpool */);
3252 if (status != xnn_status_success) {
3253 std::cerr << "failed to setup operation #69" << std::endl;
3254 return ExecutionPlan();
3255 }
3256
3257 status = xnn_setup_hardswish_nc_f32(
3258 op70,
3259 196 /* batch size */,
3260 v70.data() /* input */, v71.data() /* output */,
3261 threadpool /* threadpool */);
3262 if (status != xnn_status_success) {
3263 std::cerr << "failed to setup operation #70" << std::endl;
3264 return ExecutionPlan();
3265 }
3266
3267 status = xnn_setup_global_average_pooling_nwc_f32(
3268 op71,
3269 1 /* batch size */, 196 /* width */,
3270 v71.data() /* input */, v72.data() /* output */,
3271 threadpool /* threadpool */);
3272 if (status != xnn_status_success) {
3273 std::cerr << "failed to setup operation #71" << std::endl;
3274 return ExecutionPlan();
3275 }
3276
3277 status = xnn_setup_convolution2d_nhwc_f32(
3278 op72,
3279 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3280 v72.data() /* input */, v73.data() /* output */,
3281 threadpool /* threadpool */);
3282 if (status != xnn_status_success) {
3283 std::cerr << "failed to setup operation #72" << std::endl;
3284 return ExecutionPlan();
3285 }
3286
3287 status = xnn_setup_convolution2d_nhwc_f32(
3288 op73,
3289 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3290 v73.data() /* input */, v74.data() /* output */,
3291 threadpool /* threadpool */);
3292 if (status != xnn_status_success) {
3293 std::cerr << "failed to setup operation #73" << std::endl;
3294 return ExecutionPlan();
3295 }
3296
3297 {
3298 const size_t a_shape[] = { 1, 14, 14, 672 };
3299 const size_t b_shape[] = { 1, 1, 1, 672 };
3300 status = xnn_setup_multiply_nd_f32(
3301 op74,
3302 4, a_shape, 4, b_shape,
3303 v71.data() /* a */, v74.data() /* b */, v75.data() /* output */,
3304 threadpool /* threadpool */);
3305 }
3306 if (status != xnn_status_success) {
3307 std::cerr << "failed to setup operation #74" << std::endl;
3308 return ExecutionPlan();
3309 }
3310
3311 status = xnn_setup_convolution2d_nhwc_f32(
3312 op75,
3313 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3314 v75.data() /* input */, v76.data() /* output */,
3315 threadpool /* threadpool */);
3316 if (status != xnn_status_success) {
3317 std::cerr << "failed to setup operation #75" << std::endl;
3318 return ExecutionPlan();
3319 }
3320
3321 {
3322 const size_t a_shape[] = { 1, 14, 14, 112 };
3323 const size_t b_shape[] = { 1, 14, 14, 112 };
3324 status = xnn_setup_add_nd_f32(
3325 op76,
3326 4, a_shape, 4, b_shape,
3327 v76.data() /* a */, v67.data() /* b */, v77.data() /* output */,
3328 threadpool /* threadpool */);
3329 }
3330 if (status != xnn_status_success) {
3331 std::cerr << "failed to setup operation #76" << std::endl;
3332 return ExecutionPlan();
3333 }
3334
3335 status = xnn_setup_convolution2d_nhwc_f32(
3336 op77,
3337 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3338 v77.data() /* input */, v78.data() /* output */,
3339 threadpool /* threadpool */);
3340 if (status != xnn_status_success) {
3341 std::cerr << "failed to setup operation #77" << std::endl;
3342 return ExecutionPlan();
3343 }
3344
3345 status = xnn_setup_hardswish_nc_f32(
3346 op78,
3347 196 /* batch size */,
3348 v78.data() /* input */, v79.data() /* output */,
3349 threadpool /* threadpool */);
3350 if (status != xnn_status_success) {
3351 std::cerr << "failed to setup operation #78" << std::endl;
3352 return ExecutionPlan();
3353 }
3354
3355 status = xnn_setup_convolution2d_nhwc_f32(
3356 op79,
3357 1 /* batch size */, 14 /* input height */, 14 /* input width */,
3358 v79.data() /* input */, v80.data() /* output */,
3359 threadpool /* threadpool */);
3360 if (status != xnn_status_success) {
3361 std::cerr << "failed to setup operation #79" << std::endl;
3362 return ExecutionPlan();
3363 }
3364
3365 status = xnn_setup_hardswish_nc_f32(
3366 op80,
3367 49 /* batch size */,
3368 v80.data() /* input */, v81.data() /* output */,
3369 threadpool /* threadpool */);
