• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/raddstoreexpminusmax.h>
15 
16 
17 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
18 
xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x80_acc2(size_t elements,const float * input,float * output,float * sum,float max)19 void xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x80_acc2(
20     size_t elements,
21     const float* input,
22     float* output,
23     float* sum,
24     float max)
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which expf(x) is normalized.
30   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
31   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
32   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
33   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
34 
35   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
36   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
37   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
38   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
39   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m256 vi_max = _mm256_set1_ps(max);
42 
43   __m256 vacc0 = _mm256_setzero_ps();
44   __m256 vacc1 = _mm256_setzero_ps();
45   for (; elements >= 80 * sizeof(float); elements -= 80 * sizeof(float)) {
46     // Load 80 (10x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     const __m256 vi8 = _mm256_loadu_ps(input + 64);
56     const __m256 vi9 = _mm256_loadu_ps(input + 72);
57     input += 80;
58 
59     // Subtract maximum input x := i - i_max. This implies x <= 0.
60     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
61     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
62     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
63     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
64     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
65     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
66     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
67     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
68     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
69     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
70 
71     // Compute reduced argument elements := round(x / log(2)).
72     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
73     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
74     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
75     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
76     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
77     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
78     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
79     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
80     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
81     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
82 
83     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
84     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
85     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
86     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
87     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
88     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
89     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
90     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
91     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
92     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
93     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
94     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
95 
96     // Subtract the large number back to get final elements := round(x / log(2)).
97     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
98     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
99     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
100     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
101     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
102     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
103     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
104     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
105     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
106     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
107 
108     // Compute reduced argument t := x - elements * log(2).
109     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
110     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
111     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
112     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
113     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
114     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
115     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
116     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
117     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
118     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
119     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
120 
121     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
122     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
123     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
124     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
125     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
126     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
127     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
128     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
129     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
130     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
131 
132     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
133     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
134     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
135     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
136     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
137     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
138     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
139     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
140     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
141     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
142     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
143 
144     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
145     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
146     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
147     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
148     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
149     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
150     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
151     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
152     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
153     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
154 
155     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
156     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
157     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
158     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
159     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
160     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
161     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
162     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
163     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
164     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
165 
166     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
167     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
168     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
169     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
170     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
171     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
172     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
173     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
174     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
175     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
176 
177     // Reconstruct the final f value:
178     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
179     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
180     //     = s + (t * s) * p
181     vt0 = _mm256_mul_ps(vt0, vs0);
182     vt1 = _mm256_mul_ps(vt1, vs1);
183     vt2 = _mm256_mul_ps(vt2, vs2);
184     vt3 = _mm256_mul_ps(vt3, vs3);
185     vt4 = _mm256_mul_ps(vt4, vs4);
186     vt5 = _mm256_mul_ps(vt5, vs5);
187     vt6 = _mm256_mul_ps(vt6, vs6);
188     vt7 = _mm256_mul_ps(vt7, vs7);
189     vt8 = _mm256_mul_ps(vt8, vs8);
190     vt9 = _mm256_mul_ps(vt9, vs9);
191 
192     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
193     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
194     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
195     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
196     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
197     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
198     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
199     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
200     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
201     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
202 
203     // For inputs below zero cutoff, replace output with +0.0f.
204     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
205     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
206     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
207     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
208     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
209     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
210     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
211     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
212     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
213     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
214     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
215 
216     // Store 80 (10x8) outputs at a time.
217     _mm256_storeu_ps(output, vf0);
218     _mm256_storeu_ps(output + 8, vf1);
219     _mm256_storeu_ps(output + 16, vf2);
220     _mm256_storeu_ps(output + 24, vf3);
221     _mm256_storeu_ps(output + 32, vf4);
222     _mm256_storeu_ps(output + 40, vf5);
223     _mm256_storeu_ps(output + 48, vf6);
224     _mm256_storeu_ps(output + 56, vf7);
225     _mm256_storeu_ps(output + 64, vf8);
226     _mm256_storeu_ps(output + 72, vf9);
227     output += 80;
228 
229     // Accumulate computed exponents.
