• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 #include <math.h>
12 
13 #include <immintrin.h>
14 
15 #include <xnnpack/common.h>
16 #include <xnnpack/intrinsics-polyfill.h>
17 #include <xnnpack/raddextexp.h>
18 
19 
xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128_acc4(size_t elements,const float * x,float * sum)20 void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x128_acc4(
21     size_t elements,
22     const float* x,
23     float* sum)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
28   const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
29   const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
30 
31   const __m512 vc0 = _mm512_set1_ps(1.0f);
32   const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
33   const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
34   const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
35   const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
36   const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
37 
38   const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
39 
40   __m512 vaccv0 = _mm512_setzero_ps();
41   __m512 vaccv1 = _mm512_setzero_ps();
42   __m512 vaccv2 = _mm512_setzero_ps();
43   __m512 vaccv3 = _mm512_setzero_ps();
44   __m512 vacce0 = vminus_inf;
45   __m512 vacce1 = vminus_inf;
46   __m512 vacce2 = vminus_inf;
47   __m512 vacce3 = vminus_inf;
48   for (; elements >= 128 * sizeof(float); elements -= 128 * sizeof(float)) {
49     // Load 128 (8x16) inputs at a time.
50     const __m512 vx0 = _mm512_loadu_ps(x);
51     const __m512 vx1 = _mm512_loadu_ps(x + 16);
52     const __m512 vx2 = _mm512_loadu_ps(x + 32);
53     const __m512 vx3 = _mm512_loadu_ps(x + 48);
54     const __m512 vx4 = _mm512_loadu_ps(x + 64);
55     const __m512 vx5 = _mm512_loadu_ps(x + 80);
56     const __m512 vx6 = _mm512_loadu_ps(x + 96);
57     const __m512 vx7 = _mm512_loadu_ps(x + 112);
58     x += 128;
59 
60     // Compute reduced argument elements := round(x / log(2)).
61     const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
62     const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
63     const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
64     const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
65     const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
66     const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
67     const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
68     const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
69 
70     // Compute reduced argument t := x - elements * log(2).
71     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
72     __m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
73     __m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
74     __m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
75     __m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
76     __m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
77     __m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
78     __m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
79     __m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
80 
81     vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
82     vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
83     vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
84     vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
85     vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
86     vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
87     vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
88     vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
89 
90     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
91     __m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
92     __m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
93     __m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
94     __m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
95     __m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
96     __m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
97     __m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
98     __m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
99 
100     vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
101     vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
102     vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
103     vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
104     vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
105     vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
106     vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
107     vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
108 
109     vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
110     vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
111     vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
112     vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
113     vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
114     vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
115     vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
116     vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
117 
118     vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
119     vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
120     vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
121     vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
122     vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
123     vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
124     vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
125     vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
126 
127     vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
128     vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
129     vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
130     vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
131     vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
132     vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
133     vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
134     vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
135 
136     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
137     //  - vnX is "exponent"
138     //  - vpX is "mantissa"
139     //
140     // exp2(ae) * av + exp2(be) * bv =
141     //   = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
142     //   = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
143     //   = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
144     //
145     // For computational efficiency we add three "extended" floating-point numbers at a time.
146     __m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
147     __m512 vmax_e1 = _mm512_max_ps(vacce1, vn1);
148     __m512 vmax_e2 = _mm512_max_ps(vacce2, vn2);
149     __m512 vmax_e3 = _mm512_max_ps(vacce3, vn3);
150     vmax_e0 = _mm512_max_ps(vmax_e0, vn4);
151     vmax_e1 = _mm512_max_ps(vmax_e1, vn5);
152     vmax_e2 = _mm512_max_ps(vmax_e2, vn6);
153     vmax_e3 = _mm512_max_ps(vmax_e3, vn7);
154 
155     const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
156     const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1);
157     const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_e2);
158     const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_e3);
159     const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
160     const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1);
161     const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e2);
162     const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e3);
163     const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0);
164     const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1);
165     const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e2);
166     const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e3);
167 
168     // Update accumulated "mantissa" and "exponent" values
169     vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
170     vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1);
171     vaccv2 = _mm512_scalef_ps(vaccv2, vdelta_acce2);
172     vaccv3 = _mm512_scalef_ps(vaccv3, vdelta_acce3);
173     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
174     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1));
175     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp2, vdelta_e2));
176     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp3, vdelta_e3));
177     vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4));
178     vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5));
179     vaccv2 = _mm512_add_ps(vaccv2, _mm512_scalef_ps(vp6, vdelta_e6));
180     vaccv3 = _mm512_add_ps(vaccv3, _mm512_scalef_ps(vp7, vdelta_e7));
181 
182     vacce0 = vmax_e0;
183     vacce1 = vmax_e1;
184     vacce2 = vmax_e2;
185     vacce3 = vmax_e3;
186   }
187 
188   // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
189   const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1);
190   const __m512 vmax_acce23 = _mm512_max_ps(vacce2, vacce3);
191   const __m512 vmax_acce0123 = _mm512_max_ps(vmax_acce01, vmax_acce23);
192 
193   const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce0123);
194   const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce0123);
195   const __m512 vdelta_acce2 = _mm512_sub_ps(vacce2, vmax_acce0123);
196   const __m512 vdelta_acce3 = _mm512_sub_ps(vacce3, vmax_acce0123);
197 
198   __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0);
199   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1));
200   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv2, vdelta_acce2));
201   vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv3, vdelta_acce3));
202   __m512 vacce = vmax_acce0123;
203 
204   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
205     // Load 16 inputs at a time.
206     const __m512 vx = _mm512_loadu_ps(x);
207     x += 16;
208 
209     // Compute reduced argument elements := round(x / log(2)).
210     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
211 
212     // Compute reduced argument t := x - elements * log(2).
213     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
214     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
215     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
216 
217     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
218     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
219     vp = _mm512_fmadd_ps(vp, vt, vc3);
220     vp = _mm512_fmadd_ps(vp, vt, vc2);
221     vp = _mm512_fmadd_ps(vp, vt, vc1);
222     vp = _mm512_fmadd_ps(vp, vt, vc0);
223 
224     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
225     const __m512 vmax_e = _mm512_max_ps(vacce, vn);
226     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
227     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
228     vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
229     vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
230 
231     vacce = vmax_e;
232   }
233   if XNN_UNLIKELY(elements != 0) {
234     // Prepare mask for valid 32-bit elements (depends on elements).
235     elements >>= 2 /* log2(sizeof(float)) */;
236     const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
237 
238     // Load up to 15 inputs at a time.
239     const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
240 
241     // Compute reduced argument elements := round(x / log(2)).
242     const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
243 
244     // Compute reduced argument t := x - elements * log(2).
245     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
246     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
247     vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
248 
249     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
250     __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
251     vp = _mm512_fmadd_ps(vp, vt, vc3);
252     vp = _mm512_fmadd_ps(vp, vt, vc2);
253     vp = _mm512_fmadd_ps(vp, vt, vc1);
254     vp = _mm512_fmadd_ps(vp, vt, vc0);
255 
256     // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
257     const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
258     const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
259     const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
260     vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
261     vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
262     vacce = vmax_e;
263   }
264 
265   // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
266   const float vmax_acce = _mm512_reduce_max_ps(vacce);
267   const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
268 
269   sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
270   sum[1] = vmax_acce;
271 
272   _mm256_zeroupper();
273 }
274