3370 if (status != xnn_status_success) {
3371 std::cerr << "failed to setup operation #80" << std::endl;
3372 return ExecutionPlan();
3373 }
3374
3375 status = xnn_setup_global_average_pooling_nwc_f32(
3376 op81,
3377 1 /* batch size */, 49 /* width */,
3378 v81.data() /* input */, v82.data() /* output */,
3379 threadpool /* threadpool */);
3380 if (status != xnn_status_success) {
3381 std::cerr << "failed to setup operation #81" << std::endl;
3382 return ExecutionPlan();
3383 }
3384
3385 status = xnn_setup_convolution2d_nhwc_f32(
3386 op82,
3387 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3388 v82.data() /* input */, v83.data() /* output */,
3389 threadpool /* threadpool */);
3390 if (status != xnn_status_success) {
3391 std::cerr << "failed to setup operation #82" << std::endl;
3392 return ExecutionPlan();
3393 }
3394
3395 status = xnn_setup_convolution2d_nhwc_f32(
3396 op83,
3397 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3398 v83.data() /* input */, v84.data() /* output */,
3399 threadpool /* threadpool */);
3400 if (status != xnn_status_success) {
3401 std::cerr << "failed to setup operation #83" << std::endl;
3402 return ExecutionPlan();
3403 }
3404
3405 {
3406 const size_t a_shape[] = { 1, 7, 7, 672 };
3407 const size_t b_shape[] = { 1, 1, 1, 672 };
3408 status = xnn_setup_multiply_nd_f32(
3409 op84,
3410 4, a_shape, 4, b_shape,
3411 v81.data() /* a */, v84.data() /* b */, v85.data() /* output */,
3412 threadpool /* threadpool */);
3413 }
3414 if (status != xnn_status_success) {
3415 std::cerr << "failed to setup operation #84" << std::endl;
3416 return ExecutionPlan();
3417 }
3418
3419 status = xnn_setup_convolution2d_nhwc_f32(
3420 op85,
3421 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3422 v85.data() /* input */, v86.data() /* output */,
3423 threadpool /* threadpool */);
3424 if (status != xnn_status_success) {
3425 std::cerr << "failed to setup operation #85" << std::endl;
3426 return ExecutionPlan();
3427 }
3428
3429 status = xnn_setup_convolution2d_nhwc_f32(
3430 op86,
3431 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3432 v86.data() /* input */, v87.data() /* output */,
3433 threadpool /* threadpool */);
3434 if (status != xnn_status_success) {
3435 std::cerr << "failed to setup operation #86" << std::endl;
3436 return ExecutionPlan();
3437 }
3438
3439 status = xnn_setup_hardswish_nc_f32(
3440 op87,
3441 49 /* batch size */,
3442 v87.data() /* input */, v88.data() /* output */,
3443 threadpool /* threadpool */);
3444 if (status != xnn_status_success) {
3445 std::cerr << "failed to setup operation #87" << std::endl;
3446 return ExecutionPlan();
3447 }
3448
3449 status = xnn_setup_convolution2d_nhwc_f32(
3450 op88,
3451 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3452 v88.data() /* input */, v89.data() /* output */,
3453 threadpool /* threadpool */);
3454 if (status != xnn_status_success) {
3455 std::cerr << "failed to setup operation #88" << std::endl;
3456 return ExecutionPlan();
3457 }
3458
3459 status = xnn_setup_hardswish_nc_f32(
3460 op89,
3461 49 /* batch size */,
3462 v89.data() /* input */, v90.data() /* output */,
3463 threadpool /* threadpool */);
3464 if (status != xnn_status_success) {
3465 std::cerr << "failed to setup operation #89" << std::endl;
3466 return ExecutionPlan();
3467 }
3468
3469 status = xnn_setup_global_average_pooling_nwc_f32(
3470 op90,
3471 1 /* batch size */, 49 /* width */,
3472 v90.data() /* input */, v91.data() /* output */,
3473 threadpool /* threadpool */);
3474 if (status != xnn_status_success) {
3475 std::cerr << "failed to setup operation #90" << std::endl;
3476 return ExecutionPlan();
3477 }
3478
3479 status = xnn_setup_convolution2d_nhwc_f32(
3480 op91,
3481 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3482 v91.data() /* input */, v92.data() /* output */,
3483 threadpool /* threadpool */);
3484 if (status != xnn_status_success) {
3485 std::cerr << "failed to setup operation #91" << std::endl;