230     vacc0 = _mm256_add_ps(vacc0, vf0);
231     vacc1 = _mm256_add_ps(vacc1, vf1);
232     vacc0 = _mm256_add_ps(vacc0, vf2);
233     vacc1 = _mm256_add_ps(vacc1, vf3);
234     vacc0 = _mm256_add_ps(vacc0, vf4);
235     vacc1 = _mm256_add_ps(vacc1, vf5);
236     vacc0 = _mm256_add_ps(vacc0, vf6);
237     vacc1 = _mm256_add_ps(vacc1, vf7);
238     vacc0 = _mm256_add_ps(vacc0, vf8);
239     vacc1 = _mm256_add_ps(vacc1, vf9);
240   }
241   // Add up all accumulators to vacc0
242   vacc0 = _mm256_add_ps(vacc0, vacc1);
243 
244   __m256 vacc = vacc0;
245   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
246     // Load 8 inputs at a time.
247     const __m256 vi = _mm256_loadu_ps(input);
248     input += 8;
249 
250     // Subtract maximum input x := i - i_max. This implies x <= 0.
251     const __m256 vx = _mm256_sub_ps(vi, vi_max);
252 
253     // Compute reduced argument elements := round(x / log(2)).
254     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
255 
256     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
257     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
258     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
259 
260     // Subtract the large number back to get final elements := round(x / log(2)).
261     vn = _mm256_sub_ps(vn, vmagic_bias);
262 
263     // Compute reduced argument t := x - elements * log(2).
264     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
265     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
266     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
267 
268     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
269     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
270     vp = _mm256_fmadd_ps(vp, vt, vc3);
271     vp = _mm256_fmadd_ps(vp, vt, vc2);
272     vp = _mm256_fmadd_ps(vp, vt, vc1);
273 
274     // Reconstruct the final f value:
275     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
276     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
277     //     = s + (t * s) * p
278     vt = _mm256_mul_ps(vt, vs);
279     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
280 
281     // For inputs below zero cutoff, replace output with +0.0f.
282     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
283     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
284 
285     // Store 8 outputs at a time.
286     _mm256_storeu_ps(output, vf);
287     output += 8;
288 
289     // Accumulate computed exponents.
290     vacc = _mm256_add_ps(vacc, vf);
291   }
292   if (elements != 0) {
293     assert(elements >= 1 * sizeof(float));
294     assert(elements <= 7 * sizeof(float));
295     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
296 
297     // Load up to 7 inputs at a time.
298     const __m256 vi = _mm256_maskload_ps(input, vmask);
299 
300     // Subtract maximum input x := i - i_max. This implies x <= 0.
301     const __m256 vx = _mm256_sub_ps(vi, vi_max);
302 
303     // Compute reduced argument elements := round(x / log(2)).
304     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
305 
306     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
307     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
308     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
309 
310     // Subtract the large number back to get final elements := round(x / log(2)).
311     vn = _mm256_sub_ps(vn, vmagic_bias);
312 
313     // Compute reduced argument t := x - elements * log(2).
314     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
315     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
316     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
317 
318     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
319     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
320     vp = _mm256_fmadd_ps(vp, vt, vc3);
321     vp = _mm256_fmadd_ps(vp, vt, vc2);
322     vp = _mm256_fmadd_ps(vp, vt, vc1);
323 
324     // Reconstruct the final f value:
325     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
326     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
327     //     = s + (t * s) * p
328     vt = _mm256_mul_ps(vt, vs);
329     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
330 
331     // For inputs below zero cutoff, replace output with +0.0f.
332     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
333     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
334 
335     // Store up to 7 outputs at a time.
336     _mm256_maskstore_ps(output, vmask, vf);
337 
338     // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
339     vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
340   }
341   // Reduce 8 elements in the SIMD register
342   __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
343   vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
344   vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
345   _mm_store_ss(sum, vacc_lo);
346   _mm256_zeroupper();
347 }
348