3486 return ExecutionPlan();
3487 }
3488
3489 status = xnn_setup_convolution2d_nhwc_f32(
3490 op92,
3491 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3492 v92.data() /* input */, v93.data() /* output */,
3493 threadpool /* threadpool */);
3494 if (status != xnn_status_success) {
3495 std::cerr << "failed to setup operation #92" << std::endl;
3496 return ExecutionPlan();
3497 }
3498
3499 {
3500 const size_t a_shape[] = { 1, 7, 7, 960 };
3501 const size_t b_shape[] = { 1, 1, 1, 960 };
3502 status = xnn_setup_multiply_nd_f32(
3503 op93,
3504 4, a_shape, 4, b_shape,
3505 v90.data() /* a */, v93.data() /* b */, v94.data() /* output */,
3506 threadpool /* threadpool */);
3507 }
3508 if (status != xnn_status_success) {
3509 std::cerr << "failed to setup operation #93" << std::endl;
3510 return ExecutionPlan();
3511 }
3512
3513 status = xnn_setup_convolution2d_nhwc_f32(
3514 op94,
3515 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3516 v94.data() /* input */, v95.data() /* output */,
3517 threadpool /* threadpool */);
3518 if (status != xnn_status_success) {
3519 std::cerr << "failed to setup operation #94" << std::endl;
3520 return ExecutionPlan();
3521 }
3522
3523 {
3524 const size_t a_shape[] = { 1, 7, 7, 160 };
3525 const size_t b_shape[] = { 1, 7, 7, 160 };
3526 status = xnn_setup_add_nd_f32(
3527 op95,
3528 4, a_shape, 4, b_shape,
3529 v95.data() /* a */, v86.data() /* b */, v96.data() /* output */,
3530 threadpool /* threadpool */);
3531 }
3532 if (status != xnn_status_success) {
3533 std::cerr << "failed to setup operation #95" << std::endl;
3534 return ExecutionPlan();
3535 }
3536
3537 status = xnn_setup_convolution2d_nhwc_f32(
3538 op96,
3539 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3540 v96.data() /* input */, v97.data() /* output */,
3541 threadpool /* threadpool */);
3542 if (status != xnn_status_success) {
3543 std::cerr << "failed to setup operation #96" << std::endl;
3544 return ExecutionPlan();
3545 }
3546
3547 status = xnn_setup_hardswish_nc_f32(
3548 op97,
3549 49 /* batch size */,
3550 v97.data() /* input */, v98.data() /* output */,
3551 threadpool /* threadpool */);
3552 if (status != xnn_status_success) {
3553 std::cerr << "failed to setup operation #97" << std::endl;
3554 return ExecutionPlan();
3555 }
3556
3557 status = xnn_setup_convolution2d_nhwc_f32(
3558 op98,
3559 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3560 v98.data() /* input */, v99.data() /* output */,
3561 threadpool /* threadpool */);
3562 if (status != xnn_status_success) {
3563 std::cerr << "failed to setup operation #98" << std::endl;
3564 return ExecutionPlan();
3565 }
3566
3567 status = xnn_setup_hardswish_nc_f32(
3568 op99,
3569 49 /* batch size */,
3570 v99.data() /* input */, v100.data() /* output */,
3571 threadpool /* threadpool */);
3572 if (status != xnn_status_success) {
3573 std::cerr << "failed to setup operation #99" << std::endl;
3574 return ExecutionPlan();
3575 }
3576
3577 status = xnn_setup_global_average_pooling_nwc_f32(
3578 op100,
3579 1 /* batch size */, 49 /* width */,
3580 v100.data() /* input */, v101.data() /* output */,
3581 threadpool /* threadpool */);
3582 if (status != xnn_status_success) {
3583 std::cerr << "failed to setup operation #100" << std::endl;
3584 return ExecutionPlan();
3585 }
3586
3587 status = xnn_setup_convolution2d_nhwc_f32(
3588 op101,
3589 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3590 v101.data() /* input */, v102.data() /* output */,
3591 threadpool /* threadpool */);
3592 if (status != xnn_status_success) {
3593 std::cerr << "failed to setup operation #101" << std::endl;
3594 return ExecutionPlan();
3595 }
3596
3597 status = xnn_setup_convolution2d_nhwc_f32(
3598 op102,
3599 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3600 v102.data() /* input */, v103.data() /* output */,
3601 threadpool /* threadpool */);
3602 if (status != xnn_status_success) {
3603 std::cerr << "failed to setup operation #102" << std::endl;
3604 return ExecutionPlan();
3605 }
3606
3607 {
3608 const size_t a_shape[] = { 1, 7, 7, 960 };
3609 const size_t b_shape[] = { 1, 1, 1, 960 };
3610 status = xnn_setup_multiply_nd_f32(
3611 op103,
3612 4, a_shape, 4, b_shape,
3613 v100.data() /* a */, v103.data() /* b */, v104.data() /* output */,
3614 threadpool /* threadpool */);
3615 }
3616 if (status != xnn_status_success) {
3617 std::cerr << "failed to setup operation #103" << std::endl;
3618 return ExecutionPlan();
3619 }
3620
3621 status = xnn_setup_convolution2d_nhwc_f32(
3622 op104,
3623 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3624 v104.data() /* input */, v105.data() /* output */,
3625 threadpool /* threadpool */);
3626 if (status != xnn_status_success) {
3627 std::cerr << "failed to setup operation #104" << std::endl;
3628 return ExecutionPlan();
3629 }
3630
3631 {
3632 const size_t a_shape[] = { 1, 7, 7, 160 };
3633 const size_t b_shape[] = { 1, 7, 7, 160 };
3634 status = xnn_setup_add_nd_f32(
3635 op105,
3636 4, a_shape, 4, b_shape,
3637 v105.data() /* a */, v96.data() /* b */, v106.data() /* output */,
3638 threadpool /* threadpool */);
3639 }
3640 if (status != xnn_status_success) {
3641 std::cerr << "failed to setup operation #105" << std::endl;
3642 return ExecutionPlan();
3643 }
3644
3645 status = xnn_setup_convolution2d_nhwc_f32(
3646 op106,
3647 1 /* batch size */, 7 /* input height */, 7 /* input width */,
3648 v106.data() /* input */, v107.data() /* output */,
3649 threadpool /* threadpool */);
3650 if (status != xnn_status_success) {
3651 std::cerr << "failed to setup operation #106" << std::endl;
3652 return ExecutionPlan();
3653 }
3654
3655 status = xnn_setup_hardswish_nc_f32(
3656 op107,
3657 49 /* batch size */,
3658 v107.data() /* input */, v108.data() /* output */,
3659 threadpool /* threadpool */);
3660 if (status != xnn_status_success) {
3661 std::cerr << "failed to setup operation #107" << std::endl;
3662 return ExecutionPlan();
3663 }
3664
3665 status = xnn_setup_global_average_pooling_nwc_f32(
3666 op108,
3667 1 /* batch size */, 49 /* width */,
3668 v108.data() /* input */, v109.data() /* output */,
3669 threadpool /* threadpool */);
3670 if (status != xnn_status_success) {
3671 std::cerr << "failed to setup operation #108" << std::endl;
3672 return ExecutionPlan();
3673 }
3674
3675 status = xnn_setup_convolution2d_nhwc_f32(
3676 op109,
3677 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3678 v109.data() /* input */, v110.data() /* output */,
3679 threadpool /* threadpool */);
3680 if (status != xnn_status_success) {
3681 std::cerr << "failed to setup operation #109" << std::endl;
3682 return ExecutionPlan();
3683 }
3684
3685 status = xnn_setup_hardswish_nc_f32(
3686 op110,
3687 1 /* batch size */,
3688 v110.data() /* input */, v111.data() /* output */,
3689 threadpool /* threadpool */);
3690 if (status != xnn_status_success) {
3691 std::cerr << "failed to setup operation #110" << std::endl;
3692 return ExecutionPlan();
3693 }
3694
3695 status = xnn_setup_global_average_pooling_nwc_f32(
3696 op111,
3697 1 /* batch size */, 1 /* width */,
3698 v111.data() /* input */, v112.data() /* output */,
3699 threadpool /* threadpool */);
3700 if (status != xnn_status_success) {
3701 std::cerr << "failed to setup operation #111" << std::endl;
3702 return ExecutionPlan();
3703 }
3704
3705 status = xnn_setup_convolution2d_nhwc_f32(
3706 op112,
3707 1 /* batch size */, 1 /* input height */, 1 /* input width */,
3708 v112.data() /* input */, v113.data() /* output */,
3709 threadpool /* threadpool */);
3710 if (status != xnn_status_success) {
3711 std::cerr << "failed to setup operation #112" << std::endl;
3712 return ExecutionPlan();
3713 }
3714
3715 #pragma clang diagnostic push
3716 #pragma clang diagnostic ignored "-Wpessimizing-move"
3717 return operators;
3718 #pragma clang diagnostic pop
3719 }
3720
3721 } // namespace models
3722